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Cross-section

Figure S1. 3D schematics diagram of the positions of the paraffin sections
produced from rice LJs, Related to Figure 1.

The cross section is indicated in pink, and the longitudinal-section is indicated in blue.
Ad and Ab represent the adaxial and abaxial sides of the LJ, respectively.
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Figure S2. The regions of the first complete leaf collected for RNA-seq analysis at
five stages of development, Related to Figure 2 and Figure 3.

The blade regions used for RNA-seq analysis are adjacent to LJs; the LJ regions
include the LJs. DAG, days after germination. Scale bars, 500 pm.
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Figure S3. Correlation among the different samples and replicates used for
mRNA sequencing, Related to Figure 2.
A, Scree plot for PCA.

B, Principal component analysis (PCA) of 20 libraries from LJs and blades at five
stages of development (2 biological replicates per sample). The biological replicates
are indicated by the same color and shape; circle represents the LJ, triangle represents
the blade; C1 to C5 indicate LJ samples at five stages of development, B1 to BS
indicate blade samples at five stages of development. The proportions of variance
represented by PC1 and PC2 are indicated in brackets.

C, GO enrichment analysis (FDR < 0.05) of the top 5% of genes positively or
negatively correlated to PC1 and PC2.

D, Spearman’s correlation coefficients (SCCs) analysis of the transcriptomes from ten

samples using the transformed value log2(FPKM+1) of genes with more than 1 FPKM
in at least one sample.
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Figure S4. The remained clusters of DEGs and the GO enrichment analysis,

Related to Figure 2.

A, Remained clusters of DEGs in LJs. The expression values were normalized using
the Z-score method; the number of genes in each cluster is indicated in brackets.

B, Biological processes revealed by GO enrichment analysis (FDR < 0.05) in the
remained clusters. The related GO terms are displayed in similar colors; aggregate

size indicates the significance of the GO term.
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Figure S5. Enriched functional processes in cluster M04 determined by KEGG
pathway analysis (FDR < 0.05) , Related to Figure 2.
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Figure S6. Size distribution of small RNAs in libraries from LJs and blades at

five stages of development, Related to Figure 3.
The sizes of small RNAs are plotted versus frequency (percentage) among total

sequences (A) and distinct sequences (B). The distinct sequences represent the small

RNA species in each library after removing the duplicates from total sequences.
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Figure S7. Characters and abundance of mature miRNAs, Related to Figure 3.

A, Characters of the mature miRNAs

identified from de novo annotated MI/RNAs.

B, Abundance of MIRNAs and their mature miRNAs identified by de novo annotation

and miRBase.
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Figure S8. Enriched functional processes (GO/KEGG/MAPMAN; FDR < 0.05)
for predicted target genes by stage-specific miRNAs that are differentially
expressed in LJs during development (expectation < 2.5), Related to Figure 3.
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Figure S9. The detailed pipeline used to predict TFBSs and candidate TFs for LJ
development in rice, Related to Figure 4.
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Figure S10. Identification of key TFs determining the expression patterns of
MIRNAs in LJs, Related to Figure 4.

The FPKM values and the normalized expression values at five stages of development
are shown. Heatmaps represent the normalized expression values determined using
the Z-score method.
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Figure S11. Sequencing results for the knockout lines of the candidate TFs
generated by CRISPR/Cas9, Related to Figure 4.
The gRNA-targeting sites are indicated in blue. Insertions are highlighted in red and
deletions are indicated by dashes.
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Figure S12. Relative expression levels of putative target genes in specific GO
terms, Related to Figure 5.

A, Relative expression levels of putative target genes from the cell cycle term in M06,
which were detected in the LJs of LJS1S2-1-cri/LJS1S2-1L-cri and Ni at S1,
respectively. Gene IDs in black represent genes with positive roles in the cell cycle,
whereas gene IDs in blue represent genes with negative roles in the cell cycle.

B, Relative expression levels of putative target genes in the GO terms lignin
catabolism and response to oxidative stress in M03, and phenylpropanoid biosynthesis
and flavonoid biosynthesis in M04, which were detected in the LJs of
LJS3-1-cri/LJS3-1L-cri and wild-type Ni. Gene IDs in black represent genes with
positive roles in lignin biosynthesis, whereas gene IDs in blue represent genes with
negative roles in lignin biosynthesis.

C,D, Relative expression levels of putative target genes in the GO terms
phenylpropanoid biosynthesis and flavonoid biosynthesis in M04, which werre
detected in the LJs of LJS4-1-cri, LJS4-2-cri, and wild-type Ni at S4. Gene IDs in
black represent genes with positive roles in lignin biosynthesis, whereas gene IDs in
blue represent genes with negative roles in lignin biosynthesis.

The expression levels in Ni were defined as 1. Data are means + SD. n=3.
Significance was tested using Student's #-test with *p < 0.05, **p < 0.01, ***p <
0.001, and ns indicates no significance.
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Figure S13. Tiller number and panicle length under the different planting
densities, Related to Figure 6.

A, Sketch map of the paddy trial in Wuhan, China in 2019 used to compared knockout
lines with erect leaves and wild-type plants (Ni) under two planting densities with
three replicates. Knockout lines 1-7 are 1-LJSI-1cri/LJS1-1L-cri,
2-LJS182-1-cri/LJS1S82-1L-cri, 3-LJS3-1-cri/LJS3-1L-cri, 4-LJS4-1-cri, 5-LJS4-2-cri,
6-LJS5-1-cri, and 7-LJS5-2-cri/LJS5-2L-cri.

B, Primary tiller number per plant under different planting densities. n = 40.

C, Primary tiller number per square meter under different planting densities.

D, Panicle length under different planting densities. n = 70.

N: normal planting (22.2 plants m2); D: dense planting (44.4 plants m~2). Data are the
means + SE. Lowercase letters indicate significant differences at the level of P <0.05
within a parameter (Tukey’s Honest Significant Difference test).
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Figure S14. Identification of genes with organ-specificity at five stages of
development, Related to Figure 2.

[T

eration

muﬁt:ce u ar gpognjsmal de\(elolﬂmenl
[i‘?w mage
i

2 b cess
ce IRerena n

w \ﬂcel[ulfoorgeamsmé“ process

il nuclqum‘eln complex biogenesis
I me IO enesli. P og

R Compnent biogenesis
AT

Qfﬂe ZBolig process
"C P focessing

roll

Eefltiar macromolecy rco %bumto anization

g\acro Oec ular complex sul Organlzﬁ‘
Ohfomatin a%5embly or dlsassembly

translation

Shromatn oégamzat

By m%som GHOBNA 1 reﬂnca\non

A I |ca&|on initiation
ication

anizaf
w‘t IIuF Ieln hBiane transport

( itochond
S el e

Proleln [l n: l nc ondrlal InneI membrane
e mitorhondrial membrane orgen
mifochondrial membrane organiz fon

egu.a&"}n%weva“w\arpmss

rod ctive Structyre development
A;g,nﬁ,z"a e e e
e,
mrpceT S Eage ?no ement
ml {ﬁua Ul l1 g Ve

ﬁf SISk MBS tc cell cycle

ny (fear diyision
Ilc rel cycle

response 1o ol H Sbamie N
ceTu lar Es X o ghemical snmulus
accharide metabolic process
ity acid bisynthetic fic process
SeGultion gcr&ho DNA-dependent”
rgg% ation o % c proce:
a PR

et
I
al ICI 3( lifﬂ rocess
uct P
Se 0 Sllml.l us

Fotodynihesrs, ignt harvesting”
oS! ; it ESIS \I\n‘ reac‘elonug

e
Fo e , !v"?“empﬁaweeazm.m process

g
%m%:;%g::a:«; aé;fz‘:f::ﬁ:%;:onmess

ceﬁar Bmine o gol prpcess
gs amggwlam metabolic process

Slular SN 360 Snd-derivative metabolic process
e Ao Probess

amine.
oxoacid metal ilagb% '0Cess
organic acid met lic process
ca Xy lic acid met: IC process
etone metabolic process
{erpenoid blosynthelic process
Isoprenoid bioSynt! ehcrgrocess
LSO feﬂOI ({1‘% &]g Cess
eroc IO n| lic process
9 Yg e(IC pl’Q?eSS

e uauon Lmﬁ;en utilization
itfogen utlizauo

-log,o(FDR)

20
15
10
5

0

A, Number of organ-specific genes at each stage (FDR < 0.05 and fold change > 2).
B, Up-regulated genes in LJs compared to blades at each stage.

C, Down-regulated genes in LJs compared to blades at each stage.
D, Enriched GO terms in the biological processes category (FDR < 0.05) for the
organ-specific genes at each stage. Gray box indicates that a GO term is not enriched

in a specific gene set.



Transparent Methods
Plant growth conditions and sample collection

The rice variety used in this study was japonica (Oryza sativa) cultivar, Nipponbare
(N1i). The seeds were soaked in distilled water at room temperature for 1 day and
imbibed for 2 days in water at 37°C in a constant temperature incubator (referred to as
the first and second day after germination, respectively). The water was changed
twice daily. The germinated seeds were transferred to 96-well plates with cut bottoms
and grown in water under a 16 h (light, 28°C)/8 h (dark, 25°C) cycle. LJ and blade
tissue form the first complete leaves of seedlings were separately cut and collected on
the 4, 5t 6t 7% and 9™ day after germination, the length of LJ were less than 1 mm,
and the length of blade was less than 10 mm. In addition, the leaf materials inside the
outer leaf were removed respectively. Approximately 150 seedlings at each stage were
dissected to isolate RNA for LJs and leaf blades. The collected tissues were
immediately frozen in liquid nitrogen and subjected to total RNA extraction with
TRIzol (Invitrogen). Two biological replicates per sample were produced to construct

RNA-seq and small RNA-seq libraries.

Paraffin sectioning

LJ and blade tissues were fixed in FAA solution (50% ethanol, 5% acetic acid, and
10% formaldehyde in water), vacuum infiltrated for one hour, dehydrated with a
graded ethanol series (from 50% ethanol to absolute ethanol), and embedded in
paraffin. Microtome sections (7 um) were cut with a paraffin-slicing machine (Leica)
and affixed to egg white-glycerin-coated slides. The sections were de-paraftinized in
xylene, dehydrated through a graded ethanol series, and stained with Safranin O/Fast

Green, and observed under a light microscope (Zeiss, Germany).

RNA library preparation, sequencing, and data processing

RNA-seq libraries were constructed using a NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® (NEB, USA) and sequenced on the Illumina HiSeq 4000 platform

to generate 150 bp paired-end reads. After removing low-quality reads, the clean reads



were trimmed with Trimmomatic-0.36 and then mapped to the rice reference genome
rice IRGSP-1.0 with TopHat v2.1.1 (Kim et al., 2013). The uniquely mapped reads
were used to calculate FPKM (fragments per kilobase of transcript per million reads)
values for the genes with Cufflinks v2.2.1 (Trapnell et al., 2012) to estimate their
expression levels in different samples. The rice genome and gene annotation file was

downloaded from Ensembl Plants (http://plants.ensembl.org/index.html). Principal

component analysis (PCA) and Spearman's correlation coefficients (SCCs) analysis
based on gene expression profiles were performed using the prcomp and cor functions

in R software.

Identification of DEGs and DEMs, clustering, and functional enrichment

analysis

Differentially expressed genes (DEGs) in each pair of samples were identified using
Cuffdiff (Cufflinks v2.2.1, FDR < 0.05 and Fold change > 2) and merged into three
gene sets based on stage-level differences between LJ samples only or blade samples
only and the organ-level differences between LJs and blades at the same stage. The
stage-level DEGs for LJs or blades with annotated coding sequences were used to
perform clustering to obtain predominant gene sets with distinct stage specificity to
uncover active functional modules during organ development in subsequent analysis.
The DEGs were assigned into small clusters by the affinity propagation-clustering
algorithm (Bodenhofer et al., 2011) using the R package apcluster with default
parameters. Given that many of these clusters still exhibited similar stage specificity,
we further combined them into 23 gene sets based on their similarity to the expected
expression pattern with the highest Pearson correlation coefficient in 5 LJ samples
(PCC5). The expected patterns were determined by permuting five elements with
values of “1” or “0” in a numeric array, which represent single stage or stages-group
specificity.  The DEGs between LJs and blades at each stage were defined as

organ-specific genes.

The differentially expressed microRNAs (DEMs) for each sample pair were identified
with edgeR (FDR < 0.05; maximum expression value > SRPM). The DEMs between
LJ samples were directly clustered into 19 stage-specific modules, based on their

similarity to the expected expression pattern with the highest PCC, as mentioned


http://plants.ensembl.org/index.html

above.

Gene ontology (GO) enrichment analysis (FDR < 0.05) of particular gene sets was
performed using the web tool agriGO (http://bioinfo.cau.edu.cn/agriGO/index.php),
and the GO terms were summarized with REVIGO (Supek et al., 2011). The KEGG
enrichment analysis (FDR < 0.05) for particular gene sets was performed with the R
package “clusterProfiler”, and the pathway annotations of rice genes were

downloaded from KEGG (https://www.genome.jp/kegg/).

Small RNA library preparation, sequencing, and miRNA identification

The total RNAs were sent to BGI (Shenzhen, China) for small RNA library
construction and high-throughput sequencing on the BGISEQ-500 platform. Adaptor
sequences, contamination, and low-quality reads were removed from the raw reads.
Mapping of the clean data to the reference genome and de novo MIRNA identification
were performed with ShortStack (v 3.8.2; parameter set: --dicermin 18 --dicermax 26
--foldsize 400) for each sample and merged MIRNA loci were obtained with bedtools
v2.17.0. The identified MIRNAs (microRNA loci) were compared to the annotated
MIRNAs in miRBase (v21; osa.gff3). The major sSRNA species with the highest
abundance identified from each MIRNA locus were considered to be the mature
miRNAs in different samples, which were also compared with he mature miRNAs in
miRBase. A locus with a mature miRNA whose sequence was similar to that of a
known miRNA annotated in miRBase was considered to be a paralogous member of
that known family (Meyers et al., 2008). A mature miRNA whose sequence differed

from the known sequence at the same locus was considered to be a variant or isomiR.

Target prediction and differentially expressed miRNAs

Target prediction of the mature miRNAs was performed with psRNATarget
(http://plantgrn.noble.org/psRNATarget/; expectation < 2.5), and differentially
expressed miRNAs between samples were detected with edgeR (FDR < 0.05;
maximum RPM > 5). The miRNAs identified in comparisons between C1-C5 were
considered to be stage-specific miRNAs that function in LJ development. The
stage-specific miRNAs were directly assigned to 19 clusters based on their expression

dynamics with the highest similarity to the expected expression patterns, which



represent single stage or stages-group specific miRNAs, as mentioned above.

Identification of cis-motifs and candidate cognate TFs

For identification of cis-elements, first, the gene sets including all the genes in
clusters MO1 to M0O5 were used. Second, we also used genes sets enriched in GO
terms which were the main developmental features of LJ in different stages, including
lignin catabolism, lipid metabolism, lipid transport, response to oxidative stress in
MO3, carbohydrate catabolism in M04, and the cell cycle in M06. To predict TFs
which potentially regulated specific gene sets, first, the overrepresented motifs in
promoters of genes in the specific gene set were detected using the MEME program
(Bailey and Elkan, 1994): for predicting motifs in gene sets M01-MO05, the top 10
motifs with E-value < 107 were selected as putative transcription factor binding sites
(pTFBSs); for predicting motifs in gene sets of GO terms, the top 10 motifs that
occurred in > 50% of the promoters were selected as pTFBSs. Then, the pTFBSs were
compared to known cis-motifs (JASPAR CORE database) using the TOMTOM
program (Gupta et al., 2007) to identify the significantly similar binding sites (q-value
< 0.05 and p-value < 10**) that could be recognized by known cognate TFs. Third, the
rice homologs of these cognate TFs were identified by BLASTp analysis (e-value <
10-1%; the protein sequences of cognate TFs and rice homologs are downloaded from
UniProt and RAP-DB, respectively). Finally, the candidate TFs were identified with
two characters: first, they belonged to the same TF family with the cognate TFs,
which is predicted by plantTFDB (Jin et al., 2017; http://planttfdb.cbi.pku.edu.cn/);
second, they exhibited the similar stage specificity with their predicted targets (PCCS
> 0.9). Notably, the TF-targeted genes are the genes from the corresponding gene set
whose promoters contain the TF-specific pTFBS from above MEME analysis. We
have showed the detailed pipeline in Supplementary Figure 9.

The identified MIRNAs (microRNA loci) were compared with the annotations of
protein-coding genes (https://rapdb.dna.affrc.go.jp/) to uncover intragenic and
intergenic MIRNAs (Cui et al., 2009). Given that the intragenic MIRNAs were
potentially transcribed as a part of their overlapping genes (Lee et al., 2004), their
promoter regions were considered to be the same as those of these overlapping genes.

To predict the promoters of intergenic MIRNASs, the specified upstream regions were



extracted as previously described, which were considered to include TSSs driving
transcription (Bailey and Elkan, 1994). The method used to predict TFs regulating
miRNA expression was almost the same as that used to predict the regulators of genes
from the enriched GO terms mentioned above, except that a threshold of g-value <
0.05 was used (TOMTOM) in the pTFBS comparisons to retain enough results for the

clusters we were interested in.

Vector construction and plant transformation

To generate the CRISPR/Cas9 knockout mutants, the pCXUN-CAS9 vector (He et al.,
2017) was used. The CRISPR target sequences for selected TF genes were obtained
from CRISPR-P 2.0 (http://crispr.hzau.edu.cn/CRISPR2/). To genotype homozygous
mutants generated by CRISPR/Cas9, less than 800 bp DNA fragments covering the

CRISPR target sequences were amplified and sequenced.

RNA extraction and RT-qPCR

Total RNA was extracted from the samples using the TRIzol method (DP432,
Tiangen). First-strand cDNA was synthesized using a PrimeScript RT reagent kit
(TaKaRa). For RT-qPCR, SYBRMaster Mix for PCR (Invitrogen) was used. OsUBQ
(0Os0320234200) was used as an internal control to normalize the data. Three

biological repeats were performed. The primers are listed in Table S7.

Paddy trials and yield evaluation under different planting densities

Paddy trials were conducted in Wuhan in 2019. The KO and wild-type rice plants
were grown in a paddy field with row spacing and plant spacing in a row at a distance
of 30 x 15 ¢cm (22.2 plants per m?) or 15 x 15 cm (44.4 plants per m?). Each treatment
was replicated three times in randomized blocks. Each plot was 2 x 2 m. The number
of tillers per treatment was counted in the field from 20 plants excluding marginal
plants. Fifty plants were harvested from each plot excluding marginal plants. Tillers
with fertile panicles (more than 5 fertile seeds) and panicle length were determined
from approximately 30 plants. After harvest, the plants were dried for 7 days, and
1,000- grain weight and grain yield per plant were measured from approximately 30

plants. Grain yield was converted to value per hectare. Standard statistical procedures



were used to analyze the data using SPSS 17.0 (Softonic International, Barcelona,
Spain). Tukey’s Honest Significant Difference test was used for multiple comparisons

at the P < 0.05 level.
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