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1. SI Text

Probability of Infection. We consider a Susceptible-Exposed-
Infectious-Hospitalized/Recovered stochastic spatio-temporal
model for individual patients. Let ψj denote the source of
infection for an infected individual j, and let Gj = (rj , θj)
denote the distance rj and angle θj measured from ψj to j.

Assuming complete observations, the probability of j get-
ting infected at time Ej and position Gj will be

P (j, ψj)× g(Gj ; η, ŝ)× (1/rj), [1]

where

P (j, ψj) =
{
α, if individual j is a background infection,
β(Ej), if ψj is infectious at time Ej .

[2]
Following [9], we consider

g(Gj ; η, ŝ) = f(rj ; η)× h(θj |rj , ŝ), [3]

where f(.) is the density function of an Exponential distribu-
tion parameterized by the mean η (generally, f(.) is a mono-
tonically decreasing density function that characterizes the
likelihood over spatial spread over a distance). The func-
tion h(.) takes into account potential heterogeneous mixing
contributed by varying population densities across a study
area. A natural approach in specifying h(θj |rj , ŝ) is to use the
population density along the circumference of the circle cen-
tered at the source infection ψj with the radius rj , denoted by
σ(l|rj , ŝ), to account for the effect of heterogeneous landscape,
so that ∫ θ′

0
h(θ|r, ŝ)dθ =

∫ l′

0
σ(l|r, ŝ)dl, [4]

where l′ is the arc length corresponding to an arbitrary angle
θ′. The incorporation of h(.) has shown to be important for
more realistically representing the spatial spread of Ebola
outbreaks, more details are referred to [9]. After the day of
intervention (i.e. issue of shelter-in-place order) the mean
of the movement distance (i.e. η) is assumed to change by
a proportion q × η, where q is estimated empirically from
the change of average movement distance computed from the
Facebook mobility data (see main text).

Statistical Inference and Data-augmentation. We conduct
Bayesian inference of the partially observed outbreak using
the process of data augmentation supported by Markov chain

Monte Carlo methods [8, 9, 24]. Let Θ = (α, β1, β2, µ, c, η, ω)
(βi is the baseline infectivity in age group i). Given observed
partial data y, the inference involves sampling from the joint
posterior distribution π(Θ, z|y) ∝ L(Θ; z)π(Θ), where z rep-
resents the complete data and π(Θ) represents the prior dis-
tribution of model quantities, such that the complete z is
reconstructed, or ‘imputed’.

Parameters in Θ are updated sequentially with a standard
random-walk Metropolis-Hastings algorithm [24]. For exam-
ple, a new parameter value α′ is proposed from a normal
distribution centered on the current value of α

α′ ∼ N(0, ρ2) [5]

where ρ controls the step-size of the random-walk. β1 and
β2 are highly correlated and to improve mixing, we use the
Metropolis-Hastings algorithm with blockings for these two
parameters. They are drawn using multivariate Normal distri-
bution as proposal distributions, with the mean values taken
to be current parameter values (i.e. random walk), and with
entries in the covariance matrix estimated from the samples
generated from a preliminary run of the unblocked version
of the MCMC algorithm (i.e. each parameter is sampled se-
quentially using random-walk Metropolis-Hastings) [10]. The
unobserved infection time Ej and the source of infections ψj
and any missing symptom onset dates are also inferred follow-
ing [8, 9, 23]. Denote ωψ as the set of eligible candidates for
a new source of infection ψ

′
j for j (i.e. ωψ contains a set of

cases whose are infectious at Ej). We propose a new infecting
source i ∈ ωψ to be ψ

′
j with probability

pij ∝ βif(rj ; η). [6]

Note that the background infection can be accommodated by
adding a permanent infectious source presenting an additional
challenge of strength α to individual j. A newly proposed
source is accepted or rejected depending on the M-H accep-
tance probability [23]. We use non-infomative uniform priors
U(0, 100).

2. SI Tables

1www.pnas.org/cgi/doi/10.1073/pnas.2011802117



DRAFT
Table S1. Posterior means of model parameters and their 95% C.I.

County α η β1 β2 ω µ c

Cobb 0.02 [0.01,0.05] 0.12 [0.11,0.13] 0.14 [0.13,0.16] 0.05 [0.05,0.06] 0.07 [0.06,0.08] 9.43 [9.02,9.96] 6.372 [5.75,7.09]
DeKalb 0.09 [0.06,0.18] 0.18 [0.14,0.19] 0.09 [0.08,0.12] 0.04 [0.03,0.052] 0.06 [0.05,0.07] 11.24 [10.72,11.89] 6.69 [5.9,7.55]
Fulton 0.10 [0.07,0.19] 0.1 [0.09,0.11] 0.07 [0.06,0.08] 0.024 [0.02,0.031] 0.07 [0.06,0.09] 10.82 [10.42,11.50] 6.7 [6.06,7.38]
Gwinnett 0.08 [0.05,0.15] 0.16 [0.142,0.17] 0.062 [0.05,0.09] 0.03 [0.021,0.04] 0.04 [0.03,0.05] 9.5 [9.0,10.0] 4.71 [3.94,5.54]
Dougherty 0.03 [0.01,0.06] 0.19 [0.18,0.21] 0.21 [0.19,0.24] 0.055 [0.049,0.061] 0.17 [0.15,0.19] 8.7 [8.2,9.2] 4.8 [4.29,5.36]
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