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1. Sl Text

Probability of Infection. We consider a Susceptible-Exposed-
Infectious-Hospitalized /Recovered stochastic spatio-temporal
model for individual patients. Let 1); denote the source of
infection for an infected individual j, and let G; = (r;,6;)
denote the distance r; and angle 6; measured from ; to j.

Assuming complete observations, the probability of j get-
ting infected at time E; and position G; will be

P(j,%;) x g(Gj;n, 8) x (1/r;), [1]
where
PG, y) = a, if individual j is a background infection,
P B(Ej), if 9; is infectious at time Ej.

2]
Following [9], we consider

Q(Gﬁ??ag) = f(’”j”?) X h(ej‘rjv §), [3]

where f(.) is the density function of an Exponential distribu-
tion parameterized by the mean 7 (generally, f(.) is a mono-
tonically decreasing density function that characterizes the
likelihood over spatial spread over a distance). The func-
tion h(.) takes into account potential heterogeneous mixing
contributed by varying population densities across a study
area. A natural approach in specifying h(6;|r;, §) is to use the
population density along the circumference of the circle cen-
tered at the source infection v; with the radius r;, denoted by
o(l|r;, 8), to account for the effect of heterogeneous landscape,

so that
0’ 4
/ h(0|r,§)d9:/ o(l|r, 8)dl, [4]
0 0

where I’ is the arc length corresponding to an arbitrary angle
. The incorporation of h(.) has shown to be important for
more realistically representing the spatial spread of Ebola
outbreaks, more details are referred to [9]. After the day of
intervention (i.e. issue of shelter-in-place order) the mean
of the movement distance (i.e. 1) is assumed to change by
a proportion ¢ X 71, where ¢ is estimated empirically from
the change of average movement distance computed from the
Facebook mobility data (see main text).

Statistical Inference and Data-augmentation. We conduct

Bayesian inference of the partially observed outbreak using
the process of data augmentation supported by Markov chain
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Monte Carlo methods [8, 9, 24]. Let ® = («, 51, B2, 4, ¢, N, w)
(B; is the baseline infectivity in age group ). Given observed
partial data y, the inference involves sampling from the joint
posterior distribution 7(0, z|y) < L(®; z)7(0®), where z rep-
resents the complete data and 7(@®) represents the prior dis-
tribution of model quantities, such that the complete z is
reconstructed, or ‘imputed’.

Parameters in ® are updated sequentially with a standard
random-walk Metropolis-Hastings algorithm [24]. For exam-
ple, a new parameter value o’ is proposed from a normal
distribution centered on the current value of a

a' ~ N(0,p°) (5]

where p controls the step-size of the random-walk. [; and
B2 are highly correlated and to improve mixing, we use the
Metropolis-Hastings algorithm with blockings for these two
parameters. They are drawn using multivariate Normal distri-
bution as proposal distributions, with the mean values taken
to be current parameter values (i.e. random walk), and with
entries in the covariance matrix estimated from the samples
generated from a preliminary run of the unblocked version
of the MCMC algorithm (i.e. each parameter is sampled se-
quentially using random-walk Metropolis-Hastings) [10]. The
unobserved infection time E; and the source of infections 1);
and any missing symptom onset dates are also inferred follow-
ing [8, 9, 23]. Denote wy as the set of eligible candidates for
a new source of infection 1/); for j (i.e. wy contains a set of
cases whose are infectious at E;). We propose a new infecting

source i € wy to be w; with probability
pij o< Bif(rjim). (6]

Note that the background infection can be accommodated by
adding a permanent infectious source presenting an additional
challenge of strength « to individual j. A newly proposed
source is accepted or rejected depending on the M-H accep-
tance probability [23]. We use non-infomative uniform priors
U (0, 100).

2. Sl Tables



Table S1. Posterior means of model parameters and their 95% C.1.

County «a n B1 B2 w m c
Cobb 0.02[0.01,0.05]  0.12[0.11,0.13]  0.14[0.13,0.16] 0.05[0.05,0.06]  0.07 [0.06,0.08] 9.43[9.02,9.96] 6.372[5.75,7.09]
DeKalb 0.09 [0.06,0.18] 0.18[0.14,0.19] 0.09[0.08,0.12] 0.04[0.03,0.052] 0.06 [0.05,0.07] 11.24[10.72,11.89] 6.69 [5.9,7.55]
Fulton 0.10[0.07,0.19] 0.1[0.09,0.11]  0.07[0.06,0.08]  0.024[0.02,0.031]  0.07[0.06,0.09] 10.82 [10.42,11.50] 6.7 [6.06,7.38]
Gwinnett 0.08[0.05,0.15]  0.16[0.142,0.17]  0.062 [0.05,0.09] 0.03[0.021,0.04]  0.04 [0.03,0.05] 9.5[9.0,10.0] 4.71[3.94,5.54]
Dougherty ~ 0.03[0.01,0.06]  0.19[0.18,0.21]  0.21[0.19,0.24]  0.055[0.049,0.061]  0.17 [0.15,0.19] 8.7[8.2,9.2] 4.84.29,5.36]
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