

# Supplementary Information for

# Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean

Mario Lebrato<sup>1,\*,§</sup>, Dieter Garbe-Schönberg<sup>1</sup>, Marius N. Müller<sup>2</sup>, Sonia Blanco-Ameijeiras<sup>3</sup>, Richard A. Feely<sup>4</sup>, Laura Lorenzoni<sup>5</sup>, Juan-Carlos. Molinero<sup>6,†</sup>, Karen Bremer<sup>1</sup>, Daniel O. B. Jones<sup>7</sup>, Debora Iglesias-Rodriguez<sup>8</sup>, Dana Greeley<sup>4</sup>, Miles D. Lamare<sup>9</sup>, Aurelien Paulmier<sup>10</sup>, Michelle Graco<sup>10</sup>, Joan Cartes<sup>11</sup>, Joana Barcelos e Ramos<sup>12</sup>, Ana de Lara<sup>13</sup>, Ricardo Sanchez-Leal<sup>14</sup>, Paz Jimenez<sup>14</sup>, Flavio E. Paparazzo<sup>15</sup>, Susan E. Hartman<sup>7</sup>, Ulrike Westernströer<sup>1</sup>, Marie Küter<sup>1</sup>, Roberto Benavides<sup>6</sup>, Armindo F. da Silva<sup>16</sup>, Steven Bell<sup>17</sup>, Chris Payne<sup>18</sup>, Solveig Olafsdottir<sup>19</sup>, Kelly Robinson<sup>20</sup>, Liisa M. Jantunen<sup>21</sup>, Alexander Korablev<sup>22</sup>, Richard J. Webster<sup>23</sup>, Elizabeth M. Jones<sup>24</sup>, Olivier Gilg<sup>25</sup>, Bailly du Bois Pascal<sup>26</sup>, Jacek Beldowski<sup>27</sup>, Carin Ashjian<sup>28</sup>, Nejib D. Yahia<sup>29</sup>, Benjamin Twining<sup>30</sup>, Xue-Gang Chen<sup>31</sup>, Li-Chun Tseng<sup>32</sup>, Jiang-Shiou Hwang<sup>32,33</sup>, Hans-Uwe Dahms<sup>34</sup> and Andreas Oschlies<sup>6</sup>

- <sup>1</sup>Institute of Geosciences, Kiel University, 24118, Kiel, Germany
- <sup>2</sup>Oceanography Department, Federal University of Pernambuco, 50670-901, Recife, Brazil
- <sup>3</sup> Earth Sciences Department, ETH Zürich, 8092, Zürich, Switzerland
- <sup>4</sup> Ocean Climate Department, Pacific Marine Environmental Laboratory/NOAA, 98115, Seattle, USA
- <sup>5</sup> Remote Sensing Department, University of South Florida, 33701, Florida, USA
- <sup>6</sup> Ecology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148, Kiel, Germany
- <sup>7</sup> Ocean Biogeochemistry and Ecosystems Department, National Oceanography Center, SO14 3ZH, Southampton, UK
- <sup>8</sup> Ecology, Evolution and Marine Biology Department, University of California Santa Barbara, 93106, Santa Barbara, USA
- <sup>9</sup> Department of Marine Science, University of Otago, 9016, Dunedin, New Zealand <sup>10</sup> Biogeosciences Department, Laboratoire d'Etudes en Geophysique et Oceanographie Spatiales
- (LEGOS), IRD/CNRS/CNES/UPS, University of Toulouse, 31000, Toulouse, France <sup>11</sup> Renewable Marine Resources Department, Institute of Marine Sciences at Spanish National Research Council, 08003, Barcelona, Spain
- <sup>12</sup> Climate, Meteorology and Global Changes Department, University of the Azores, 9501-855, Ponta Delgada, Portugal
- <sup>13</sup> Organisms & Systems Biology Department, University of Oviedo, 33003, Oviedo, Spain
   <sup>14</sup> Physical Oceanography Department, Spanish Institute of Oceanography (IEO), 11006, Cadiz, Spain

<sup>15</sup> Biological Oceanography, CESIMAR-CONICET, 2915, Chubut, Argentina

<sup>16</sup> Marine Biogeochemistry Department, Bazaruto Center for Scientific Studies (BCSS), Benguerra Island, 1304, Vilankulos, Mozambique

<sup>17</sup> Marine Chemistry Department, Bermuda Institute of Ocean Sciences (BIOS), GE 01, St. George, Bermuda

<sup>18</sup> Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, BC V6T 1Z4, Vancouver, Canada

<sup>19</sup> Marine Environment Department, Marine and Freshwater Research Institute, 101, Reykjavic, Iceland

<sup>20</sup> Department of Biology, University of Louisiana at Lafayette, 70503, Louisiana USA

<sup>21</sup> Air Quality Processes Research Department, Environment and Climate Change Canada, LOL 1N0, Ontario, Canada

<sup>22</sup> Geophysics Department, University of Bergen, 5007, Bergen, Norway

<sup>23</sup> Clinical Research Unit, CHEO Research Institute, K1H 8L1, Ottawa, Ontario, Canada

<sup>24</sup>Oceanography and Climate Department, Institute of Marine Research, Fram Centre, Hjalmar 9007 Tromsø, Norway

<sup>25</sup> Chrono-Environnement Department, Université de Bourgogne Franche-Comté, 21078, Dijon, France

<sup>26</sup> Radioecology Department, IRSN - Cherbourg Radioecology Laboratory (LRC), 50130, Octeville, France

<sup>27</sup> Marine Chemistry and Biochemistry Department, Polish Academy of Sciences, 81-712, Sopot, Poland

<sup>28</sup> Biology Department, Woods Hole Oceanographic Institution, 02543, Massachusetts, USA
 <sup>29</sup> Biological and Environmental Sciences Department, Qatar University, 2713, Doha, Qatar
 <sup>30</sup> Center for Ocean Biogeochemistry and Climate Change, Bigelow Laboratory for Ocean

Sciences, ME 04544, USA

<sup>31</sup> Department of Ocean Science and Engineering, Zhejiang University, 316021, Zhoushan, China

<sup>32</sup> Marine Biology Institute, National Taiwan Ocean University, 20224, Keelung City, Taiwan

<sup>33</sup> Center for Excellence for the Oceans, National Taiwan Ocean University, 20224, Keelung City, Taiwan

<sup>34</sup> Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 807, Kaohsiung, Taiwan

# \*Corresponding Author

Institute of Geosciences, CAU Kiel University, Ludewig-Meyn-Strasse 10, 24118, Kiel, Germany *E-mail:* mlebrato13@gmail.com *Telephone:* +34 610 67 77 42

# §Present Address

Bazaruto Center for Scientific Studies (BCSS), Benguerra Island, Inhambane Province, Mozambique

<sup>†</sup>Present address

Marine Biodiversity, Exploitation and Conservation (MARBEC), IRD/CNRS/IFREMER/University of Montpellier, CS 30171 - 34203, Sète cedex, France

#### This PDF file includes:

Methods S1 Supplementary Text S1 Fig. 2 Figs. S1 to S5 Captions for Figs. S1 to S5 Tables S1 to S3 Captions for Tables S1 to S3

# Other supplementary materials for this manuscript include the following:

Appendix 1 to 6 References

# **Supplementary Information**

# **Materials and Methods S1**

# **Global sampling program**

Sampling efforts from 2009 until 2017 combined ongoing research cruises, official programs and time-series with citizen science initiatives, recreational boats and fellow scientific volunteers to reach globally to as many remote locations and ecosystems as possible (Fig. 1; SI Appendix 1, 3, 4). Agreements were established between the PI and all participants to collect seawater samples following a strict protocol (see SI Appendix Text S1) along with the sample metadata (latitude, longitude, temperature, salinity, depths, and CTD data). Sampling was organized either by direct contact with existing projects/surveys/programs/oceanographic lines/buoys or by posting announcements in group emails/lists and institutions around the world. We accessed samples in a total of 79 programs/cruises/initiatives worldwide, and we were directly involved/present in at least 15 cruises. Sampling effort covered all possible locations at low/temperate/high latitudes, open ocean, and coastal regions with emphasis on the euphotic (0-300 m), mesopelagic (300-1000 m), and abyssal zones (+1000 m) using transects, stations and vertical CTD profiles. The baseline strategy was to sample horizontally (transects) and vertically (CTD rosette) from coastal regions to the open ocean to monitor variability at large, expanding also to the shelves, the neritic zones, river mouths, the intertidal/subtidal and the ice sheets. Number of samples and locations were prearranged with participants but a large number of expeditions changed their plans, thus sampling occurred on opportunity (see SI Appendix Fig. S3 for examples). All participants were provided exactly with the same sampling kit to maximize sampling homogeneity, which consisted in 15/50 ml sterile tubes, 50 ml sterile syringes, 0.20 µm sterile filters (to retain particles and bacteria), plastic gloves, and *Parafilm*® (see SI Appendix Text S1 for details).

# Seawater sampling procedure

All research cruises had a Niskin-type bottle, a CTD rosette array or a scientific-grade sampling device available to recover seawater samples at surface and depth. Other participants (surface samples) used a bucket or directly collected the sample with a plastic tube. Right after sampling, all samples were gently filtered through a 0.22  $\mu$ m sterile filter using a sterile syringe and stored into 15/50 ml polyethylene tubes with *Parafilm*® wrapped around the cap, preventing thus contamination and evaporation. All samples were stored in the fridge (4 to 8 °C) and sent for analysis to the ICP-MS lab at Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Germany, between 6 to 12 months after collection. After 1 year in storage in a cold place, no

signs of seawater evaporation or leaks were observed (< 0.05% Mg/Ca and Sr/Ca ratios variability n = 30) (1). All our samples were measured within 12 months after collection to guarantee data quality and comparability, minimizing any % change over time.

#### Seawater analytical procedures

In the laboratory at Institute of Geosciences, Kiel University, Germany, samples were divided into three splits (A, B, C) and only split A was analyzed. Splits B and C were stored as a back-up in cases of analytical bias, or re-sampling/verification. All split A samples were analyzed in the same laboratory and machine by the same person, for Ca, Mg, Sr with truly simultaneous data acquisition using an inductively coupled plasma – optical emission spectrometer (ICP-OES) SPECTRO Ciros<sup>TM</sup> CCD SOP with radial viewing optics. Samples were 50-fold diluted with 2% (v/v) freshly subboiled in HNO<sub>3</sub> and introduced with a GE Seaspray<sup>TM</sup> micro-nebulizer and thermostatized Cinnabar<sup>TM</sup> cyclonic spray chamber. All sample preparation work, and storage of sample solutions in the auto-sampler during analysis, was performed under Class-100 clean bench conditions by the same person. Only all-plastic lab ware was used for handling and treatment of the samples, avoiding storage in polypropylene mini-vials having elevated Mg. Only ultrapure reagents and ultrapure water (Elga Labwater) were used. The following emission lines were selected for quantification: Ca: 317.933 (II); Mg: 279.553nm (II); Sr: 407.771nm (II), 421.552nm (II) and measured simultaneously within the same pre-selected acquisition interval ("Phase 3"). In addition, Ar: 597.159nm (I) was used as a monitor line for plasma temperature. Three pixels were summarized for peak area integration of the respective emission line (Smart Analyzer 3.30 Software, Spectro A.I.). Total analysis time per sample with 5 replicate measurements including sample take-up and washout was roughly 6 minutes consuming about 2 ml of measuring solution. A combined intensity calibration and drift correction procedure using IAPSO standards (2, 3) was applied for data processing (SI Appendix 4). Calibration solutions were matrix matched with NaCl to 50-fold diluted normal seawater salinity covering the range of seawater Mg:Ca 4.10-5.80 (mol:mol), and Sr:Ca 7.70-8.80 (mmol:mol). Raw data (in cps) was exported from the instrument into spreadsheet software for post-processing. Average raw counts from 5 runs for Blank-00 (blank for Ca) and *Blank-0* (matrix-matched with 10 mg l<sup>-1</sup> Ca as a blank for Mg, Sr) were subtracted from all subsequent measurements. From blank-subtracted raw intensities, ratios were calculated for all combinations of selected Mg and Sr wavelengths with the selected Ca line in order to determine the most robust wavelength pairs. A linear least-square regression function was applied for the calculation of molar ratios (in mmol:mol) from intensity ratios of the calibration standards (2). Then, the obtained results were normalized to an external standard (IAPSO, ORIL, U.K. using Mg:Ca = 5.140 mol:mol, Sr:Ca = 8.481 mmol:mol) in a way commonly used in isotope studies. This approach minimizes variability and uncertainties, respectively, resulting from both instrument drift during the day and instrument set-up between different days. Every batch of 6 samples was bracketed by the IAPSO normalization standard that was also used for linear drift correction. For estimating short term reproducibility every 11<sup>th</sup> sample was reanalyzed, and so were the first 5 samples from a session reanalyzed at the end of the session with e.g. 352 samples. Mean uncertainty estimated from duplicate measurements per sample on 33 randomly chosen samples was 0.35 and 0.85 % relative SD (1 SD) for seawater Mg:Ca and Sr:Ca while measurement uncertainty (5 runs) was 0.16 and 0.37 % RSD, respectively (SI Appendix 4). The expanded uncertainties including uncertainty of the true values for IAPSO are 3.30 % for seawater Sr:Ca and 0.5 % for seawater Mg:Ca. Uncertainty as estimated from measurement reproducibility that is important for detecting small differences even in our open ocean sample suite, was well below 0.40 % for seawater Mg:Ca and 0.90 % for seawater Sr:Ca. When averaging only the first three measurements for our IAPSO reference sample right after initial calibration of all three analytical sessions where the samples were run, then the measured

IAPSO average was Sr:Ca =  $8.481 \pm 0.068$  mmol:mol. Comparing data routinely obtained for multi-element analyses of seawater, then we find measured IAPSO averages ranging from Sr:Ca = 8.273 to 8.555 mmol:mol. It is always the Ca that is making the difference: we measure around 409 mg L<sup>-1</sup> Ca (10.20 mM Ca) while ODP-TAMU reported 422 mg L<sup>-1</sup>, 10.55 mM Ca. Our Sr results are identical with ODP\_TAMU: 7.62 mg L<sup>-1</sup> Sr (86.97  $\mu$ M Sr).

#### Literature data and information use

Our new measured dataset was complemented with a seawater Mg:Ca and Sr:Ca ratios literature survey (Fig. 4c for comparison with this study data; SI Appendix 2) to expand on the global horizontal and vertical coverage, to consolidate and compare with the work of earlier researchers at a regional scale. Hundreds of publications and reports were screened for data quality and analytical clarity to mine data comparable to our measured dataset (analytical methods varied from ICP-AES/-OES to gravimetric titration and to TIMS). The methods section for each publication/report were also carefully inspected for analytical accuracy. We also put together a table on the historical use of seawater Mg:Ca and Sr:Ca ratios in all marine science disciplines in the last 100 years (Table S3). This served to put in perspective the significance of the new dataset results for the scientific community to foresee if the implications apply to a certain discipline.

# Public datasets use

The newly measured seawater Mg:Ca and Sr:Ca ratios dataset (SI Appendix 3) was combined with seawater environmental metadata mined from GLODAPv2 (4, 5), and used to analyze and classify seawater Mg:Ca and Sr:Ca ratios as a function of environmental variables (SI Appendix 3). ArcGIS 10.0 (ESRI 2011) and the 3-D analytical tool "NEAR 3-D analysis" were used to link environmental seawater conditions with the sample's seawater ratios. This approach permitted evaluation of the diagonal distance between each ratio input parameter (latitude, longitude, and depth) and the nearest seawater datum (temperature, salinity, Total Alkalinity - TA, dissolved inorganic carbon - DIC,  $pH_{total}$  and  $pCO_2$ ) at a specific latitude, longitude, and depth. The prerequisite for data adoption was a matching data set XYZ (including ratio parameter) versus  $X_i Y_i Z_i$  (including ambient seawater property). Both datasets were plotted on a 2-D field and merged into a single 3-D field, and then the nearest seawater datum to the ratio was determined using a diagonal line in a 3-D matrix. Additionally, each datum was individually checked to verify that the NEAR 3-D approach worked correctly. When the prediction was not sufficiently accurate, the closest value was manually selected. This procedure ensured selection of the most relevant seawater parameters for a given ratio. The GEMS-GLORI database was used to provide a distribution map of seawater Mg:Ca ratios from river mouths/plumes around the world (SI Appendix 6; SI Appendix Fig. S1), but these data were not used in the overall analysis, and are reported merely for comparison purposes. Lastly, various paleo proxies' global databases were mined to provide distribution maps of paleo reconstructions and understand the relevance of our database results for the scientific community (SI Appendix Fig. S2). Our published databases are deposited at the NOAA National Center for Environmental Information (NCEI) under Accession Number 0171017 in http://accession.nodc.noaa.gov/0171017 (DOI:10.7289/V5571996).

# Data analysis and statistics

The final seawater Mg:Ca and Sr:Ca ratios were classified by Ocean, Longhurst Province, Ecosystem type, Latitude, Longitude, Depth (in 5 intervals to facilitate analyses) (SI Appendix 3) and then by all the metadata (chemistry) to facilitate interpretation of results and statistical analyses. Ratios were mapped globally (Fig. 1; SI Appendix S1), versus. Depth, and by ecosystem (Fig. 1, 3) to understand ratios spatial and vertical distributions. Ratios were also plotted against each property to understand individual processes/mechanisms and to monitor variability (Fig. 2). A Generalized Linear Model (GLM) using forward stepwise selection was applied to the ratios vs. 5 depth intervals to understand complexity and individual parameter significance with depth (SI Appendix 5; SI Appendix Table S2). All analyses and graphical work were performed in Statistica 13.0 (StatSoft), SigmaPlot 12.0 (Systat Software Inc.), ArcGIS (ESRI 2011), SURFER (Golden Software, LLC.), and Corel Draw X3 (Corel Corp.).

# Text S1

The following instructions were sent to each project participant and PI along with the same 15 ml falcon tubes,  $0.20 \,\mu$ m filters, Parafilm, and 50 ml syringes and gloves to ensure reproducibility and minimize handling errors. A PDF was emailed and a printed version was included in the boxes with the consumables.

# Sampling for the determination of seawater composition in terms of Mg/Ca and Sr/Ca (PI: Mario Lebrato)

# **Sampling**

Note: use gloves during sampling procedure

- 1. Sample along the agreed transect/station using a Niskin-type bottle, a bucket or any means to get seawater in a clean way. Use only the lab gear/consumables we provide.
- 2. Samples must be stored cool and dry place.
- 3. Avoid touching or contaminating the sample before or after the procedure.

# **Laboratory**

- 1. Filter through a fresh sterile 0.20  $\mu$ m filter using a syringe for each sampling station/sample.
- 2. Rinse the syringe 3 times with seawater that is going to be filtered (mounting and dismounting the syringe).
- 3. Dismount the back part of the syringe.
- 4. Pour 40 ml of seawater.
- 5. Mount back the syringe.
- 6. Filter gently, but discard the initial 2 to 5 ml of seawater.
- 7. Store 15 ml of the sample in a Falcon tube.
- 8. Close the cap with Parafilm if possible or close very tight.
- 9. Store in a cool and dry place until shipping to us.

# Labelling

Samples label and ID should be easily linked with the Excel sheet and metadata.

# <u>Metadata</u>

Collect for each sample: Date, Latitude/Longitude, Sample depth, Temperature, and Salinity only with calibrated or trusted sensors. Please include notes on metadata errors, inaccuracies or any relevant issue. If needed discussion, please email the project PI.

| <b>a</b> Ocean<br>2 4 6 8 10           | Longhurst Province                     | Ecosystem                              | Latitude               | Longitude         | Depth (m)<br>0 1 2 3 4 5 | Temperature (°C)<br>0 6 12 18 24 30 | Salinity<br>0 7 14 21 28 35 42 | <b>TA (μmol kg<sup>-1</sup>)</b><br>1960 2240 2520 | DIC (µmol kg <sup>-1</sup> )<br>1820 2080 2340 | DO (μmol kg <sup>-1</sup> )<br>0 160 320 480        | pH <sub>total</sub><br>7.2 7.6 8.0 8.4 8.8 | <b>ρCO<sub>2</sub> (μmol kg<sup>-1</sup>)</b><br>0 550 1100     |                                                                       |
|----------------------------------------|----------------------------------------|----------------------------------------|------------------------|-------------------|--------------------------|-------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|
| 6.6<br>6.0<br>5.4<br>4.8<br>4.2<br>3.6 | ·                                      | ·                                      |                        |                   | r                        | here                                | 6                              |                                                    |                                                |                                                     |                                            | ·                                                               | <b>0 - 5 m</b><br>( <i>n</i> =362)<br>Mean = 5.103 ±0<br>CV = 5.078   |
| 2 4 6 8 10<br>6.6<br>5.4<br>4.8        | 0 9 18 27 36 45 54                     |                                        | -75 -50 -25 0 25 50 75 |                   | 0 50 100 150 200         | 0 6 12 18 24 30                     | 30 35 40                       | 2000 2250 2500                                     | 1980 2160 2340                                 | 0 160 320                                           | 7.2 7.6 8.0 8.4                            | 0 500 1000 1500                                                 | <b>5 - 200 m</b><br>( <i>n</i> =369)<br>Mean = 5.063 ±0<br>CV = 8.341 |
| 2 4 6 8 10<br>5.7<br>5.4<br>5.1        | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 300 600 900              | 0 6 12 18                           | 33.0 35.2 37.4                 | 2200 2300 2400                                     | 2100 2250 2400                                 | 0 160 320                                           | 7.5 7.8 8.1                                | 400 800 1200                                                    | <b>200 - 1000</b><br>( <i>n</i> =225)                                 |
| 4.8<br>4.5<br>2 4 6 8 10<br>57         | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 1000 1500 2000 2500      | 0 5 10                              | 34.5 36.0                      | 2340 2430                                          | 2210 2340                                      | 0 160 320                                           | 7.6 7.8 8.0                                | 300 600 900                                                     | CV = 2.861                                                            |
| 5.4<br>5.1<br>4.8                      | 4<br>14-14   5-1                       | •   •                                  | s i Typhere            |                   | 8.3 i viad               | e.3.8                               |                                | :<br>#12 - 1-4                                     | 1<br>10.7 (j.                                  | . ie 728a                                           | ···                                        | <b>*</b> *****                                                  | ( <i>n</i> =113)<br>Mean = 5.111 ±(<br>CV = 2.942                     |
| 2 4 6 8 10<br>5.4<br>5.2<br>5.0<br>4.8 | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 3000 4500                |                                     | 34.6 34.8 35.0                 | 2340 2430                                          | 2210 2340                                      | 120 240                                             | 7.79 7.98                                  | 300 450 600                                                     | + <b>2500 m</b><br>( <i>n</i> =71)<br>Mean = 5.090 ±<br>CV = 1.655    |
| <b>b</b> Ocean<br>2 4 6 8 10           | Longhurst Province                     | Ecosystem<br>1 2 3 4 5 6 7 8 910111213 | Latitude               | Longitude         | Depth (m)<br>1 2 3 4 5   | Temperature (°C)<br>0 7 14 21 28    | Salinity<br>0 9 18 27 36       | <b>TA (μmol kg<sup>-1</sup>)</b><br>1920 2160 2400 | DIC (μmol kg <sup>-1</sup> )<br>1840 2070 2300 | <b>DO (μmol kg<sup>-1</sup>)</b><br>120 240 360 480 | pH <sub>total</sub><br>7.5 8.0 8.5         | <b>ρCO<sub>2</sub> (μmol kg<sup>-1</sup>)</b><br>0 450 900 1350 |                                                                       |
|                                        | ł.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Iti noper                              |                        |                   | ****··· !                | -                                   | ·····                          |                                                    | · ~~                                           |                                                     |                                            | · • • • • • • •                                                 | 0 - 5 m<br>( <i>n</i> =362)<br>Mean = 8.469 ±<br>CV = 6.18            |
|                                        | 0 9 18 27 36 45 54                     | 12345678910111213                      | -75-50-25 0 25 50 75   | -160 -80 0 80 160 |                          |                                     |                                | 2100 2310 1                                        | 890 2100 2310                                  | 0 120 240 360                                       | 7.2 7.8 8.4                                | 0 450 900 1350                                                  | 5 - 200 m<br>( <i>n</i> =369)<br>Mean = 8.380 ±                       |
|                                        | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 200 400 600 800 1000     |                                     | 33 36 35                       | 2210 2340                                          | 2100 2310                                      | 0 120 240                                           | 7.5 7.8 8.1                                | 450 900 1350                                                    | <b>200</b> - <b>1000</b><br>( <i>n</i> =225)                          |
| 7.2<br>6.0<br>2 4 6 8 10               | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 1200 1800 2400           | 0 6 12 18                           | 35 36                          | 2340                                               | 2160 2250 2340                                 | 0 120 240                                           | 7.6 7.8 8.0                                | 250 500 750 1000                                                | Mean = 8.478 ±<br>CV = 3.537                                          |
| 8.8<br>8.4<br>8.0<br>7.6               | 2:1 <sup>1</sup> ×                     | : • ı                                  | • " (Page              |                   | Fer 1-12                 | <b>₩</b>                            | S                              | Ø- 74                                              |                                                | 3 74                                                |                                            | ¢                                                               | 1000 - 250<br>(n=113)<br>Mean = 8.608 ±<br>CV= 2.64                   |
|                                        | 0 9 18 27 36 45 54                     | 1 2 3 4 5 6 7 8 910111213              | -75 -50 -25 0 25 50 75 | -160 -80 0 80 160 | 2700 3600 4500           | ° 3                                 | 34.73 34.96                    | 2300 2400                                          | 2160 2250 2340                                 | 120 240                                             | 7.7 7.8 7.9 8.0                            | 300 450 600                                                     | + <b>2500</b> n<br>( <i>n</i> =71)                                    |

**Fig. 2. Modern ocean seawater Mg:Ca and Sr:Ca ratios versus environmental parameters.** Data horizontally classified for seawater Mg:Ca (a) and Sr:Ca (b) ratios as a function of environmental variables (GLODAPv2; *41, 42*) from the largest to the smallest dimension, and vertically in five depth intervals of 0-5 m, 5-200 m, 100-1000 m, 1000-2500 m, and +2500 m. Data within the red lines represent literature assumed knowledge of modern seawater ratios. Code for "Ocean" is: 1=Pacific, 2=Indian, 3=Atlantic, 4=Arctic, 5=Mediterranean, 6=Southern, 7=Red Sea, 8=China Sea, 9=Arabian Sea, 10=Baltic Sea, 11=IAPSO. Code for "Longhurst Province" is in SI Appendix Table S1 and Vliz (2009): <a href="http://www.marineplan.es/ES/fichas\_kml/biogeog\_prov.html">http://www.marineplan.es/ES/fichas\_kml/biogeog\_prov.html</a>. Code for "Ecosystem" is: 1=IAPSO (This study), 2=Coastal Sea, 3=Coastal Upwelling, 4=Open Ocean, 5=Open Ocean Upwelling, 6=Shallow Hydrothermal Vent, 7=Coral Reef, 8=Deep Hydrothermal Vent, 9=Glacier Seawater, 10=Estuary, 11=Mudflats, 12=Mangroves, 13=Seagrass. Extended analysis of seawater Mg:Ca ratios data from river mouths to assess coastal waters can be found in SI Appendix Fig. S1.

#### **Supplementary Figures & Captions**



**Fig. S1. River mouth seawater Mg/Ca ratios.** Compilation of seawater Mg and Ca concentrations along with seawater Mg/Ca ratios of major river mouths globally. River mouth data help to understand coastal anomalies in seawater composition and can be treated as "caution areas" for paleo research aiming to reconstruct more open ocean settings for certain properties. Original data belong to the GEMS-GLORI database (6), which can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.804574.



**Fig. S2. Examples of databases used in paleo research.** A good understanding of modern seawater Mg:Ca and Sr:Ca ratios divided by Ocean, Longhurst Province, Ecosystem and region comes into perspective in paleo research depending on the type of reconstruction being conducted. Nowadays, efforts to develop paleo proxies have reached a global scale but still rely on local and regional samples: (a) Geographical distribution by archive type in the proxy records from the PAGES2k initiative (7), (b) Census of planktonic foraminifera in surface sediment samples (8), and (c) Paleoceanographic sediment cores from the North Pacific, 1951-2016 (9). All figures are used as published under a Creative Commons CC-BY license and a Creative Commons Attribution 3.0 License to M. Lebrato.















162

ď

164°W











Fig. S3. Examples of cruises, surveys, and stations where seawater Mg:Ca and Sr:Ca ratios samples were obtained. Maps were provided by PI and collaborators from the corresponding cruise, and have not been modified. (a) Transect in the Peru Oxygen Minimum Zone (OMZ) at Callao (Lima) (PI. A.P.). (b) Transect on the Line P programme (NOAA) off Vancouver (Pacific Ocean) (PI: C.P.). (c) Radials in the Iceland Sea from a permanent programme held by the Marine Research Institute of Iceland (PI: S.O.). (d) Cruise track around the Canadian Archipelago (PI: L.J.). (e) Work done in the Sermilik fjord and the close shelf in the southern Greenland Sea (PI: A.K.). (f) Transects available in the Russian-American Long-term Census of the Arctic (RUSALCA) around the Bering Strait (PI: R.H.). (g) Radials in the INGRES3-02 (200108)/STOCA 2011 08 research cruise in the Strait of Gibraltar (PI: R.S.L.). (h) Radial surveys in a carbonate chemistry cruise along the California Current (PI: R.A.F) (i) Radials in a cruise around Svalbard in the sub-Arctic Ocean (PI: J.B.). (j) Cruise track of stations in a cruise from Woods Hole Oceanographic Institution around the Bering Strait (PI: C. A.). (k) Long-cruise from La Reunion to Spain (PI: P.B.D.B). (1) Long-cruise from South Africa to South America (PI: B.T.). Not all cruises maps and tracks are included here, just a subset for showing this study collaborative approach.



# **Fig. S4. Global sampling effort of seawater Mg:Ca and Sr:Ca ratios used in this study.** Sampling stations used to average seawater Mg:Ca (a) and Sr:Ca (b) ratios at all depths in 5x5 quadrats to show global sampling effort. Note that many stations have also a vertical component with samples down to 6000 m (see Fig. 1, 4)

#### **Supplementary Tables & Captions**

**Table S1. Mean seawater Mg:Ca and Sr:Ca values divided by Ocean/Sea, Longhurst Province and Ecosystem.** Data are classified using mean and standard deviation in the five depth intervals used for the analysis using as major divisions Ocean/Sea, Longhurst Province and Ecosystem. Note that a IAPSO seawater sample is derived from the literature (10), and also from our measurements.

| Ocean/Sea                                       | 0-5 m             |                   | 5-200 m           |                   | 200-1000 m        |                   | 1000-2500 m       |                   | 2500+ m           |                   |
|-------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                 | Mg:Ca             | Sr:Ca             |
| 1. Pacific                                      | 5.165 ±0.482      | $9.084 \pm 1.650$ | 5.244 ±0.317      | 8.366 ±0.605      | 5.061 ±0.122      | 8.467 ±0.591      | 5.048 ±0.088      | 8.611 ±0.219      | 5.017 ±0.110      | 8.517 ±0.567      |
| 2. Indian                                       | 5.074 ±0.130      | 8.439 ±0.249      | 5.074 ±0.029      | 8.393 ±0.079      | 5.029 ±0.000      | 8.209 ±0.000      | 5.041 ±0.027      | 8.431 ±0.111      | 5.044 ±0.040      | 8.418 ±0.236      |
| 3. Atlantic                                     | 5.085 ±0.192      | 8.357 ±0.524      | 5.038 ±0.541      | 8.381 ±0.502      | 5.104 ±0.162      | 8.500 ±0.224      | 5.134 ±0.172      | 8.639 ±0.240      | 5.124 ±0.069      | 8.654 ±0.260      |
| 4. Arctic                                       | 5.051 ±0.097      | 8.440 ±0.133      | 5.021 ±0.045      | 8.377 ±0.107      | 5.019 ±0.031      | 8.372 ±0.098      | 5.165 ±0.034      | 8.731 ±0.138      | 4.982 ±0.000      | $8.088 \pm 0.000$ |
| 5. Mediterranean                                | 5.139 ±0.142      | 8.451 ±0.120      | 5.117 ±0.036      | 8.467 ±0.065      | 5.133 ±0.051      | 8.513 ±0.070      | 5.063 ±0.045      | 8.519 ±0.045      | 5.066 ±0.026      | $8.446 \pm 0.087$ |
| 6. Southern                                     | 5.129 ±0.072      | 8.798 ±0.000      | 5.077 ±0.038      | 8.395 ±0.100      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 7. Red Sea                                      | 5.266 ±0.152      | 8.400 ±0.023      | 5.146 ±0.036      | 8.487 ±0.047      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 8. China Sea                                    | 4.938 ±0.313      | 8.711 ±0.171      | $5.067 \pm 0.031$ | 8.269 ±0.109      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 9. Arabian Sea                                  | 5.511 ±0.439      | $8.385 \pm 0.000$ | n/a               |
| 10. Baltic Sea                                  | 4.993 ±0.197      | $8.370 \pm 0.000$ | n/a               |
| 11. IAPSO Literature (Atlantic)                 | $5.137 \pm 0.000$ | $9.031 \pm 0.000$ | n/a               |
| 12. IAPSO This study (Standard)                 | $5.155 \pm 0.035$ | 8.428 ±0.062      | n/a               |
| Longhurst Province                              | 0-5 m             |                   | 5-200 m           |                   | 200-1000 m        |                   | 1000-2500 m       |                   | 2500+ m           |                   |
|                                                 | Mg:Ca             | Sr:Ca             |
| 0. IAPSO (Westerlies - N. Atlantic Drift(WWDR)  | 5.137 ±0.000      | 9.031 ±0.000      | n/a               |
| 1. Coastal - Alaska Downwelling Coastal         | 5.892 ±0.551      | 9.262 ±0.508      | $5.074 \pm 0.065$ | 8.543 ±0.119      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 3. Coastal - Benguela Current Coastal           | n/a               | n/a               | $5.066 \pm 0.000$ | 8.373 ±0.000      | $5.069 \pm 0.000$ | $8.450 \pm 0.000$ | $5.148 \pm 0.000$ | $8.784 \pm 0.000$ | n/a               | n/a               |
| 4. Coastal - Brazil Current Coastal             | n/a               | n/a               | $5.104 \pm 0.000$ | $8.360 \pm 0.000$ | $5.018 \pm 0.001$ | $8.390 \pm 0.073$ | n/a               | n/a               | n/a               | n/a               |
| 5. Coastal - California Upwelling Coastal       | n/a               |                   | $5.503 \pm 0.357$ | 8.471 ±0.345      | $5.086 \pm 0.047$ | $8.515 \pm 0.127$ | $5.046 \pm 0.004$ | $8.415 \pm 0.025$ | n/a               | n/a               |
| 6. Coastal - Canary Coastal (EACB)              | $5.091 \pm 0.000$ | $8.446 \pm 0.000$ | $5.143 \pm 0.089$ | 8.477 ±0.119      | $5.180 \pm 0.077$ | $8.527 \pm 0.058$ | n/a               | n/a               | n/a               | n/a               |
| 7. Coastal - Central America Coastal            | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               | $5.074 \pm 0.044$ | $8.541 \pm 0.023$ | n/a               | n/a               |
| 8. Chile-Peru Current Coastal                   | n/a               | n/a               | $5.101 \pm 0.025$ | $8.545 \pm 0.085$ | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 9. Coastal - China Sea Coastal                  | $5.072 \pm 0.107$ | $8.402 \pm 0.135$ | $5.081 \pm 0.025$ | 8.384 ±0.116      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 10. Coastal - E. Africa Coastal                 | 5.033 ±0.167      | $8.376 \pm 0.200$ | n/a               |
| 13. Coastal - Guianas Coastal                   | 5.113 ±0.110      | $8.339 \pm 0.112$ | 4.917 ±0.707      | $8.251 \pm 0.400$ | 4.934 ±0.217      | $8.295 \pm 0.198$ | 4.714 ±0.328      | $8.299 \pm 0.195$ | n/a               | n/a               |
| 15. Coastal - NE Atlantic Shelves               | $5.025 \pm 0.165$ | $8.317 \pm 0.044$ | $5.705 \pm 0.200$ | 8.043 ±0.236      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 17. Coastal - NW Arabian Upwelling              | $5.104 \pm 0.008$ | $8.449 \pm 0.078$ | $5.074 \pm 0.029$ | 8.393 ±0.079      | $5.029 \pm 0.000$ | $8.210 \pm 0.000$ | $5.041 \pm 0.027$ | 8.431 ±0.111      | $5.044 \pm 0.040$ | $8.418 \pm 0.236$ |
| <ol><li>Coastal - NW Atlantic Shelves</li></ol> | $5.058 \pm 0.341$ | $8.385 \pm 0.413$ | $5.291 \pm 0.290$ | 8.534 ±0.171      | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 19. Coastal - Red Sea, Persian Gulf             | $5.364 \pm 0.279$ | $9.086 \pm 0.000$ | $5.146 \pm 0.036$ | $8.487 \pm 0.047$ | n/a               | n/a               | n/a               | n/a               | n/a               | n/a               |
| 21. Coastal - SW Atlantic Shelves               | 5.006 ±0.094      | $7.402 \pm 1.291$ | $5.056 \pm 0.056$ | 8.154 ±0.760      | $5.046 \pm 0.026$ | 8.342 ±0.136      | n/a               | n/a               | n/a               | n/a               |

| 23. Polar - Antarctic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.078 ±0.094                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.081 ±0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.073 ±0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.415 ±0.165                                                                                                                                                                                                                                                 | 5.063 ±0.045                                                                                                                                                                        | 8.519 ±0.045                                                                                                                                                                                                     | 5.055 ±0.038                                                                                                                                                             | 8.457 ±0.074                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24. Polar - Atlantic Arctic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.116 ±0.139                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.071 ±0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.387 ±0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.103 ±0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.475 ±0.208                                                                                                                                                                                                                                                 | 5.107 ±0.135                                                                                                                                                                        | 8.516 ±0.183                                                                                                                                                                                                     | 5.057 ±0.027                                                                                                                                                             | 8.370 ±0.103                                                                                                                                                      |
| 25. Polar - Atlantic Subarctic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.232 ±0.189                                                                                                                                                                                                                                                                                                                                                                   | 8.475 ±0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.630 \pm 0.360$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.330 ±0.602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.403 ±0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.741 ±0.199                                                                                                                                                                                                                                                 | 5.517 ±0.096                                                                                                                                                                        | 8.779 ±0.013                                                                                                                                                                                                     | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 27. Polar - Boreal Polar (POLR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5.065 \pm 0.144$                                                                                                                                                                                                                                                                                                                                                              | 8.623 ±0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.978 \pm 0.085$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.787 ±0.271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4.987 \pm 0.056$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.372 \pm 0.098$                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | $4.982.0 \pm 0.000$                                                                                                                                                      | $8.181 \pm 0.000$                                                                                                                                                 |
| 29. Trades - Archipelagic Deep Basins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5.048 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                              | $8.443 \pm 0.128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.067 \pm 0.031$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.377 ±0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 30. Trades - Caribbean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.862 ±0.293                                                                                                                                                                                                                                                                                                                                                                   | $8.711 \pm 0.171$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.092 \pm 0.025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.269 \pm 0.109$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 31. Trades - Eastern Tropical Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $5.109 \pm 0.042$                                                                                                                                                                                                                                                                                                                                                              | $7.542 \pm 1.319$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.374 \pm 0.070$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 32. Trades - Indian Monsoon Gyres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5.116 \pm 0.076$                                                                                                                                                                                                                                                                                                                                                              | $8.460 \pm 0.154$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| <ol> <li>Trades - Indian S. Subtropical Gyre</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5.117 \pm 0.115$                                                                                                                                                                                                                                                                                                                                                              | 8.499 ±0.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 34. Trades - N. Atlantic Tropical Gyral (TRPG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a                                                                                                                                                                                                                                                                                                                                                                            | $8.823 \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.158 \pm 0.074$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.130 \pm 0.039$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.995 \pm 0.072$                                                                                                                                                                                                                                            | $5.169 \pm 0.060$                                                                                                                                                                   | $8.991 \pm 0.068$                                                                                                                                                                                                | $5.152 \pm 0.049$                                                                                                                                                        | $8.986 \pm 0.049$                                                                                                                                                 |
| 36. Trades - N. Pacific Tropical Gyre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/a                                                                                                                                                                                                                                                                                                                                                                            | 8.783 ±0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.881 ±0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 38. Trades - South Atlantic Gyral (SATG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.135 ±0.023                                                                                                                                                                                                                                                                                                                                                                   | 8.740 ±0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.049 ±0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.058 ±0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.458 ±0.169                                                                                                                                                                                                                                                 | n/a                                                                                                                                                                                 | n/a                                                                                                                                                                                                              | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 39. Trades - W. Pacific Warm Pool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                            | 8.555 ±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.363 ±0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.847 ±0.005                                                                                                                                                                                                                                                 | n/a                                                                                                                                                                                 | 8.824 ±0.007                                                                                                                                                                                                     | n/a                                                                                                                                                                      | 8.834 ±0.021                                                                                                                                                      |
| 40. Trades - Western Tropical Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a                                                                                                                                                                                                                                                                                                                                                                            | 8.735 ±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.788 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.849 ±0.000                                                                                                                                                                                                                                                 | n/a                                                                                                                                                                                 | 8.811 ±0.019                                                                                                                                                                                                     | n/a                                                                                                                                                                      | 8.803 ±0.010                                                                                                                                                      |
| 42. Westerlies - Kuroshio Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                            | 8.739 ±0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.076 ±0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.808 ±0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.081 ±0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.536 ±0.246                                                                                                                                                                                                                                                 | 5.012 ±0.011                                                                                                                                                                        | 8.390 ±0.102                                                                                                                                                                                                     | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 43. Westerlies - Mediterranean Sea, Black Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.139 ±0.142                                                                                                                                                                                                                                                                                                                                                                   | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.117 ±0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.392 ±0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.133 ±0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.513 ±0.070                                                                                                                                                                                                                                                 | 5.165 ±0.034                                                                                                                                                                        | 8.731 ±0.138                                                                                                                                                                                                     | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 44. Westerlies - N. Atlantic Drift (WWDR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.075 ±0.154                                                                                                                                                                                                                                                                                                                                                                   | 8.451 ±0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.075 ±0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.467 ±0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.186 ±0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.543 ±0.156                                                                                                                                                                                                                                                 | 5.158 ±0.071                                                                                                                                                                        | 8.608 ±0.171                                                                                                                                                                                                     | 5.199 ±0.074                                                                                                                                                             | 8.648 ±0.181                                                                                                                                                      |
| 45. Westerlies - N. Atlantic Subtropical Gyral East (STGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.141 ±0.036                                                                                                                                                                                                                                                                                                                                                                   | 8.379 ±0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.097 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.405 ±0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.140 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.640 ±0.000                                                                                                                                                                                                                                                 | 5.115 ±0.029                                                                                                                                                                        | 8.584 ±0.051                                                                                                                                                                                                     | n/a                                                                                                                                                                      | n/a                                                                                                                                                               |
| 40. westerlies - N. Atlantic Subtropical Gyral (west) (SIGW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.166 ±0.245                                                                                                                                                                                                                                                                                                                                                                   | 8.495 ±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.139 ±0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.412 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.129 ±0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.409 ±0.044                                                                                                                                                                                                                                                 | 5.109 ±0.024                                                                                                                                                                        | 8.4/8 ±0.113                                                                                                                                                                                                     | 5.102 ±0.039                                                                                                                                                             | 8.450 ±0.105                                                                                                                                                      |
| 47. Westerlies - N. Pacific Polar Front<br>48. Westerlies - N. Pacific Subtropical Gyra (West)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.910 ±0.654                                                                                                                                                                                                                                                                                                                                                                   | $8.480 \pm 0.255$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.419 ±0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/a<br>n/a                                                                                                                                                                                                                                                   | n/a<br>n/a                                                                                                                                                                          | n/a<br>n/a                                                                                                                                                                                                       | n/a<br>n/a                                                                                                                                                               | n/a<br>n/a                                                                                                                                                        |
| 40. Westerlies - N. Facilic Subiopical Gyre (West)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/a<br>5 086 ±0 108                                                                                                                                                                                                                                                                                                                                                           | $11.082 \pm 2.349$<br>8 706 ±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/a<br>8 561 ±0.010                                                                                                                                                                                                                                         | 11/a<br>5 147 0±0 000                                                                                                                                                               | 11/a<br>8 650 ±0 000                                                                                                                                                                                             | 11/a                                                                                                                                                                     | 11/a<br>8 582 ±0 125                                                                                                                                              |
| 49. Westerlies - Facilic Subarctic Gyres (West)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.080 ±0.108                                                                                                                                                                                                                                                                                                                                                                   | 8.700 ±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.115 ±0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/a<br>8 503 ±0 053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.104 ±0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.301 ±0.019                                                                                                                                                                                                                                                 | 5.147 0±0.000                                                                                                                                                                       | $8.030 \pm 0.000$<br>8.846 ± 0.011                                                                                                                                                                               | 5.152 ±0.009                                                                                                                                                             | 8.383 ±0.133                                                                                                                                                      |
| 50. Westernes - Facine Subarene Gyres (West)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/ a                                                                                                                                                                                                                                                                                                                                                                          | 8.805 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.505 ±0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.039 ±0.010                                                                                                                                                                                                                                                 | 11/ a                                                                                                                                                                               | $0.040 \pm 0.011$                                                                                                                                                                                                | 11/ a                                                                                                                                                                    | 0.010 ±0.000                                                                                                                                                      |
| 51 Westerlies - S Pacific Subtropical Gyre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4981 \pm 0217$                                                                                                                                                                                                                                                                                                                                                                | 8 829 +0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4995 \pm 0135$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 819 +0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 968 +0 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 164 +0 901                                                                                                                                                                                                                                                 | $4991 \pm 0137$                                                                                                                                                                     | 8 537 +0 325                                                                                                                                                                                                     | $4930 \pm 0091$                                                                                                                                                          | 8 079 +0 740                                                                                                                                                      |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.981 ±0.217<br>n/a                                                                                                                                                                                                                                                                                                                                                            | 8.829 ±0.000<br>6 884 +3 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.995 ±0.135<br>5 101 ±0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.819 ±0.000<br>7 779 +1 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.968 ±0.125<br>5.086 ±0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.164 ±0.901<br>8 445 ±0.043                                                                                                                                                                                                                                 | 4.991 ±0.137<br>n/a                                                                                                                                                                 | 8.537 ±0.325<br>n/a                                                                                                                                                                                              | 4.930 ±0.091<br>n/a                                                                                                                                                      | 8.079 ±0.740<br>n/a                                                                                                                                               |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | 4.981 ±0.217<br>n/a<br>5.190 ±0.013                                                                                                                                                                                                                                                                                                                                            | 8.829 ±0.000<br>6.884 ±3.205<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132                                                                                                                                                                                                                 | 4.991 ±0.137<br>n/a<br>n/a                                                                                                                                                          | 8.537 ±0.325<br>n/a<br>n/a                                                                                                                                                                                       | 4.930 ±0.091<br>n/a<br>5.077 ±0.020                                                                                                                                      | 8.079 ±0.740<br>n/a<br>8.435 ±0.108                                                                                                                               |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul>                                                                                                                                                                                                                                                                                                                                                             | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 +0.047                                                                                                                                                                                                                                                                                                                            | $8.829 \pm 0.000$<br>$6.884 \pm 3.205$<br>n/a<br>$8.667 \pm 0.233$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019<br>5.187 ±0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132                                                                                                                                                                                                                 | 4.991 ±0.137<br>n/a<br>n/a                                                                                                                                                          | 8.537 ±0.325<br>n/a<br>n/a                                                                                                                                                                                       | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a                                                                                                                               | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a                                                                                                                        |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul>                                                                                                                                                                                                                                                                                                                                                             | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 ±0.047                                                                                                                                                                                                                                                                                                                            | 8.829 ±0.000<br>6.884 ±3.205<br>n/a<br>8.667 ±0.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019<br>5.187 ±0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a                                                                                                                                                                                                          | 4.991 ±0.137<br>n/a<br>n/a<br>n/a                                                                                                                                                   | 8.537 ±0.325<br>n/a<br>n/a<br>n/a                                                                                                                                                                                | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a                                                                                                                               | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a                                                                                                                        |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br><b>Ecosystem</b>                                                                                                                                                                                                                                                                                                                                                                               | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 ±0.047<br><b>0-</b> 4                                                                                                                                                                                                                                                                                                             | 8.829 ±0.000<br>6.884 ±3.205<br>n/a<br>8.667 ±0.233<br>5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019<br>5.187 ±0.060<br><b>5-20</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a                                                                                                                                                                                                          | 4.991 ±0.137<br>n/a<br>n/a<br>1000-2                                                                                                                                                | 8.537 ±0.325<br>n/a<br>n/a<br>500 m                                                                                                                                                                              | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b>                                                                                                                | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>+ <b>m</b>                                                                                                          |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br><b>Ecosystem</b>                                                                                                                                                                                                                                                                                                                                                                               | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 ±0.047<br><b>0-</b> 5<br>Mg:Ca                                                                                                                                                                                                                                                                                                    | 8.829 ±0.000<br>6.884 ±3.205<br>n/a<br>8.667 ±0.233<br>5 m<br>Sr:Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019<br>5.187 ±0.060<br><b>5-20</b><br>Mg:Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135<br>00 m<br>Sr:Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br><b>200-1</b> 0<br>Mg:Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>000 m<br>Sr:Ca                                                                                                                                                                                        | 4.991 ±0.137<br>n/a<br>n/a<br>1000-2<br>Mg:Ca                                                                                                                                       | 8.537 ±0.325<br>n/a<br>n/a<br>500 m<br>Sr:Ca                                                                                                                                                                     | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca                                                                                                       | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ <b>m</b><br>Sr:Ca                                                                                                |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br><b>Ecosystem</b><br>1. IAPSO (Open Ocean)                                                                                                                                                                                                                                                                                                                                                      | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 ±0.047<br><b>0-3</b><br>Mg:Ca<br>5.137 ±0.000                                                                                                                                                                                                                                                                                     | 8.829 ±0.000<br>6.884 ±3.205<br>n/a<br>8.667 ±0.233<br>5 m<br>Sr:Ca<br>9.031 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.995 ±0.135<br>5.101 ±0.025<br>5.061 ±0.019<br>5.187 ±0.060<br><b>5-2(</b><br>Mg:Ca<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135<br>00 m<br>Sr:Ca<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>000 m<br>Sr:Ca<br>n/a                                                                                                                                                                                 | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a                                                                                                                  | 8.537 ±0.325<br>n/a<br>n/a<br>n/a<br>500 m<br>Sr:Ca<br>n/a                                                                                                                                                       | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a                                                                                                       | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a                                                                                                |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br>Ecosystem<br>1. IAPSO (Open Ocean)<br>2. Coastal Sea                                                                                                                                                                                                                                                                                                                                           | 4.981 ±0.217<br>n/a<br>5.190 ±0.013<br>5.174 ±0.047<br><b>0-3</b><br>Mg:Ca<br>5.137 ±0.000<br>5.087 ±0.190                                                                                                                                                                                                                                                                     | $8.829 \pm 0.000$ $6.884 \pm 3.205$ $n/a$ $8.667 \pm 0.233$ 5 m Sr:Ca 9.031 \pm 0.000 $8.508 \pm 1.093$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.819 ±0.000<br>7.779 ±1.257<br>8.393 ±0.047<br>8.404 ±0.135<br>00 m<br>Sr:Ca<br>n/a<br>8.455 ±0.273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline 000 m \\ Sr:Ca \\ n/a \\ 8.550 \pm 0.264 \\ \hline$                                                                                                                                  | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115                                                                                                  | 8.537 ±0.325<br>n/a<br>n/a<br>n/a<br>500 m<br>Sr:Ca<br>n/a<br>8.867 ±0.116                                                                                                                                       | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a                                                                                                | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ <b>m</b><br>Sr:Ca<br>n/a<br>n/a                                                                                  |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> </ol>                                                                                                                                                                                                                                                         | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline Mg:Ca \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ \end{array}$                                                                                                                                                                                          | $8.829 \pm 0.000$ $6.884 \pm 3.205$ $n/a$ $8.667 \pm 0.233$ 5 m Sr:Ca 9.031 \pm 0.000 8.508 \pm 1.093 9.330 \pm 0.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.260 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.819 \pm 0.000 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline 000 m \\ Sr:Ca \\ n/a \\ 8.550 \pm 0.264 \\ n/a \\ \hline \end{tabular}$                                                                                                             | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a                                                                                           | 8.537 ±0.325<br>n/a<br>n/a<br>n/a<br>500 m<br>Sr:Ca<br>n/a<br>8.867 ±0.116<br>n/a                                                                                                                                | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a<br>n/a                                                                                         | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a<br>n/a<br>n/a                                                                                  |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> </ol>                                                                                                                                                                                                                                     | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline Mg:Ca \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ \end{array}$                                                                                                                                                                       | $8.829 \pm 0.000$ $6.884 \pm 3.205$ $n/a$ $8.667 \pm 0.233$ 5 m Sr:Ca 9.031 \pm 0.000 8.508 \pm 1.093 9.330 \pm 0.476 9.538 \pm 0.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.819 \pm 0.000 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 8.379 \pm 0.414 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 4.968 \pm 0.125 \\ 5.086 \pm 0.021 \\ 5.051 \pm 0.033 \\ n/a \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline 000 m \\ \hline Sr:Ca \\ n/a \\ 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ \hline \end{cases}$                                                                                     | 4.991 ±0.137<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113                                                                                         | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>Sr:Ca<br>n/a<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231                                                                                                                  | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097                                                                                | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ <b>m</b><br>Sr:Ca<br>n/a<br>n/a<br>n/a<br>8.580 ±0.377                                                           |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br>Ecosystem<br>1. IAPSO (Open Ocean)<br>2. Coastal Sea<br>3. Coastal Upwelling<br>4. Open Ocean<br>5. Open Ocean Upwelling                                                                                                                                                                                                                                                                       | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline Mg:Ca \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \end{array}$                                                                                                                                                                   | $8.829 \pm 0.000$ $6.884 \pm 3.205$ $n/a$ $8.667 \pm 0.233$ 5 m Sr:Ca 9.031 \pm 0.000 8.508 \pm 1.093 9.330 \pm 0.476 9.538 \pm 0.493 $n/a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.260 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.819 \pm 0.000 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 8.379 \pm 0.414 n/a $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 4.968 \pm 0.125 \\ 5.086 \pm 0.021 \\ 5.051 \pm 0.033 \\ n/a \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline 000 m \\ \hline Sr:Ca \\ n/a \\ 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ n/a \\ \hline \end{cases}$                                                                              | 4.991 ±0.137<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044                                                                         | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>5r:Ca<br>n/a<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023                                                                                                  | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a                                                                         | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ <b>m</b><br>Sr:Ca<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a                                                           |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br>Ecosystem<br>1. IAPSO (Open Ocean)<br>2. Coastal Sea<br>3. Coastal Upwelling<br>4. Open Ocean<br>5. Open Ocean Upwelling<br>6. Shallow Hydrothermal Vent                                                                                                                                                                                                                                       | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.5.137 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ \end{array}$                                                                                                                                      | $8.829 \pm 0.000$ $6.884 \pm 3.205$ $n/a$ $8.667 \pm 0.233$ 5 m Sr:Ca 9.031 \pm 0.000 8.508 \pm 1.093 9.330 \pm 0.476 9.538 \pm 0.493 $n/a$ 8.402 ± 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.260 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ \hline 5.089 \pm 0.000 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8.819 \pm 0.000 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 8.379 \pm 0.414 n/a 8.411 \pm 0.000 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \end{array}$ <b>D00 m Sr:Ca n/a</b> 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ n/a \\ n/a \end{array}                                                                       | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a                                                           | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>5r:Ca<br>n/a<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a                                                                                           | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a                                                                  | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ <b>m</b><br>Sr:Ca<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a                                                    |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Open Ocean Upwelling</li> <li>Shallow Hydrothermal Vent</li> <li>Coral Reef</li> </ol>                                                                                                                            | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.5087 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ \hline \end{array}$                                                                                                             | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ 8.667 \pm 0.233 \\ \hline \\ \textbf{5 m} \\ \textbf{5 m} \\ \textbf{5 m} \\ \hline \\ \textbf{5 m} \\ 5$         | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.263 \\ \hline 5.178 \pm 0.263 \\ \hline 5.434 \pm 0.366 \\ \hline 5.061 \pm 0.175 \\ \textbf{n/a} \\ \hline 5.089 \pm 0.000 \\ \hline 5.067 \pm 0.031 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8.819 \pm 0.000 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 8.379 \pm 0.414 n/a 8.411 \pm 0.000 8.269 \pm 0.109 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline \end{array} \\ \begin{array}{c} 000 \text{ m} \\ \hline \\ 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \end{array}$         | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>n/a                                             | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>5r:Ca<br>n/a<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>n/a                                                                                    | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br>2500<br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>n/a                                                           | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>n/a                                             |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Shallow Hydrothermal Vent</li> <li>Coral Reef</li> <li>Deep Hydrothermal Vent</li> </ol>                                                                                                      | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.5087 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ \hline \end{array}$                                                                                          | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ 8.667 \pm 0.233 \\ \hline \\ \textbf{5 m} \\ \textbf{5 m} \\ \hline \\ \textbf{5 m} \\ 5$         | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{5.187} \pm 0.263 \\ \hline 5.178 \pm 0.263 \\ \hline 5.434 \pm 0.366 \\ \hline 5.061 \pm 0.175 \\ \textbf{n/a} \\ \hline 5.089 \pm 0.000 \\ \hline 5.067 \pm 0.031 \\ \hline 5.333 \pm 0.261 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.819 \pm 0.000$ 7.779 \pm 1.257 8.393 \pm 0.047 8.404 \pm 0.135 00 m Sr:Ca n/a 8.455 \pm 0.273 8.500 \pm 0.316 8.379 \pm 0.414 n/a 8.411 \pm 0.000 8.269 \pm 0.109 6.596 \pm 1.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ n/a \\ \hline \end{array} \\ \begin{array}{c} 000 \text{ m} \\ \hline \\ 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ n/a \\ n/a \\ n/a \\ n/a \\ 8.209 \pm 0.000 \\ \end{array}$ | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>5.041 ±0.027                                           | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>Sr:Ca<br>n/a<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>n/a<br>8.431 ±0.111                                                                    | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040                                           | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>n/a<br>8.418 ±0.236                             |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Sopen Ocean Upwelling</li> <li>Shallow Hydrothermal Vent</li> <li>Coral Reef</li> <li>Deep Hydrothermal Vent</li> <li>Glacier Seawater</li> </ol>                                                                 | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline 0.5087 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ 4.932 \pm 0.106 \\ \hline \end{array}$                                                                                     | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ 8.667 \pm 0.233 \\ \hline \\ 5 \ \mathbf{m} \\ \hline \\ 5 \ \mathbf{m} \\ \hline \\ 5 \ \mathbf{m} \\ 9.031 \pm 0.000 \\ 8.508 \pm 1.093 \\ 9.330 \pm 0.476 \\ 9.538 \pm 0.493 \\ n/a \\ 8.402 \pm 0.135 \\ 8.367 \pm 0.101 \\ 8.449 \pm 0.078 \\ 8.384 \pm 0.004 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ 5.187 \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ 5.089 \pm 0.000 \\ 5.067 \pm 0.031 \\ 5.333 \pm 0.261 \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 8.819 \pm 0.000 \\ 7.779 \pm 1.257 \\ 8.393 \pm 0.047 \\ 8.404 \pm 0.135 \\ \hline \textbf{00 m} \\ \hline \textbf{Sr:Ca} \\ n/a \\ 8.455 \pm 0.273 \\ 8.500 \pm 0.316 \\ 8.379 \pm 0.414 \\ n/a \\ 8.411 \pm 0.000 \\ 8.269 \pm 0.109 \\ 6.596 \pm 1.979 \\ n/a \\ \hline \textbf{n/a} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br><b>200-1</b> (<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 8.164 \pm 0.901 \\ 8.445 \pm 0.043 \\ 8.337 \pm 0.132 \\ \hline n/a \\ \hline 000 \text{ m} \\ \hline \\ 8.550 \pm 0.264 \\ n/a \\ 8.463 \pm 0.305 \\ n/a \\ n/a \\ 8.209 \pm 0.000 \\ n/a \\ \hline \end{array}$                          | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>5.041 ±0.027<br>n/a                                    | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>500 m<br>500 m<br>500 m<br>500 m<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>8.431 ±0.111<br>n/a                                                | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040<br>n/a                                    | $8.079 \pm 0.740$ n/a 8.435 ± 0.108 n/a + m Sr:Ca n/a n/a 8.580 ± 0.377 n/a n/a 8.418 ± 0.236 n/a                                                                 |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br>Ecosystem<br>1. IAPSO (Open Ocean)<br>2. Coastal Sea<br>3. Coastal Upwelling<br>4. Open Ocean<br>5. Open Ocean Upwelling<br>6. Shallow Hydrothermal Vent<br>7. Coral Reef<br>8. Deep Hydrothermal Vent<br>9. Glacier Seawater<br>10. Estuary                                                                                                                                                   | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0-5 \\ Mg:Ca \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.100 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ 4.932 \pm 0.106 \\ 4.564 \pm 0.633 \\ \end{array}$                                                                        | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ \hline 8.667 \pm 0.233 \\ \hline 5 m \\ \hline \\ 5 m \\ \hline \\ 9.031 \pm 0.000 \\ 8.508 \pm 1.093 \\ 9.330 \pm 0.476 \\ 9.538 \pm 0.493 \\ n/a \\ 8.402 \pm 0.135 \\ 8.367 \pm 0.101 \\ 8.449 \pm 0.078 \\ 8.384 \pm 0.004 \\ 9.378 \pm 2.294 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ 5.187 \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ 5.089 \pm 0.000 \\ 5.067 \pm 0.031 \\ 5.333 \pm 0.261 \\ n/a \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 8.819 \pm 0.000 \\ 7.779 \pm 1.257 \\ 8.393 \pm 0.047 \\ 8.404 \pm 0.135 \\ \hline \textbf{00 m} \\ \hline \textbf{Sr:Ca} \\ n/a \\ 8.455 \pm 0.273 \\ 8.500 \pm 0.316 \\ 8.379 \pm 0.414 \\ n/a \\ 8.411 \pm 0.000 \\ 8.269 \pm 0.109 \\ 6.596 \pm 1.979 \\ n/a \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br><b>200-1</b> 0<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>000 m<br>Sr:Ca<br>n/a<br>8.550 ±0.264<br>n/a<br>8.463 ±0.305<br>n/a<br>n/a<br>8.209 ±0.000<br>n/a<br>n/a                                                                                              | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>5.041 ±0.027<br>n/a<br>n/a                      | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>500 m<br>500 m<br>500 m<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>8.431 ±0.111<br>n/a<br>n/a                                                  | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040<br>n/a<br>n/a                             | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>+ m<br>Sr:Ca<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>8.418 ±0.236<br>n/a<br>n/a                              |
| 51. Westerlies - S. Pacific Subtropical Gyre<br>52. Westerlies - S. Subtropical Convergence<br>53. Westerlies - Subantarctic<br>54. Westerlies - Tasman Sea<br><b>Ecosystem</b><br>1. IAPSO (Open Ocean)<br>2. Coastal Sea<br>3. Coastal Upwelling<br>4. Open Ocean<br>5. Open Ocean Upwelling<br>6. Shallow Hydrothermal Vent<br>7. Coral Reef<br>8. Deep Hydrothermal Vent<br>9. Glacier Seawater<br>10. Estuary<br>11. Mudflats                                                                                                                            | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline \\ \textbf{Mg:Ca} \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.100 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ 4.932 \pm 0.106 \\ 4.564 \pm 0.633 \\ 4.680 \pm 0.110 \\ \end{array}$                                                | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ \hline 8.667 \pm 0.233 \\ \hline 5 m \\ \hline \\ 5 m \\ \hline \\ 5 m \\ \hline \\ 9.031 \pm 0.000 \\ 8.508 \pm 1.093 \\ 9.330 \pm 0.476 \\ 9.538 \pm 0.493 \\ n/a \\ 8.402 \pm 0.135 \\ 8.367 \pm 0.101 \\ 8.449 \pm 0.078 \\ 8.384 \pm 0.004 \\ 9.378 \pm 2.294 \\ 7.990 \pm 0.161 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ 5.187 \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ 5.089 \pm 0.000 \\ 5.067 \pm 0.031 \\ 5.333 \pm 0.261 \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 8.819 \pm 0.000 \\ 7.779 \pm 1.257 \\ 8.393 \pm 0.047 \\ 8.404 \pm 0.135 \\ \hline \begin{array}{c} \textbf{00 m} \\ \hline \textbf{Sr:Ca} \\ n/a \\ 8.455 \pm 0.273 \\ 8.500 \pm 0.316 \\ 8.379 \pm 0.414 \\ n/a \\ 8.411 \pm 0.000 \\ 8.269 \pm 0.109 \\ 6.596 \pm 1.979 \\ n/a \\ n/a \\ n/a \\ n/a \\ n/a \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br><b>200-1</b> (<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>0000 m<br>Sr:Ca<br>n/a<br>8.550 ±0.264<br>n/a<br>8.463 ±0.305<br>n/a<br>n/a<br>8.209 ±0.000<br>n/a<br>n/a<br>n/a<br>n/a                                                                               | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>5.041 ±0.027<br>n/a<br>n/a<br>n/a               | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>500 m<br>500 m<br>500 m<br>500 m<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>8.431 ±0.111<br>n/a<br>n/a<br>n/a                                  | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040<br>n/a<br>n/a<br>n/a<br>n/a               | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>+ m<br>Sr:Ca<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>8.418 ±0.236<br>n/a<br>n/a<br>n/a                       |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Shallow Hydrothermal Vent</li> <li>Coral Reef</li> <li>Deep Hydrothermal Vent</li> <li>Glacier Seawater</li> <li>I0. Estuary</li> <li>Mudflats</li> <li>Mangroves</li> </ol>                  | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline 0.4 \\ \hline 0.5 \\ 0.5 \\ 0.137 \pm 0.000 \\ 5.087 \pm 0.100 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ 4.932 \pm 0.106 \\ 4.564 \pm 0.633 \\ 4.680 \pm 0.110 \\ 5.034 \pm 0.047 \\ \hline \end{array}$ | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ \hline 8.667 \pm 0.233 \\ \hline 5 m \\ \hline 5 m \\ \hline 9.031 \pm 0.000 \\ 8.508 \pm 1.093 \\ 9.330 \pm 0.476 \\ 9.538 \pm 0.493 \\ n/a \\ 8.402 \pm 0.135 \\ 8.367 \pm 0.101 \\ 8.449 \pm 0.078 \\ 8.384 \pm 0.004 \\ 9.378 \pm 2.294 \\ 7.990 \pm 0.161 \\ 8.515 \pm 0.024 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ 5.187 \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ 5.089 \pm 0.000 \\ 5.067 \pm 0.031 \\ 5.333 \pm 0.261 \\ n/a $      | $\begin{array}{c} 8.819 \pm 0.000 \\ 7.779 \pm 1.257 \\ 8.393 \pm 0.047 \\ 8.404 \pm 0.135 \\ \hline \textbf{D0 m} \\ \hline \textbf{Sr:Ca} \\ n/a \\ 8.455 \pm 0.273 \\ 8.500 \pm 0.316 \\ 8.379 \pm 0.414 \\ n/a \\ 8.411 \pm 0.000 \\ 8.269 \pm 0.109 \\ 6.596 \pm 1.979 \\ n/a \\ $                                                                                                                                                                                                                                                                                                                                                                                                         | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br><b>200-1</b> (<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000<br>n/a<br>n/a<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.020<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021<br>1.021 | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>0000 m<br>Sr:Ca<br>n/a<br>8.550 ±0.264<br>n/a<br>8.463 ±0.305<br>n/a<br>n/a<br>8.209 ±0.000<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a                                                                        | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br><b>1000-2</b><br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>n/a<br>5.041 ±0.027<br>n/a<br>n/a<br>n/a<br>n/a | 8.537 ±0.325<br>n/a<br>n/a<br>7<br>500 m<br>500 m<br>500 m<br>500 m<br>500 m<br>8.618 ±0.231<br>8.618 ±0.231<br>8.618 ±0.231<br>8.618 ±0.231<br>8.614 ±0.023<br>n/a<br>8.431 ±0.111<br>n/a<br>n/a<br>n/a<br>n/a  | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a        | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>n/a<br>8.418 ±0.236<br>n/a<br>n/a<br>n/a               |
| <ul> <li>51. Westerlies - S. Pacific Subtropical Gyre</li> <li>52. Westerlies - S. Subtropical Convergence</li> <li>53. Westerlies - Subantarctic</li> <li>54. Westerlies - Tasman Sea</li> </ul> Ecosystem <ol> <li>I. IAPSO (Open Ocean)</li> <li>Coastal Sea</li> <li>Coastal Upwelling</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Open Ocean</li> <li>Shallow Hydrothermal Vent</li> <li>Coral Reef</li> <li>Deep Hydrothermal Vent</li> <li>Glacier Seawater</li> <li>IO. Estuary</li> <li>Mudflats</li> <li>Magroves</li> <li>Seagrass</li> </ol> | $\begin{array}{c} 4.981 \pm 0.217 \\ n/a \\ 5.190 \pm 0.013 \\ 5.174 \pm 0.047 \\ \hline 0.4 \\ \hline Mg:Ca \\ 5.137 \pm 0.000 \\ 5.087 \pm 0.190 \\ 6.044 \pm 0.399 \\ 5.115 \pm 0.110 \\ n/a \\ 5.087 \pm 0.042 \\ 5.268 \pm 0.205 \\ 5.104 \pm 0.008 \\ 4.932 \pm 0.106 \\ 4.564 \pm 0.633 \\ 4.680 \pm 0.110 \\ 5.034 \pm 0.047 \\ 5.116 \pm 0.025 \\ \end{array}$        | $\begin{array}{c} 8.829 \pm 0.000 \\ 6.884 \pm 3.205 \\ n/a \\ 8.667 \pm 0.233 \\ \hline \\ \textbf{5 m} \\ \textbf{5 m} \\ \textbf{5 m} \\ \hline \\ \textbf{5 m} \\$ | $\begin{array}{c} 4.995 \pm 0.135 \\ 5.101 \pm 0.025 \\ 5.061 \pm 0.019 \\ \hline 5.187 \pm 0.060 \\ \hline \\ \textbf{Mg:Ca} \\ n/a \\ 5.178 \pm 0.263 \\ 5.434 \pm 0.366 \\ 5.061 \pm 0.175 \\ n/a \\ 5.089 \pm 0.000 \\ 5.067 \pm 0.031 \\ 5.333 \pm 0.261 \\ n/a \\ n/$ | $\begin{array}{c} 8.819 \pm 0.000 \\ 7.779 \pm 1.257 \\ 8.393 \pm 0.047 \\ 8.404 \pm 0.135 \\ \hline \mbox{00 m} \\ \hline \mbox$ | 4.968 ±0.125<br>5.086 ±0.021<br>5.051 ±0.033<br>n/a<br>200-14<br>Mg:Ca<br>n/a<br>5.165 ±0.281<br>n/a<br>5.067 ±0.086<br>n/a<br>n/a<br>5.029 ±0.000<br>n/a<br>n/a<br>n/a<br>n/a<br>1.029 ±0.000<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.164 ±0.901<br>8.445 ±0.043<br>8.337 ±0.132<br>n/a<br>000 m<br>Sr:Ca<br>n/a<br>8.550 ±0.264<br>n/a<br>8.463 ±0.305<br>n/a<br>n/a<br>8.209 ±0.000<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a                                                                  | 4.991 ±0.137<br>n/a<br>n/a<br>n/a<br>1000-2<br>Mg:Ca<br>n/a<br>5.581 ±0.115<br>n/a<br>5.084 ±0.113<br>5.074 ±0.044<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a          | 8.537 ±0.325<br>n/a<br>n/a<br>7/a<br>500 m<br>500 m<br>500 m<br>500 m<br>500 m<br>500 m<br>8.867 ±0.116<br>n/a<br>8.618 ±0.231<br>8.541 ±0.023<br>n/a<br>n/a<br>8.431 ±0.1111<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a | 4.930 ±0.091<br>n/a<br>5.077 ±0.020<br>n/a<br><b>2500</b><br>Mg:Ca<br>n/a<br>n/a<br>5.083 ±0.097<br>n/a<br>n/a<br>5.044 ±0.040<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a<br>n/a | 8.079 ±0.740<br>n/a<br>8.435 ±0.108<br>n/a<br>++ m<br>Sr:Ca<br>n/a<br>n/a<br>n/a<br>8.580 ±0.377<br>n/a<br>n/a<br>n/a<br>8.418 ±0.236<br>n/a<br>n/a<br>n/a<br>n/a |

# Table S2. Generalized Linear Model (GLM) results using forward stepwise regression.

Results of the GLM for seawater Mg:Ca and Sr:Ca ratios using the 5 depth intervals to understand the complexity of the ratios vs. the environmental variables (full results in SI Appendix 5). Significant results are bold. Also included is an indication of the system complexity with depth.

| Depth interval | Variable            | Mg:Ca        | Sr:Ca | $N^\circ$ of variables |       | Complexity  |                          |  |
|----------------|---------------------|--------------|-------|------------------------|-------|-------------|--------------------------|--|
|                |                     | <i>p</i> -le | vel   | Mg:Ca                  | Sr:Ca | Mg:Ca       | Sr:Ca                    |  |
|                | Ocean/Sea           | 0.116        | 0.279 |                        |       | Ocean/Sea   | Ocean/Sea                |  |
|                | Longhurst           | 0.000        |       |                        |       | Longhurst   |                          |  |
|                | Ecosystem           | 0.000        | 0.194 |                        |       | Ecosystem   | Ecosystem                |  |
|                | Latitude            | 0.174        |       |                        |       | Latitude    |                          |  |
|                | Longitude           | 0.000        | 0.159 |                        |       | Longitude   | Longitude                |  |
| 0 - 5 m        | Depth               | 0.020        | 0.016 | 10                     | 0     | Depth       | Depth                    |  |
|                | Temperature         | 0.360        | 0.011 | 12                     | 8     | Temperature | Temperature<br>Solimitry |  |
|                | Salinity            | 0.000        | 0.000 |                        |       | Salinity    | Salinity                 |  |
|                | DIC                 | 0.025        | 0.000 |                        |       | DIC         | IA                       |  |
|                | DO                  | 0.000        | 0.003 |                        |       | DO          | DO                       |  |
|                | pH <sub>total</sub> | 0.000        | 0.002 |                        |       | 20          | 20                       |  |
|                | CO <sub>2</sub>     | 0.004        |       |                        |       | $CO_2$      |                          |  |
|                | Ocean/Sea           |              | 0.012 |                        |       |             | Ocean/Sea                |  |
|                | Longhurst           | 0.112        |       |                        |       | Longhurst   |                          |  |
|                | Ecosystem           | 0.000        | 0.000 |                        |       | Ecosystem   | Ecosystem                |  |
|                | Latitude            |              | 0.064 |                        |       |             | Latitude                 |  |
|                | Longitude           | 0.001        | 0.082 |                        |       | Longitude   | Longitude                |  |
|                | Depth               |              |       |                        |       |             |                          |  |
| 5 - 200 m      | Temperature         | 0.297        | 0.000 | 7                      | 11    | Temperature | Temperature              |  |
|                | Salinity            |              | 0.136 |                        |       |             | Salinity                 |  |
|                | TA                  | 0.018        | 0.000 |                        |       | TA          | TA                       |  |
|                | DIC                 | 0.013        | 0.000 |                        |       | 50          | DIC                      |  |
|                | DO                  | 0.013        | 0.001 |                        |       | DO          | DO                       |  |
|                | pH <sub>total</sub> | 0.047        | 0.000 |                        |       | 60          | pH <sub>total</sub>      |  |
|                | Ocean/Sea           | 0.047        | 0.230 |                        |       | Ocean/Sea   | 0cean/Sea                |  |
|                | Longhurst           | 0.018        | 0.138 |                        |       | Longhurst   | Longhurst                |  |
|                | Ecosystem           | 0.000        | 0.003 |                        |       | Ecosystem   | Ecosystem                |  |
|                | Latitude            | 0.166        | 0.126 |                        |       | Latitude    | Latitude                 |  |
|                | Longitude           | 0.000        | 0.002 |                        |       | Longitude   | Longitude                |  |
|                | Depth               |              |       |                        |       | U           | U                        |  |
| 200 - 1000 m   | Temperature         |              |       | 6                      | 6     |             |                          |  |
|                | Salinity            |              |       |                        |       |             |                          |  |
|                | TA                  | 0.011        |       |                        |       | TA          |                          |  |
|                | DIC                 |              | 0.005 |                        |       |             | DIC                      |  |
|                | DO                  |              |       |                        |       |             |                          |  |
|                | $pH_{total}$        |              |       |                        |       |             |                          |  |
|                | CO <sub>2</sub>     |              |       |                        |       |             |                          |  |
|                | Ocean/Sea           |              | 0.106 |                        |       |             | <b>T 1</b> <i>i</i>      |  |
|                | Longhurst           | 0.001        | 0.106 |                        |       | Econoratore | Longnurst                |  |
|                | Latituda            | 0.001        | 0.001 |                        |       | Ecosystem   | Latituda                 |  |
|                | Latitude            |              | 0.003 |                        |       |             | Latitude                 |  |
|                | Depth               |              |       |                        |       |             |                          |  |
| 1000 - 2500 m  | Temperature         |              | 0.010 | 2                      | 8     |             | Temperature              |  |
| 1000 2000 111  | Salinity            |              |       | -                      | 0     |             | 1                        |  |
|                | TA                  | 0.171        | 0.177 |                        |       | TA          | ТА                       |  |
|                | DIC                 |              | 0.045 |                        |       |             | DIC                      |  |
|                | DO                  |              | 0.001 |                        |       |             | DO                       |  |
|                | $pH_{total}$        |              |       |                        |       |             |                          |  |
|                | CO <sub>2</sub>     |              | 0.674 |                        |       |             | CO <sub>2</sub>          |  |
|                | Ocean/Sea           | 0.013        |       |                        |       | Ocean/Sea   |                          |  |
|                | Longhurst           | 0.005        |       |                        |       |             |                          |  |
| + 2500 m       | Lotite              | 0.286        |       | 6                      | 4     | Ecosystem   |                          |  |
|                | Latitude            | 0.124        | 0.010 |                        |       | Longituda   | Longitude                |  |
|                | Denth               | 0.124        | 0.118 |                        |       | Longitude   | Depth                    |  |

| Temperature<br>Salinity<br>TA | 0.067 | 0.091<br><b>0.031</b> | Temperature | Temperature<br>Salinity |
|-------------------------------|-------|-----------------------|-------------|-------------------------|
| DIC                           |       |                       |             |                         |
| DO<br>pH <sub>total</sub>     | 0.043 |                       | DO          |                         |
| CO <sub>2</sub>               | 0.006 |                       | $CO_2$      |                         |

Table S3. Historical use of seawater Mg:Ca and Sr:Ca ratios. Summary of ratios use in various marine science disciplines in the last 100 years.

| Year | Reference | Location                                                              | Mg:Ca | Sr:Ca | Category                       |
|------|-----------|-----------------------------------------------------------------------|-------|-------|--------------------------------|
| 1938 | 11        | Atlantic Ocean                                                        | No    | Yes   | Analytic method development    |
| 1955 | 12        | Artificial Seawater                                                   | No    | Yes   | Analytic method development    |
| 1956 | 13        | Atlantic Ocean                                                        | No    | Yes   | Analytic method development    |
| 1992 | 14        | Atlantic Ocean                                                        | No    | Yes   | Biological effect              |
| 1999 | 15        | Pacific Ocean                                                         | Yes   | Yes   | Biological effect              |
| 1999 | 16        | Atlantic Ocean, Pacific Ocean, Indian Ocean                           | No    | Yes   | Biological effect              |
| 2003 | 17        | China Sea                                                             | Yes   | No    | Biological effect              |
| 2010 | 18        | Atlantic Ocean                                                        | Yes   | No    | Biological effect              |
| 2011 | 19        | Standard seawater manipulation                                        | Yes   | No    | Biological effect              |
| 2011 | 20        | Atlantic Ocean                                                        | Yes   | No    | Biological effect              |
| 2012 | 21        | UK coastal waters (Plymouth), Atlantic Ocean                          | Yes   | Yes   | Biological effect              |
| 2014 | 22        | Atlantic Ocean                                                        | Yes   | No    | Biological effect              |
| 2014 | 23        | Artificial Seawater                                                   | Yes   | Yes   | Biological effect              |
| 1999 | 24        | Pacific Ocean                                                         | Yes   | Yes   | Hydrothermal fluxes            |
| 2011 | 25        | Mediterranean Sea, Arabian Gulf (Kuwait)                              | Yes   | No    | Industrial Desalination plants |
| 1982 | 26        | Gulf of Mexico, Pacific Ocean, Atlantic Ocean                         | Yes   | Yes   | Paleoceanography               |
| 1994 | 27        | Pacific Ocean                                                         | No    | Yes   | Paleoceanography               |
| 1995 | 28        | Pacific Ocean                                                         | No    | Yes   | Paleoceanography               |
| 1996 | 29        | China Sea                                                             | No    | Yes   | Paleoceanography               |
| 1998 | 30        | Pacific Ocean                                                         | Yes   | Yes   | Paleoceanography               |
| 1998 | 31        | Worldwide                                                             | Yes   | No    | Paleoceanography               |
| 2000 | 32        | Open Ocean (various)                                                  | Yes   | No    | Paleoceanography               |
| 2005 | 33        | Atlantic Ocean, Pacific Ocean                                         | Yes   | No    | Paleoceanography               |
| 2010 | 34        | Atlantic Ocean, Pacific Ocean                                         | Yes   | Yes   | Paleoceanography               |
| 2013 | 35        | Mathematical model                                                    | Yes   | No    | Paleoceanography               |
| 2013 | 36        | Mathematical model                                                    | Yes   | No    | Paleoceanography               |
| 1819 | 37        | Open Ocean (various)                                                  | Yes   | No    | Seawater composition           |
| 1938 | 38        | Pacific Ocean                                                         | Yes   | Yes   | Seawater composition           |
| 1951 | 39        | Atlantic Ocean                                                        | No    | Yes   | Seawater composition           |
| 1956 | 40        | English channel, Atlantic Ocean                                       | No    | Yes   | Seawater composition           |
| 1966 | 41        | Gulf of Mexico, Atlantic Ocean                                        | No    | Yes   | Seawater composition           |
| 1966 | 42        | Southern Ocean, Pacific Ocean, Atlantic Ocean, Red Sea, Persian Gulf, | Yes   | Yes   | Seawater composition           |
| 1966 | 42        | Atlantic Ocean, Pacific Ocean, Indian Ocean, Southern Ocean           | Yes   | Yes   | Seawater composition           |
| 1967 | 43        | Atlantic Ocean                                                        | Yes   | Yes   | Seawater composition           |
| 1967 | 44        | Atlantic Ocean, Pacific Ocean, North Sea, Indian Ocean, Mediterranean | Yes   | Yes   | Seawater composition           |
| 1972 | 45        | Pacific Ocean, Mediterranean Sea                                      | No    | Yes   | Seawater composition           |
| 1973 | 46        | Atlantic Ocean                                                        | Yes   | No    | Seawater composition           |
| 1974 | 47        | Atlantic Ocean, Pacific Ocean                                         | No    | Yes   | Seawater composition           |
| 1999 | 48        | Atlantic Ocean, Pacific Ocean transect                                | No    | Yes   | Seawater composition           |
| 2006 | 49        | Antarctica, South Madagascar                                          | Yes   | No    | Seawater composition           |
| 2008 | .50       | Atlantic Ocean                                                        | Yes   | Yes   | Seawater composition           |

51

No

# **Supplementary Databases**

**Appendix 1. Database used to classify and coordinate each individual research cruise/expedition.** Excel file providing details of how each cruise and expeditions was planned and organized to recover seawater samples to measure seawater Mg:Ca and Sr:Ca ratios. This file belongs to the start of this project. The final database is in SI Appendix 3.

**Appendix 2. Database with the raw literature data.** Excel file with all the literature data selected for this study that were found comparable to our samples. The original database is permanently deposited at the NOAA National Center for Environmental Information (NCEI) under Accession Number 0171017 in <u>http://accession.nodc.noaa.gov/0171017</u> (DOI:10.7289/V5571996).

**Appendix 3. Database with the raw and classified data per depth band.** Excel file with all the measured and the literature data compiled in this study. Also included are all environmental metadata mined from GLODAPv2 (*4, 5*), and used to analyze and classify seawater Mg:Ca and Sr:Ca ratios as function of environmental variables. The original database is permanently deposited at the NOAA National Center for Environmental Information (NCEI) under Accession Number 0171017 in <u>http://accession.nodc.noaa.gov/0171017 (DOI:10.7289/V5571996)</u>.

**Appendix 4. ICP-OES quality control data and measurements replication.** Details on the ICP-OES laboratory quality and replicability that guarantees the high precision results presented in this study.

**Appendix 5. General Linear Model (GLM) results using forward stepwise regression.** Full results of the GLM for seawater Mg:Ca and Sr:Ca ratios using the 5 depth intervals to understand the complexity of the ratios vs. the environmental variables (summary in SI Appendix Table S2).

**Appendix 6. Summarized river mouth seawater Mg:Ca ratios.** Compilation of seawater Mg and Ca concentrations along with seawater Mg/Ca ratio of major rivers globally for comparison purposes (the data were not used in this dataset analysis). Original data belong to the GEMS-GLORI database of Meybeck and Alain (2012) which can be accessed at <a href="https://doi.pangaea.de/10.1594/PANGAEA.804574">https://doi.pangaea.de/10.1594/PANGAEA.804574</a>.

#### References

1. J. B. Ries, Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO<sub>3</sub>: a potential proxy for calcite-aragonite seas in Precambrian time. *Geobiology* **6**, 106-119 (2008)

2. DeVilliers S., M. Greaves, H. Elderfield H, An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. *Geochem. Geophys. Geosys.* **3**, 1001 (2002)

3. Schrag D. P., Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. *Paleoceanogr.* **14**, 97-102 (1999)

4. R. M. Key et al., A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). *G. Biogeochem. Cy.* **18**, GB4031 (2004)

5. R. M. Key et al., Global ocean data analysis project, version 2 (ORNL/CDIAC-162 NDP-093, 2015)

6. M. Meybeck, R. Alain, GEMS-GLORI world river discharge database. Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie, Paris, France, PANGAEA, <u>https://doi.org/10.1594/PANGAEA.804574</u> (2012)

7. J. Emile-Geay et al., A global multiproxy database for temperatura reconstructions of the Common Era. *Sci. Data* **4**, 170088 (2017)

8. M. Siccha, M. Kucera, ForCenS, A curated database of planktonic foraminifera census counts in marine surface sediment samples. *Sci. Data* **4**, 170109 (2017)

9. M. Borreggine, S. E. Myhre, K. A. S. Mislan, C. Deutsch, C. Davis, A database of paleoceanographic sediment cores from the North Pacific, 1951-2016. *Earth System Sci. Data* **9**, 739-749 (2017)

10. R. A. Pawlowicz, The absolute salinity of seawater diluted by river water. *Deep-Sea Res.* **101**, 71-79 (2015)

11. D. A. Webb, Strontium in seawater and its effect on calcium determination. *Nature* **142**, 751-752(1938)

12. T. J. Chow, T. G. Thompsok, Flame photometric determination of strontium in seawater. *Anal. Chem.* **27**, 18-21 (1955)

13. R. W. Hummel, A. A. Smales, Determination of strontium in sea water by using both radioactive and stable isotopes. *Analyst* **81**, 110-113 (1956)

14. R. E. Bernstein, R. H. Byrne, P. R. Betzer, A. M. Greco, Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry. *Geochim. Cosmochim. Ac.* **56**, 3273-3279 (1992)

15. D. W. Lea, T. A. Mashiotta, H. J. Spero, Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. *Geochim. Cosmochim. Ac.* **63**, 2369-2379 (1999)

16. H. M. Stoll, D. P. Schrag, S. C. Clemens, Are seawater Sr/Ca variations preserved in Quaternary foraminifera? *Geochim.Cosmochim. Ac.* **63**, 3535-3547 (1999)

17. W. Zang et al., The influences of Mg, Ca and Mg/Ca ratios in mixed seawater on the emergence rate of Penaeus japonicas postlarva. *Chinese J. Oceanol. Limnol.* **21**, 78-85 (2003)

18. J. B. Ries, Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification: *Biogeosciences* **7**, 2795-2849 (2010)

19. M. N. Müller et al., Response of the coccolithophores *Emiliania huxleyi* and *Coccolithus braarudii* to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and  $\delta$ 44/40Ca,  $\delta$ 26/24Mg of coccolith calcite. *Geochim. Cosmochim. Ac.***75**, 2088-2102 (2011)

20. N. Suarez-Bosche, thesis, Acclimation and phenotypic plasticity of echinoderm larvae in a changing ocean, University of Southampton (2011)

21. S. Blanco-Ameijeiras et al., Removal of organic magnesium in coccolithophore calcite. *Geochim.Cosmochim. Ac.* **89**, 226-239 (2012)

22. A. Mewes, G. Langer, L. J. de Nooijer, J. Bijma, J. G. Reichart, Effect of different seawater Mg2+ concentrations on calcification in two benthic foraminifers. *Mar. Micropal.* **113**, 56-64 (2014)

23. M. N. Müller et al., Influence of temperature and CO<sub>2</sub> on the strontium and magnesium composition of coccolithophore calcite. *Biogeosciences* **11**, 1065-1075 (2014)

24. S. de Villiers, B. K. Nelson, Detection of low-temperature hydrothermal fluxes by seawater Mg and Ca anomalies. *Science* **285**, 721-723 (1999)

25. Lenntech, Inc. <u>https://www.lenntech.com/</u> (2018)

26. J. R. Dodd, E. L. Crisp, Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. *Palaeogeogr. Palaeocl.* **38**, 45-56 (1982)

27. S. de Villiers, G. T. Shen, B. K. Nelson, The Sr/Ca-temperature relationship in coralline aragonite: influence of variability in (Sr/Ca) seawater and skeletal growth parameters. *Geochim. Cosmochim. Ac.* **58**, 197-208 (1994)

28. S. de Villiers, B. K. Nelson, A. R. Chivas, Biological controls on coral Sr/Ca and  $\delta$ 180 reconstructions of sea surface temperatures. *Science* **269**, 1247-1249 (1995)

29. C-C, Shen et al., The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. *Geochim. Cosmochim. Ac.* **60**, 3849-3858 (1996)

30. B. L. Ingram, P. De Deckker, A. R. Chivas, M. E. Conrad, A. R. Byrne, Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA: *Geochim. Cosmochim. Ac.* **62**, 3229-3237 (1998)

31. S. M. Stanley, L. A. Hardie, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. *Palaeogeogr. Palaeocl.* **144**, 3-19 (1998)

32. D. W. Lea, D. K. Pak, H. J. Spero, Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. *Science* **289**, 1719-1724 (2000)

33. S. de Villiers et al., The composition of the continental river weathering flux deduced from seawater Mg isotopes. *Chem. Geol.* **216**, 133-142 (2005)

34. R. M. Coggon, D. A. H. Teagle, C. E. Smith-Duque, J. C. Alt, M. J. Cooper, Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. *Science* **327**, 1114-1117 (2010)

35. M. Ligi, E. Bonatti, M. Cuffaro, D. Brunelli, Post-Mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction. *Sci. Reports* **3**, 1-8 (2013)+

36. R. Muller, A. Dutkiewicz, M. Seton, C. Gaina, Seawater chemistry driven *by*supercontinent assembly, breakup, and dispersal. *Geology* **41**, 907-910 (2013)

37. A. Marcet, On the specific gravity and temperature in different parts of the ocean and in particular seas, with sorne account of their saline contents. *Philos. Trans. Roy. Soc. London* **109**, 161-208 (1819)

38. Y. Miyake, 1939. Chemical studies of the Western Pacific Ocean. *Bull. Chem. Soc. Japan* 14, 29-55 (1939)

39. H. T. Odum, Note on the strontium content of sea water, celestite Radiolaria, and strontianite snail shells. *Science* **114**, 211-213 (1951)

40. H. J. M. Bowen, Strontium and barium in sea water and marine organisms. J. Mar. Bio. Assoc. U.K. **36**, 451-460 (1956)

41. E. E. Angino, G. K- Billings, N. R. Axdersen Observed variations in the strontium concentration of seawater. *Chem. Geol.* **1**, 145-153 (1966)

42. F. Culkin, R. A. Cox, Sodium, potassium, magnesium, calcium and strontium in seawater. *Deep-Sea Res.* **13**, 789-804 (1966)

43. B. P. Fabricand, E. S. Imbimbo, M. E. Brey, Atomic absorption analyses for Ca, Li, Mg, K, Rb and Sr at two Atlantic Ocean stations. *Deep-Sea Res.* **14**, 785-789 (1967)

44. J. P. Riley, M. Tongudai, The major cation chlorinity ratios in seawater. *Chem. Geol.* **2**, 263-269 (1967)

45. M. Bernat, T. Church, J. Allegre, Barium and Strontium concentrations in Pacific and Mediterranean seawater profiles by direct isotope dilution mass spectrometry. *Earth Planet. Sc. Lett.* **16**, 75-80 (1972)

46. J. H. Carpenter, M. E. Manella, Magnesium to chlorinity ratios in sea water. J. Geophys. Res. **78**, 3621-3626 (1973)

47. G. W. Brass, K. K. Turekian, Strontium distribution in GEOSECS oceanic profiles. *Earth Planet. Sc. Lett.* **23**, 141-148 (1974)

48. S. de Villiers, Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. *Earth Planet. Sc. Lett.* **171**, 623-634 (1999)

49. S. Naik, R. J. Noronha, P. V. Shirodkar, R. Sen Gupta, On the distribution of Calcium, Magnesium, Sulphate and Boron in the South-Western Indian Ocean region of the Southern Ocean. *Sci. report first Indian Exp. Antarctica* **1983**, 87-94 (2006)

50. F. J. Millero, R. Feistel, D. G. Wright, T. J. McDougall, The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. *Deep-Sea Res.* **55**, 50-72 (2008)

51. R. A. Pawlowicz, Model for predicting changes in the electrical conductivity, practical salinity, and absolute salinity of seawater due to variations in relative chemical composition. *Ocean Science* **6**, 361-378 (2010)