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Supporting Information Text13

Hierarchical Bayesian model to estimate trip duration decay14

To model the variation in duration of stay for commuter trips across different routes of travel, we estimated Ndecay(yij), which15

is the expected number of commuters making a trip of duration y when travelling from origin district i to destination district j.16

The model uses an exponential decay function based upon the time spent y in district j that is linked to observations of call17

data records through a Normal error distribution that has inverse variance. The inverse variance is scaled by parameter νij ,18

which varies across all i→ j routes.19

Ndecay(yij) ∼ Norm(ηij , εij)

ηij = N0ij e
−λijyij

εij = (1/yij)νij

[1]20

The intercept term (N0ij ) is the observed number of trips at y = 0 for each i→ j route. We estimated decay rate parameters21

(λ) in the model hierarchically at both the population- and route-level to facilitate comparison of decay rates across different22

route types and compensate for routes that have lower sample sizes. Where, λij in Equation 1 is the decay rate at the23

route-level, which is estimated by small modifications (∆) to the population-level hyperparameter λ′ such that λij = λ′ ·∆λ′
ij .24

The population-level hyperparameter λ′ was given the uninformative prior of Unif(0, 25) and ∆λ′
ij is a scaling factor with the25

prior Gamma(2, 1). Figure S2 shows the hierarchical model graph.26

The decay model likelihood uses a Normal link function with inverse variance. Based on preliminary analyses, we found that27

high rates of decay along with a long tailed distribution of observed trip duration required a higher weight to be placed on lower28

y-values. Therefore, we defined the variance of the model likelihood as (1/yij)νij , which takes the inverse of each yij value29

scaled by the route-level parameter νij . The νij parameter is estimated with the uninformative prior Gamma(1, 1) such that30

νij is expected to be near 0 (all inverse weights ∼ 1) and can be increased by the MCMC algorithm as needed for improved fit.31

Gravity model incorporating both trip counts and trip duration. Initial data exploration suggested that the distribution of trip32

distances may be dependent upon trip duration. We developed a formulation of the gravity model that accounts for this33

interdependence between trip quantity and trip duration by incorporating the trip duration decay parameter λij into the34

dispersal kernel so that the probability of movement to destination j also depends on the duration of stay at destination j.35

Note that subscripts ij represent movement from origin i to destination j (i→ j).36

mij ∼ Pois
(
πijNi

)
πij = cij/

∑
∀j

cij

cij = θ

(
Nω1
i Nω2

j

f(dij | λij)

) [2]37

Gravity model parameters are fit through normalized connectivity values (πij) that ensure integer values in the Poission38

likelihood function are scaled proportional to observed trip counts (mij). The exponential parameters ω1 and ω2 are weights39

that scale the contribution of origin and destination population sizes to the numerator, and θ is a proportionality constant.40

The denominator of the gravity model, f(dij | λij), is comprised of a dispersal kernel function conditioned on trip duration.41

We derived the conditional dispersal kernel function using Bayes theorem:42

f(dij | λij) = f(λij | dij)f(dij)
f(λij)

∝ f(λij | dij)f(dij). [3]43

Where, f(λij | dij) is the expected rate of decay in trip duration given the distance between districts i and j, and f(dij) is a44

typical distance-based spatial dispersal kernel. This formulation of the conditional dispersal kernel f(dij | λij) acts as a penalty45

on connectivity values that is proportional to the probability of a trip of distance dij that emanates from origin i given the46

decay rate parameter λij . Values of the decay rate parameter were supplied by the mean of the posterior distribution of λij47

estimated by the trip duration decay model.48

To estimate the conditional dispersal kernel terms derived in Equation 3, we modeled f(dij) using the typical exponentiated49

term dγij , and f(λij | dij) as the complement of the Empirical Cumulative Distribution Function (ECDF) of λij with50

origin-specific model fitting parameters αi:51

f(dij | λij) = dγij
(
1− ECDF(λij)αi

)
. [4]52

Simulating disease dynamics53

Disease dynamics were simulated using a stochastic Time series Susceptible-Infected-Recovered (TSIR) model (1–5). We apply54

the TSIR framework to a meta-population structure that allows us to include connectivity due to seasonal commuting and trip55

duration, which were estimated in the previous sections. We begin by defining local epidemic intensity as the expected number56
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of new infections E[Ij,t+1] at location j and time step t+ 1 by building upon the previous definition of spatial force of infection57

in (6).58

E[Ij,t+1] = βSjt(Ijt + ιjt + κjt)α

Njt
[5]59

The epidemic process in Equation 5 relies on the movement of infected individuals to track spatial diffusion of the pathogen,60

and assumes frequency dependent transmission with an absence of demographic stochasticity. The exponent α (typically < 1)61

is included to allow for nonlinearities in transmission and the stability of endemic equilibrium (3, 7). It can also be interpreted62

as the extent of population substructure that limits homogeneous mixing within that location (5). Since we model spatial63

dynamics with the mobility of infectious individuals, the susceptible population can be straightforwardly defined as:64

Sj,t+1 = Sjt − Ij,t+1. [6]65

The ιjt term is a Poisson random variable with a mean equal to mjt, which we define as the number infected individuals66

migrating to destination j from all other locations at time step t. The ιjt term is typically used to model the effect of transient67

infections that arrive in location j at time step t, and remain for one full epidemic generation. However, data on the duration of68

trips made along each ij route allows us to adjust the temporal contribution of Infected individuals from other districts to each69

time step of the simulation. This is accomplished by defining mjt as the sum of the number of infectious individuals at each70

origin i at time step t scaled by three terms; the probability that an individual leaves district i (τ̂i), the estimated probability71

of travel from i to j (π̂ij), and the probability that an individual remains in destination j for a full epidemic generation when72

travelling from i to j (ρ̂ij). Therefore, the contribution to local dynamics from Infected individuals in all other districts is73

shown in Equation 7.74

ιjt = Poisson(mjt)

mjt =
∑
∀i6=j

(
ρ̂ij π̂ij τ̂iIit

) [7]75

In addition to the infectious individuals that visit district j in time t (ιjt), there are also infectious individuals that remain76

in district j from previous time steps, which we include as κjt in Equation 5. The κjt term is calculated as the number77

of infectious individuals that have migrated to district j in a previous time step ιj,t−δ, multiplied by the mean estimated78

decay rate in trip duration e−δλ̄j for destination j, and the mean probability of remaining in destination j for a full epidemic79

generation after δ generations have passed ρ̄j . The summation over all previous time steps gives the estimated mean number of80

remnant infectious individuals rjt shown in Equation 8.81

κjt = Poisson(rjt)

rjt = ρ̄j

t∑
δ=1

(
ιj,t−δe

−δλ̄j

) [8]82

Both ιjt and κjt terms are discrete random variables with Poisson error, which makes the force of infection of the local disease83

dynamics doubly stochastic and dependent on observed patterns in the human mobility data through both the immediate84

immigration of infectious individuals and the amount of infectious individuals remaining from previous immigration events.85

Probability of leaving origin. We modeled the probability of an individual leaving district i (τ̂i) as a continuous random variable86

with Beta distributed error (see Equation 9). We parameterized the Beta distribution with shape parameters ai and bi, which87

we derived from the mean µi and variance σ2
i of the observed proportion of individuals that left the origin district i at time t88

(xit). Where the index t represents each unique day in the trip duration data. The xit term was calculated by dividing the89

total number of individuals leaving origin i at time t
(
N leave
it

)
by the total number of observed trips emanating from origin i at90

time t
(
N leave
it +N stay

it

)
.91

τ̂i ∼ Beta(ai, bi)

ai = µ2
i

(
1− µi
σ2
i

− 1
µi

)
and bi = ai

(
1
µi
− 1

)
[9a]92

93

E
[
xi
]

= µi = 1
T

T∑
t=1

xit [9b]94
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95

E
[(
xi − µi

)2] = σ2
i = 1

T

T∑
t=1

(xit − µi)2
[9c]96

97

xit = N leave
it

N leave
it +N stay

it

[9d]98

Probability of remaining for full epidemic generation. We incorporated residence time into the spatial force of infection φj,t+1
by adjusting the number of infectious individuals that contribute to a time step by the expected probability that visitors will
remain at destination j for the full epidemic generation when travelling along route ij, which we denote as ρij .

ρij = Pr(remaining full generation in destination j | generation time g)

The ρ̂ij and ρ̄j terms in Equations 7 and 8 are random variables drawn from a Beta distribution that is parameterized by the
observed proportion of individuals pij that remain at destination j for the full epidemic generation when travelling along route
ij.

ρ̂ij ∼ Beta(aij , bij)
Since the probability ρ̂ij depends on the length of the infecting pathogen’s generation time, we define it in terms of the99

generation time g, where the notation g(n) indicates the length of time in days of n epidemic generations. Therefore, the shape100

parameters aij and bij are parameterized according to the observed mean µij and variance σ2
ij of pij,g(n), which is defined101

as the empirical proportion of individuals that remained in destination j for the full epidemic generation after n generation102

intervals in the trip duration data. Based on preliminary data analysis, we found that the majority of the variation in pij,g(n)103

occurs among spatial locations (districts), therefore we reduced pij,g(n) into its route-level mean µij and variance σ2
ij (see104

Equation 10).105

aij = µ2
ij

(
1− µij
σ2
ij

− 1
µij

)
and bij = aij

(
1
µij
− 1

)
[10a]106

107

E
[
pij
]

= µij = 1
Ng

Ng∑
n=1

pij,g(n) [10b]108

109

E
[(
pij − µij

)2] = σ2
ij = 1

Ng

Ng∑
n=1

(pij,g(n) − µij)2 [10c]110

The value of pij,g(n) is calculated as:111

pij,g(n) =

[
x ·
(

g−(g(n−1)−1)
g(n)−(g(n−1)−1)

)]
∑

x
, [11]112

where the vector g = {g(n− 1), · · · , g(n)} contains all of the time steps (days) that fall within the nth epidemic generation113

observed in the data and x = {xij,g(n−1), · · · , xij,g(n)} contains the counts of trips made for the corresponding generation.114

Therefore, Equation 11 provides the empirical proportion of individuals that have travelled from origin i to destination j that115

remain in destination j for all of the nth epidemic generation.116

Spatial infection hazard. Following (4), we calculated the time varying spatial hazard based on connectivity of each destination117

j at time t as118

h(j, t) =
βSjt

(
1− exp(−xjt

∑
∀i 6=j ρ̂ij π̂ij τ̂iyit)

)
1/(1 + βSjt)

. [12]119

The term xjt gives the proportion susceptible in destination j at time step t
(
Sjt/Njt

)
, and yit gives the proportion of infectious120

individuals in each origin i at time step t
(
Iit/Nit

)
. We then calculated the probability density function (PDF) for the waiting121

time of each district over all time steps with122

w(j, t) = h(j, T )
T−1∏
t=1

1− h(j, t).

To calculate the probability of importation p(j, t), we used a simple linear combination of all Nsim simulated realizations of123

w(j, t) and then integrated the aggregate PDF by normalizing over all T time steps (8). We then calculated the peak of the124

aggregate PDF along with its 50% and 95% highest posterior density (HPD) intervals.125

p(j, t) =
∑Nsim

n=1 wn(j, t)∑Nsim
n=1

∑T

t=1 wn(j, t)
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Gravity model without trip duration. To assess the influence of incorporating trip duration into the gravity model and spatial126

hazard (Equations 2 and 12), we compared our new formulations to those with all terms related to trip duration removed.127

First, we reduced the gravity model to a more basic form by replacing the conditional spatial dispersal kernel f(dij | λij) with128

the distance-based dispersal kernel f(dij) = dγij in Equation 2.129

π∗ij = cij/
∑
∀j

cij

cij = θ

(
Nω1
i Nω2

j

dγij

) [13]130

In this formulation, π∗ij indicates the probability of travel from district i to j under the basic gravity model. Note that Equation131

13 was not refitted to the call data records, rather it was simulated using the estimated parameters from the full model with132

trip duration included (θ, ω1, ω2, and γ). Second, we removed all terms in the TSIR model that depend on the trip duration133

decay rate λ̂ij or the probability of remaining for a full epidemic generation ρ̂ij , which results in the following TSIR model:134

E[Ij,t+1] = φj,t+1 = βSjt(Ijt + ιjt)α

Njt
. [14]135

Where,136

ιjt = Pois(mjt)

mjt =
∑
∀i6=j

(
π∗ijIit

) [15]137

and the time varying spatial hazard based on connectivity of each destination j at time t is:138

h∗(j, t) =
βSjt

(
1− exp(−xjt

∑
∀i6=j π

∗
ijyit)

)
1/(1 + βSjt)

. [16]139
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Fig. S1. The distribution of population density for districts included in analyses. Districts are ranked in order of district population density on the x-axis with log-transformed
population density values on the y-axis. Districts with ‘high’ relative population density (n = 10) are shown in red, districts with ‘low’ relative population density (n = 52) in
blue, and districts excluded due to low sample sizes (n = 45) are uncolored. The ‘high’ and ‘low’ density groups are defined using an arbitrary threshold of 980 people per km2

that naturally delineates the 10 districts with noticeably higher population density than all other districts in Namibia (dashed line).
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Fig. S2. Graph for the hierarchical trip duration decay model showing estimated parameters and scaling factors at the population- and route-level of the model. Parameters at
the population-level are indicated by a prime symbol (′) and the scaling factor is indicated with a capital delta (∆). Estimated parameters are shown in circular nodes and data
or parameters derived from data are shown in square nodes.
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Fig. S3. The overall cumulative proportion and raw proportion of total trips for given values of trip duration and trip distance. See Table S1 for point measurements.
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Fig. S4. Results from the Hierarchical Bayesian model that estimates the trip duration decay rate (λ̂ij ). Values of λ̂ij and proportion of total trips are plotted using a cutoff to
define districts with ‘high’ or ‘low’ population density of 2500 people/km2 (compared with 1000 people/km2 in the main text). In panel A, the violin plots show the distribution
of λ̂ij for each of the four route-types compared to the population mean. In panel B, the violin plots show the distribution of the proportion of total trips for each of the four
route-types over each day in the data set.
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Temporal aggregation: 1 day
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Temporal aggregation: 5 days
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Fig. S5. Distribution of fitted trip duration decay rate parameters (λij ) where trip duration counts are aggregated to 1-day (A–C) and 5-day (D–F) temporal intervals. The first
column shows the normalized density of all the posterior means of λij (A and D) and the second column shows the standard deviation (B and E). The third column shows the
distribution of mean λij values for each route-type, indicating whether the origin and destination are categorized as high or low population density (C and F).
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Fig. S6. Heatmap of sample sizes of observed trip duration counts for each ij route among all 107 districts.
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Fig. S7. Estimated trip duration decay parameter λ and model performance metrics plotted with: A) Sample size (number of unique observations of trip duration along each ij
route), B) Distance between districts i and j, C) Population density (km2) of origin district, D) Population density (km2) of destination district. Decay parameter λ in row 1 show
the mean of the posterior distribution of each route-level decay parameter (λij ). Model performance metrics are shown along rows 2–4: 2) Potential Scale Reduction Factor
(PSRF) is a measure of model convergence with values near 1 indicating model convergence, 3) Neff is the effective sample size of the posterior distributions for each λij , and
4) Pearson’s r gives the correlation between the fitted model response and observed trip duration counts. The dashed red line in the A plots indicates the minimum sample size
of n = 20 unique observations of trip duration for all ij routes in the model.
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Fig. S8. Model performance of the trip duration decay model.
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Pearson’s r of the basic gravity model for both rout-types and panel B shows the change in these values from for the duration gravity model. In panel B, the asterisk indicates
district 24 (Luderitz), which was an outlier with a drastic decrease in model fit.
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Fig. S11. Model performance of the trip duration decay model.
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Fig. S12. Heatmap of pairwise values of estimated connectivity (π̂ij ) among all 62 districts in the analysis. Districts are sorted from high population density to low density,
where connectivity among high-density districts are in the lower left and connectivity among low-density districts is shown in the top right.
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Fig. S13. A conceptual drawing of how the number of infected individuals from previous time steps (κjt) contribute to the spatial force of infection at time t of a simulation.
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Fig. S14. An example of how simulations of the waiting time probability density function (PDF) are aggregated into the probability of pathogen importation. Spatial simulations
using the basic gravity model are shown on the left (blue) and those with the gravity model with duration shown on the left (red). The solid lines indicate the peak and the
dashed lines indicate the 95% highest posterior density (HPD) of the aggregate PDFs.
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Fig. S15. Spatial TSIR simulations of infectious disease dispersal for 6 pathogens (influenza, measles, ebola, sars, pertussis, and malaria) introduced into districts with high
population density (left) and low population density (right). Caterpillar plots represent the aggregated waiting time distributions of all simulations, where the peak waiting time is
indicated with a circle for the basic gravity model or a triangle for the duration gravity model with vertical lines showing the 95% HPD intervals. The color of each caterpillar is
given by the log population density of that district.

20 of 26John R. Giles, Elizabeth zu Erbach-Schoenberg, Andrew J. Tatem, Lauren Gardner, Ottar N. Bjørnstad, C. Jessica E. Metcalf
and Amy Wesolowski



−100

0

100

0.0 2.5 5.0 7.5

D
el

ay
 in

 im
po

rta
tio

n 
tim

e

A

−100

0

100

20 40 60

B

−100

0

100

200

5 10 15

C

0

20

40

0.0 2.5 5.0 7.5Va
ria

nc
e 

in
 p

ea
k 

im
po

rta
tio

n 
tim

e D

0

20

40

20 40 60

E

0

20

40

5 10 15

F

25

50

75

0.0 2.5 5.0 7.5

Log(pop density of introduction)

M
ea

n 
en

tro
py

G

25

50

75

20 40 60

Generation time

H

25

50

75

5 10 15

Reproductive number

I

ebola influenza sars pertussis malaria measles
𝖱𝟢 = 𝟣 . 𝟧

𝗀 = 𝟣𝟨 . 𝟨
𝖱𝟢 = 𝟤

𝗀 = 𝟥
𝖱𝟢 = 𝟥

𝗀 = 𝟪
𝖱𝟢 = 𝟧 . 𝟧

𝗀 = 𝟤𝟧
𝖱𝟢 = 𝟣𝟢

𝗀 = 𝟨𝟢
𝖱𝟢 = 𝟣𝟧

𝗀 = 𝟣𝟦

Fig. S16. Partial dependence plots showing overall patterns in spatial dispersal simulated by the duration TSIR model for 6 pathogens (influenza, measles, ebola, SARS,
pertussis, and malaria). Results are plotted for three of the defining elements of simulations scenarios on the x-axes (population density of the introduction district, pathogen
generation time g, and basic reproductive number R0) and three metrics of spatial transmission dynamics on the y-axes (delay in importation times caused by incorporating trip
duration, variance in peak importation time, and uncertainty in importation time measured by mean entropy of waiting time distributions). Pathogens are indicated by color and
the overall trend among the plotted variables is shown with a LOESS trendline (black lines).

John R. Giles, Elizabeth zu Erbach-Schoenberg, Andrew J. Tatem, Lauren Gardner, Ottar N. Bjørnstad, C. Jessica E. Metcalf
and Amy Wesolowski

21 of 26



𝖱𝟢 = 𝟣 . 𝟧
𝗀 = 𝟣𝟨 . 𝟨

𝖱𝟢 = 𝟤
𝗀 = 𝟥

𝖱𝟢 = 𝟥
𝗀 = 𝟪

𝖱𝟢 = 𝟧 . 𝟧
𝗀 = 𝟤𝟧

𝖱𝟢 = 𝟣𝟢
𝗀 = 𝟨𝟢

𝖱𝟢 = 𝟣𝟧
𝗀 = 𝟣𝟦

−100

0

100

ebola influenza sars pertussis malaria measles

C
ha

ng
e 

in
 p

ea
k 

wa
iti

ng
 ti

m
e 

(d
ay

s)

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50

75

0 20 40

Variance in peak probability of importation

M
ea

n 
En

tro
py

B

ebola influenza sars pertussis malaria measles Population density
of introduction

● High Low

Later

Earlier

Fig. S17. Overall patterns in simulations of spatial transmission. Panel A shows the changes in peak waiting time distributions for 6 pathogens (influenza, measles, ebola,
SARS, pertussis, and malaria) when the duration gravity model is used. Panel B shows the relationship between the variance and uncertainty in spatial spread given an
introduction in the 10 highest (circles) and 10 lowest (triangles) density districts. Minimum convex polygons encircle each point type.

22 of 26John R. Giles, Elizabeth zu Erbach-Schoenberg, Andrew J. Tatem, Lauren Gardner, Ottar N. Bjørnstad, C. Jessica E. Metcalf
and Amy Wesolowski



Table S1. Cumulative proportion of total trips for given values of trip duration (days) and trip distance (km).

Variable Value Proportion total trips

Duration (days) 1 0.47

3 0.71

7 0.85

14 0.92

30 0.96

60 0.98

90 0.99

Distance (km) 5 0.07

10 0.16

25 0.46

50 0.63

100 0.79

250 0.92

500 0.97
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Table S2. Summary statistics for the distribution of estimated trip duration decay rate parameters (λ̂ij ) for each route-type at two population
density thresholds (1000 and 2500 people/km2).

Threshold Route-type Mean λ̂ij 95% HPD

1000 people/km2 High to high 0.45 0.22–0.53

High to low 0.39 0.12–0.58

Low to high 0.38 0.2–0.48

Low to low 0.38 0.01–0.57

2500 people/km2 High to high 0.48 0.45–0.53

High to low 0.39 0.12–0.57

Low to high 0.43 0.28–0.5

Low to low 0.38 0.01–0.57
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Table S3. Transmission parameters used in spatial TSIR simulations.

R0 g β γ Pathogen Citation

10 60 30 3 malaria (9, 10)

15 14 17.5 1.2 measles

5.5 25 9.8 1.8 pertussis (11, 12)

3 8 3.4 1.4 SARS (13)

2 3 1.5 0.75 influenza

1.5 16.6 3.8 2.6 Ebola (14)
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