Supplementary Information

Elucidating the role of metal ions in carbonic anhydrase catalysis

J. K. Kim et al.

This PDF file includes:

Supplementary Figure 1 - HCO₃⁻ binding geometry in Zn-, Co-, Ni-CA II.

Supplementary Figure 2 - Substrate binding in Zn-CA II at pH 7.8 and 11.0.

Supplementary Figure 3 - Product binding in Ni-CA II at pH 7.8 and 11.0.

Supplementary Figure 4 - Absorbance of Apo- & Zn-CA II in esterase kinetic assay at pH 7.8

Supplementary Figure 5 - Partial occupancy determination of His64 in CA II structures.

Supplementary Table 1 - Data collection and refinement statistics for the CA II structures.

Supplementary Table 2 - List of key bound water molecules in the CA II structures.

Supplementary Table 3 - Distance geometry in the CA II structures.

Supplementary References

Supplementary Fig. 1. HCO₃⁻ **binding geometry in Zn-, Co-, Ni-CA II. a-c**) Monodentate binding of HCO₃⁻ in Zn-CA II (PDB code: 2vvb)¹. The CO₂ molecule and W_{Zn} (white) from Zn-CA II 20atm are superimposed for comparison. Note that HCO₃⁻ lies on the plane made by the CO₂ molecule and W_{Zn}. **d-f**) Bidentate binding of HCO₃⁻ in Co-CA II 20atm pH 7.8. The HCO₃⁻ molecule from Zn-CA II (light purple, PDB 2vvb) is superimposed for comparison. Note that the HCO₃⁻ molecule in Co-CA II is tilted by ~ 31° to the HCO₃⁻ molecule in Zn-CA II. **g-i**) Bidentate binding of HCO₃⁻ in Ni-CA II 20atm. The HCO₃⁻ molecule in Co-CA II (pink) is superimposed for comparison.

Supplementary Fig. 2. Substrate binding in Zn-CA II at pH 7.8 (a-b) and 11.0 (c-d). The metal coordination maintains tetrahedral geometry upon CO_2 binding regardless of pH values. The electron density ($2F_0$ - F_c , blue) is contoured at 2.2 σ . The intermediate water (W_I) is colored in steel blue for clarity.

Supplementary Fig. 3. Product binding in Ni-CA II at pH 7.8 (a-b) and 11.0 (c-d). The metal coordination maintains octahedral geometry upon HCO_3^- binding regardless of pH values. The intermediate water (W_I) is colored in steel blue for clarity. The electron density (2F₀-F_c, blue) is contoured at 2.2 σ .

Supplementary Fig. 4. Absorbance of Apo- and Zn-CA II in esterase kinetic assay at pH 7.8. CA II esterase activity was measured spectroscopically at 348nm, indicative of substrate 4-nitrophenyl acetate hydrolysis. Compared to Zn-CA II, Apo-CA II and buffer show little to no esterase activity. The standard deviation errors (white) are presented in the data points and are ranging from 0.2 % ~ 1.1 %. Source data are provided as a Source Data file.

Supplementary Fig. 5. See next page for figure caption.

Supplementary Fig. 5. Partial occupancy determination of His64. The His64 out/in conformations are determined for the selected structures of apo-CA II (**a**, **b**) Zn-CA II (**c**, **d**), Co-CA II (**e**, **f**), Ni-CA II (**g**, **h**) Cu-CA II (**i**, **j**). For each data set, systematic refinements were carried out on 99 structures with manually adjusted His64 in/out occupancies. The obtained data points were then fitted to quadratic functions, showing the minimum points in the overall R factors. The His64 out/in conformations for the other structures can be found in Supplementary Table 1. Source data are provided as a Source Data file.

	apo-CA II 0atm	apo-CA II 20atm	Zn-CA II 0atm	Zn-CA II 20atm	Zn-CA II 0atm nH11.0	Zn-CA II 20atm nH11.0	Co-CA II 0atm	Co-CA II 20atm
	6LUU	6LUV	6LUW	6LUX	6LUY	6LUZ	6LV1	6LV2
Data collection								
Space group Cell dimensions	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁	<i>P</i> 2 ₁
<i>a</i> , <i>b</i> , <i>c</i> (Å)	42.13, 41.30, 72.21	42.26, 41.38, 72.00	42.21, 41.28, 72.15	42.37, 41.44, 72.13	42.28, 41.26, 72.07	42.39, 41.47, 72.15	42.31, 41.22, 72.05	42.32, 41.32, 72.22
β(°)	104.27	104.18	104.18	104.05	104.19	104.11	104.16	104.03
Resolution (Å)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)	30-1.20 (1.22-1.20)
R_{sym} (%)	5.8 (36.8)	7.1 (48.1)	6.5 (37.6) 20 7 (6.3)	6.8 (66.9) 20 8 (3.6)	8.5 (17.7)	5.6 (20.3)	9.2 (60.7)	8.2 (65.6)
$\Gamma / O(1)$	28.8(0.8)	21.2(3.1) 94.3(91.2)	29.7 (0.3)	29.8(3.0)	23.2(12.7)	29.9 (11.8)	24.3(3.2)	20.1(3.8)
Redundancy	7.5 (7.3)	7.5 (7.4)	7.3 (7.1)	7.4 (7.3)	7.4 (7.4)	7.6 (7.5)	7.6 (7.6)	7.4 (7.2)
Refinement								
Resolution (A)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
No. reflections	72,011	71,305	74,561	73,183	73,898	72,112	72,478	74,640
$R_{\text{work}} / R_{\text{free}} (\%)$ No. atoms	11.0 / 13.8	11.7 / 14.8	11.7 / 14.1	11.3 / 14.2	11.1 / 13.1	10.3 / 12.7	12.0 / 15.0	11.4 / 13.9
Protein	4,285	4,256	4,253	4,245	4,253	4,245	4,259	4,240
	1 glycerol	2 CO ₂ ,	1 glycerol	2 CO ₂ ,	1 glycerol	2 CO ₂ ,	1 HCO ₃ -,	1 HCO ₃ -,
Ligand/ion		1 glycerol		1 glycerol		1 glycerol	1 glycerol	1 CO ₂ ,
Water B-factors	371	373	263	367	264	365	283	333
Protein (main / side chain)	9.78 / 12.75	11.48 / 14.38	10.09 / 13.22	10.80 / 13.62	7.90 / 10.99	8.87 / 11.51	10.84 / 14.07	10.31 / 13.31
Ligand/ion	20.76 (glycerol)	13.90 (first CO ₂), 26.78 (second CO ₂), 18.39 (glycerol)	18.32 (glycerol)	10.63 (first CO ₂), 23.50 (second CO ₂), 17.17 (glycerol)	14.79 (glycerol)	8.80 (first CO ₂), 21.13 (second CO ₂), 14.78 (glycerol)	11.23 (HCO ₃ ⁻), 24.46 (glycerol)	9.25 (HCO ₃ ⁻), 23.17 (second CO ₂), 21.27 (dycerol)
Water	30.25	(gryceror) 30.67	26.12	30.58	24.33	(gryceror) 27.75	27.41	29.71
R.m.s. deviations	00.20	20107	20112	20120	2.1100	2/1/0	2,	
Bond lengths (Å)	0.031	0.030	0.029	0.028	0.029	0.028	0.031	0.028
Bond angles (°)	2.515	2.435	2.437	2.423	2.506	2.368	2.644	2.284
Partial occupancy (%)								
His64 (out/in) conformation (%)	58 / 42	44 / 56	40 / 60	69 / 31	32 / 68	63 / 37	49 / 51	68 / 32
	Co-CA II 0atm	Co-CA II 20atm	Ni-CA II 0atm	Ni-CA II 20atm	Ni-CA II 0atm	Ni-CA II 20atm	Cu-CA II 0atm	Cu-CA II 20atm
	pH11.0	pH11.0	61 V5	61 V.6	pH11.0	pH11.0	41 M 0	CI VA
Data collection	01.43	0L V 4	OL VJ	OLVO	ULV/	OLVO	01.19	OLVA
Space group	$P2_1$	$P2_{1}$	$P2_1$	$P2_1$	$P2_1$	$P2_1$	$P2_1$	$P2_1$
Cell dimensions	40.00	10.26	12.40	12.40	42.52	10.40	40.22	42.26
$a h c (\mathring{\Delta})$	42.33, 41.26	42.30, 41.46	42.40, 41.29	42.40, 41 37	42.52, 41.23	42.42, 41.40	42.55, 41.23	42.30, 41.40
<i>a, b, c</i> (11)	72.08	72.31	71.92	72.13	71.87	72.19	72.09	72.31
β(°)	104.13	104.02	104.03	104.01	104.06	104.04	104.17	103.97
Resolution (Å)	30-1.20	30-1.20	30-1.20	30-1.20	30-1.20	30-1.20	30-1.20	30-1.20
RESOLUTION (A)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)	(1.22-1.20)
$R_{\rm sym}$ (%)	8.5 (46.4)	5.8 (42.4)	8.6 (33.1)	7.2 (37.7)	8.5 (29.7)	4.7 (22.7)	9.9 (42.8)	7.8 (44.8)
$I/\sigma(I)$	23.0 (4.3)	31.8 (5.6)	20.7 (7.6)	23.1 (7.2)	23.1 (8.4)	40.6 (10.1)	19.5 (6.0)	25.3 (5.5)
Completeness (%)	95.0 (91.7)	94.6 (91.2)	96.6 (93.8)	95.4 (92.1)	97.5 (94.7)	96.1 (93.0)	95.1 (92.3)	96.9 (94.3)
Kedundancy	1.0(1.1)	/.0(/.6)	1.5 (1.4)	1.0(1.5)	1.4 (1.3)	1.3 (1.3)	/./(/.6)	1.5 (1.5)

Supplementary Table 1. Data collection and refinement statistics for the CA II structures.

Refinement								
Resolution (Å)	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
No. reflections	71,822	72,158	73,007	72,507	73,791	73,217	71,843	73,841
$R_{ m work}$ / $R_{ m free}$ (%)	12.3 / 14.9	11.3 / 13.9	11.6 / 14.1	11.2 / 13.8	11.7 / 13.9	11.2 / 13.6	11.7 / 14.4	11.3 / 14.2
No. atoms								
Protein	4,252	4,240	4,259	4,240	4,259	4,240	4,259	4,240
Ligand/ion	1 glycerol	1 HCO ₃ ⁻ , 2 CO ₂ , 1 glycerol	1 glycerol	1 HCO ₃ -, 1 CO ₂ , 1 glycerol	1 glycerol	1 HCO ₃ -, 1 CO ₂ , 1 glycerol	1 glycerol	1 CO ₂ , 1 glycerol
Water	265	333	279	347	279	346	286	360
B -factors								
Protein (main / side chain)	10.84 / 14.06	10.39 / 13.16	8.73 / 11.74	7.93 / 10.50	9.15 / 12.17	8.38 / 10.83	9.71 / 12.55	8.23 / 10.89
Ligand/ion	21.51 (glycerol)	15.78 (HCO ₃ [°]), 14.19 (first CO ₂), 21.78 (second CO ₂), 19.39 (glycerol)	18.86 (glycerol)	9.15 (HCO ₃ ⁻), 21.92 (second CO ₂), 14.87 (glycerol)	19.13 (glycerol)	7.40 (HCO ₃ ⁻), 21.95 (second CO ₂), 13.93 (glycerol)	17.19 (glycerol)	19.67 (second CO ₂), 14.81 (glycerol)
Water	26.98	28.72	24.56	26.58	26.51	26.38	26.62	29.36
R.m.s. deviations								
Bond lengths (Å)	0.031	0.028	0.032	0.029	0.030	0.028	0.031	0.029
Bond angles (°)	2.484	2.358	2.600	2.382	2.552	0.352	2.550	2.460
Partial occupancy (%)								
His64 (out/in) conformation (%)	49 / 51	69 / 31	43 / 57	60 / 40	46 / 54	52 / 48	39 / 61	66 / 34

*Values in parentheses are for the highest-resolution shell.

Supplementary	Table 2. List of	key bound water	molecules in the	CA II structures.
---------------	------------------	-----------------	------------------	-------------------

	apo-CA	apo-CA	Zn-CA	Zn-CA	Co-CA	Co-CA	Ni-CA	Ni-CA	Cu-CA	Cu-CA
	II Oatm	II 20atm	II Oatm	II 20atm	II Oatm	II 20atm	ll Oatm	II 20atm	II Oatm	II 20atm
	Uatin	20aun	Oatin	20atiii	pH11.0	20atiii	Oatin	20aun	Oaun	20aun
	6LUU	6LUV	6LUW	6LUX	6LV3	6LV2	6LV5	6LV6	6LV9	6LVA
CO ₂	_	A 302		A 302	-		—		_	—
HCO3 ⁻	_	_			_	A 304	_	A 305	_	_
WZn	_	_	A 481	A 426	_		_	_	_	_
WCo, tetra	_	-	-	_	A 490		_	-	_	-
W _{Co, octa}	_	-	-	_	_	A 485	_	-	_	—
W_{Ni}	-	_	_	_	_	_	A 573	A 583	_	_
W_{Ni}^{\prime}	-	-	_	_	_	_	A 421	_	_	_
$W_{Ni}^{} ^{\prime \prime}$	_	-	-	_	_	_	A 602	-	_	—
W_{Cu}	-	—	_	—	—	—	—	_	A 451	A 421
W_{Cu}^{\prime}	-	_	_	_	_	_	_	_	A 580	_
Wapo	A 486	A 475		_	_	—	—	_	_	—
W _{DW}	A 618	_	A 581	_	A 569	_	_	_	A 587	A 496
W_{DW}^{\prime}	-	—	—	_	_	—	—	_	—	A 695
$W_{DW}^{\prime\prime}$	-	_	_	-	—	_	_	_	-	A 675
WI	-	A 591	_	A 483	—	A 448	A 611	A 495	-	A 427
W _I ′	_	_	_	A 643	_	_	_	_	_	A 663
W1	A 591	_	A 487		A 546	_	_	_	A 563	
W2	A 641	A 666	A 615	A 678	A 584	A 667	A 627	A 662	A 636	A 681
W2′	_	_	_	A 401	_	A 401	_	_	_	A 401
W3a	A 541	A 556	A 518	A 543	A 529	A 537	A 532	A 507	A 540	A 528
W3b	A 462	A 430	A 451	A 451	A 454	A 432	A 453	A 479	A 442	A 452
W3b′	_	_	_	A 695	_	_	_	_	_	A 684
W3bapo'	_	A 606	_	_	_	_	_	_	_	_
W3bapo'	_	A 703	_	_	_	_	_	_	_	_
$W3b_{Co}$	_	_	_	-	-	A 648	_	_	-	_
W _{EC1}	A 680	_	A 614	A 665	A 611	A 630	_	_	A 619	A 648
W_{EC1}^{\prime}	-	—	—	A 702	—	—	—	—	_	A 699
WEC1"	_	_	-	_	_	_	A 598	A 626	_	
W _{EC2}	A 668	A 700	A 608	-	A 609	_	_	_	A 603	A 641
W_{EC2}^{\prime}	_	_	_	A 697	_	A 661	A 649	A 669	_	A 697
WEC2"	_	_	-	_	_	_	A 613	A 642	_	_
WEC2""	_	_	_	_	_	A 673	_	_	_	_
WEC3	A 707	A 712	A 634	A 720	A 639	A 706	A 658	A 704	A 649	A 703
W _{EC3} '	_	A 714	_	_	_	_	_	_	_	_
WEC3"	_	A 710	_	_	_	_	_	_	_	_
WEC4	A 761	A 760	A 655	A 755	A 660	A 720	A 672	A 734	A 676	
W _{EC5}	A 447	A 421	A 438	A 417	A 437	A 430	A 442	A 428	A 420	A 502

Supplementary Table 3. Distance geometry (Å) of CO₂, HCO₃⁻ and key bound water molecules in the CA II structures.

	apo- CA II 0atm	apo- CA II 20atm	Zn-CA II 0atm	Zn-CA II 20atm	Co-CA II 0atm pH11.0	Co-CA II 20atm	Ni-CA II 0atm	Ni-CA II 20atm	Cu-CA II 0atm	Cu-CA II 20atm
	6LUU	6LUV	6LUW	6LUX	6LV3	6LV2	6LV5	6LV6	6LV9	6LVA
$Zn-W_{Zn} \\$	-	_	1.88	1.92	_	_	_	_	_	_
$Zn - CO_2(O1)$	-	—	_	3.31	_	_	_	_	_	_
Co – W _{Co, tetra}		_	_	-	1.72	_	_	_	_	-
Co – W _{Co, octa}	_	_	_	-	_	2.03	_	_	_	-
$Co - CO_2(O1)$	-	_	_	-	_	_	_	_	-	_
$Co - HCO_3^{-}(O1)$	-	—	_	—	-	2.07	_	-	—	—
$Co - HCO_3^{-}(O3)$	-	_	_	_	-	2.02	-	-	_	_
$Ni - W_{Ni}$	-	_	_	_	_	_	2.09	2.13	_	_
$Ni - W_{Ni}^{\prime}$	-	_	_	_	_	_	2.14	_	_	_
$Ni-W_{Ni}^{\prime\prime}$	_	_	_	_	-	_	2.22	-	_	_
Ni – HCO3 ⁻ (O1)	_	_	_	_	_	_	_	2.16	_	_
Ni – HCO3 ⁻ (O3)	_	_	_	_	-	_	_	2.18	_	_
$Cu - W_{Cu}$	-	_	_	_	_	_	_	_	2.17	2.26
$Cu - W_{Cu}^{\prime}$	-	_	_	_	_	_	_	_	2.36	_
$Cu - W_{DW}^{\prime\prime}$	_	_	_	_	_	_	_	_	_	3.14
$CO_2(C1) - W_{Zn}$	_	_	_	2.87	_	_	_	_	_	_
$CO_2(C1) - W_{Co_1 tetra}$	_	_	_	_	_	_	_	_	_	_
$HCO_3^{-}(O1) - W_{Co, octa}$	_	_	_	_	_	2.85	_	_	_	_
HCO ₃ -(O3) – W _{Co, octa}	_	_	_	_	_	2.72	_	_	_	_
$HCO_3(O1) - W_{Ni}$	_	_	_	_	_	_	_	2.92	_	_
$HCO_3^{-}(O3) - W_{Ni}$	_	_	_	_	_	_	_	2.85	_	_
CO ₂ (C1) – W _{apo}	-	2.94	_	_	_	_	_	_	_	_
$W_{Zn}-W_{DW} \\$	_	_	2.58	_	_	_	_	_	_	_
$W_{Zn} - W1$	_	_	2.63	_	_	_	_	_	_	_
$W_{Zn} - W_I$	-	_	_	2.75	_	_	_	_	_	_
$W_{Zn}-W2$	-	_	4.41	4.65	_	_	_	_	_	_
W _{Co, tetra} – W _{DW}	_	_	_	_	2.61	_	_	_	_	_
W _{Co, tetra} – W1	_	_	_	_	2.73	_	_	_	_	_
W _{Co, tetra} – W _I	_	_	_	_	_	_	_	_	_	_
W _{Co, tetra} – W2	_	_	_	_	4.55	_	_	_	_	_
W _{Co. octa} – W _I	_	_	_	_	_	2.75	_	_	_	_
W _{Co. octa} – W2		_	_		_	2.71	_	_		
$W_{Co, octa} - W2'$	_	_	_	_	_	4.90	_	_	_	_
$W_{Ni} - W_{Ni}'$		_	_	_	_		2.82	_	_	_
$W_{Ni} - W_{Ni}''$	 _	_	_	_	_	_	3.08	_	_	_
$W_{Ni}' - W_{Ni}''$	_	_	_	_	_	_	2.78		_	_
$W_{Ni} - W_{I}$	_		_			_	2.95	2.88		
$W_{Ni} = W^2$	_					_	2.23	2.00		
$W_{Cn} = W1$	_					_			2 54	
$W_{Cu} - W_{Cu}'$	_	_	_	_	_	_	_	_	3.06	_

$W_{Cu}-W_{DW} \\$	-	_	—	—	—	_	—	—	3.23	2.84
$W_{Cu}{}^\prime-W_{DW}$	-	-	_	_	_	_	—	_	2.84	_
$W_{\rm DW}-W_{\rm DW}'$	-	_	_	_	_	_	_	_	_	1.52
$W_{DW}^{\prime}-W_{DW}^{\prime\prime}$	_	_	_	_	_	_	_	_	_	1.60
$W_{Cu} - W_{I}$	_	_	_	_	_	_	_	_	_	2.84
$W_{Cu} - W2$	_	_	_	_	_	_	_	_	3.44	3.90
$W_{apo} - W_{DW}$	2.71	_	_	_	_	_	_	_	_	_
Wano – W1	2.82	_	_	_	_	_	_	_	_	_
$W_{apo} - W_I$	_	2.88	_	_	_	_	_	_	_	_
$W_{apo} - W2$	4.90	3.96	_	_	_	_	_	_	_	_
W1 – W2	2.73	_	2.74	_	2.70	_	_	_	2.78	_
$W_I - W_I'$	_	_	_	2.02	_	_	_	_	_	2.09
W2 – W2'	_	_	_	1.43	_	2.79	_	_	_	1.51
W2-W3a	2.75	2.80	2.77	3.12	2.77	3.40	2.81	2.72	2.81	3.14
W2 – W3b	2.72	2.99	2.73	2.49	2.68	2.41	2.95	3.08	2.79	2.57
$W_2 - W_3b'$	_		_	1.68	_	2.69		_		1.65
W3h - W3h'				1.30		1.86				1 39
Thr199(N) –				1.57		2.02		2.05		1.57
HCO ₃ -(O2)	_	_	_		_	2.93		3.05		
Thr199(N) – CO ₂ (O2)	_	3.20	_	3.62	_	_	_	_	_	_
Thr199(N) – W _{DW}	2.93	_	2.92	-	2.90	-	_	-	2.90	2.74
$Thr 199(N) - W_{\rm I}$	-	3.34	_	3.52	_	3.71	3.04	3.52	_	3.68
Thr199(Oγ1) – HCO ₃ ⁻ (O3)	-	-	-	-	-	2.44	-	2.46	_	-
$\begin{array}{l} Thr 199(O\gamma 1) - \\ W_{Zn} \end{array}$	_	_	2.73	2.62	_	_	_	_	_	_
Thr199(Ογ1) – W _{Co, tetra}	_	—	-	-	2.75	-	-	-	_	-
Thr199(Ογ1) – W _{Co, octa}	_	—	-	-	-	3.75	-	-	_	-
$\begin{array}{l} Thr 199(O\gamma 1) - \\ W_{Ni} \end{array}$	_	—	-	-	-	-	3.68	3.65	_	-
$\begin{array}{l} Thr 199(O\gamma 1) - \\ W_{Ni}{}' \end{array}$	-	—	_	_	—	—	2.62	_	_	_
$\begin{array}{l} Thr 199(O\gamma 1) - \\ W_{Ni}{}^{\prime\prime} \end{array}$	-	—	—	-	—	-	5.04	-	_	-
Thr199(Oγ1) – W _{Cu}	_	_	_	_	_	_	_	_	2.68	2.61
Thr199(Ογ1) – W _{Cu} '	-	_	_	_	_	_	_	_	4.37	_
Thr199(Oγ1) – W _{apo}	2.72	2.69	-	-	_	_	_	-	_	_
Thr199(Oγ1) – Glu106(Oε1)	2.60	2.59	2.61	2.56	2.62	2.53	2.91	2.55	2.61	2.59
Glu106(Oε1) – W _{Zn}	_	_	4.15	4.01	_	_	_	_	_	_
Glu106(Oε1) – W _{Co, tetra}	-	_	_	_	4.08	_	_	_	_	_
Glu106(Oε1) – WCo, octa	-	_	_	_	_	4.85	_	_	_	_
$Glu106(O\epsilon 1) - W_{Ni}$	-	_	_	_	_	_	4.75	4.84	_	_
Glu106(Οε1) – W _{Ni} '	-	_	_	_	_	_	2.78	_	_	_
Glu106(Οε1) – W _{Cu}	-	_	_	_	_	_	_	_	4.20	4.19

Glu106(Oε1) – W _{apo}	4.01	4.09	_	_	_	_	_	_	_	_
His64 _{in} (Nδ1) – W2	3.02	3.16	3.22	3.28	2.94	3.88	3.29	3.22	3.43	3.48
$\begin{array}{l} His64_{in}(N\delta1) - \\ W2' \end{array}$	-	_	_	1.86	_	1.26	—	_	_	1.99

Supplementary References

1 Sjoeblom, B., Polentarutti, M. & Djinovic-Carugo, K. Structural study of X-ray induced activation of carbonic anhydrase. *Proc Natl Acad Sci U S A* **106**, 10609-10613, doi:10.1073/pnas.0904184106 (2009).