Appendix

Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis

Daiki Takewaki, Wataru Suda, Wakiro Sato, Lena Takayasu, Naveen Kumar, Kimitoshi Kimura, Naoko Kaga, Toshiki Mizuno, Sachiko Miyake, Masahira Hattori, and Takashi Yamamura

Table of Contents

Supplementary Figure and Table Legends	3
Figure S1. Comparison of the microbial abundance between the five subject groups at the phylum and genus levels.	3
Figure S2. Comparison of the microbial abundance in significantly increased or decreased species/OTUs between the five subject groups.	3
Figure S3. Differences in functional profile of gut microbiome between RRMS and healthy controls.	3
Table S1. Demographics and characteristics of the five groups.	3
Table S2. Validation of the differences in gender and immunotherapy based on gut microbiome beta diversity.	3
Table S3. Summary of abundance of microbial species at the genus-level.	4
Table S4. The 16S-based significant changes in abundance for all species/OTUs between any two groups among the five subject groups.	4
Table S5. Similarity of 16S rRNA gene V1-V2 region for species/OTUs exhibiting significant changes in abundance (RRMS vs HC) between the prese and our previous paper.	nt paper
Table S6. KEGG orthologies having significant changes in abundance between two of the five groups based on the metagenomic data.	4
Table S7. Demographics and characteristics of the three groups in metabolite analysis.	4
References	5
Supplementary Figures	6
Supplementary Tables	9

Supplementary Figure and Table Legends

Figure S1. Comparison of the microbial abundance between the five subject groups at the phylum and genus levels.

(A) Comparison of the abundance at the phylum level between the five groups based on 16S data. Phyla with an average relative abundance $\geq 0.1\%$ in at least one group are represented. (B) Comparison of the abundance at the genus level between the five groups based on 16S data. Genera with an average relative abundance $\geq 0.5\%$ in at least one subject group are represented. Each box plot represents median, interquartile range, minimum, and maximum values. *p < 0.05 based on the Wilcoxon rank sum test with the Benjamini-Hochberg method for multiple group comparisons.

Figure S2. Comparison of the microbial abundance in significantly increased or decreased species/OTUs between the five subject groups.

Comparison of the abundance at the species/OTU level between the five groups based on 16S data. Species/OTUs that were significantly increased or decreased between the five groups are represented. Each box plot represents median, interquartile range, minimum, and maximum values. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001 based on the Wilcoxon rank sum test with the Benjamini-Hochberg method for multiple group comparisons.

Figure S3. Differences in functional profile of gut microbiome between RRMS and healthy controls.

(A) The list of 97 significantly enriched and 117 significantly depleted KEGG orthologies (KOs) in the RRMS group compared to those in the HC group (Wilcoxon test, p < 0.05). The Z-score based on the abundance of each KO is depicted from lowest (blue) to highest (red) according to the scale shown at the top. (B) List of KEGG pathways including at least one of the 97 significantly enriched KOs (RRMS-enriched KOs) or one of the 117 significantly depleted KOs (RRMS-depleted KOs) in the comparisons between the HC and RRMS groups. These individual pathways are ranked based on the ratios of RRMS-enriched KOs to -depleted KOs. *p*-value is based on the Fisher's exact test.

Table S1. Demographics and characteristics of the five groups.

Sixty-two patients with RRMS, 15 patients with SPMS, 21 patients with atypical MS, 20 patients with NMOSD, and 55 healthy controls were recruited. Samples from twenty of the 62 RRMS patients were previously subjected to 16S analysis (1). Data are represented as mean \pm SEM. **Abbreviations:** BMI = body mass index; ARR = annual relapse rate; EDSS = expanded disability status scale; PSL = prednisolone; IS = immunosuppressive drugs; DMDs; disease modifying drugs; IFN- β = interferon- β ; GA = glatiramer acetate; FTY = fingolimod; NTZ = natalizumab; DMF = dimethyl fumarate; HC = healthy control; RRMS = relapsing remitting multiple sclerosis; SPMS = secondary progressive multiple sclerosis; atypical MS = atypical multiple sclerosis; NMOSD = neuromyelitis optica spectrum disorder. A *p*-value based on comparisons between the RRMS, atypical MS, and NMOSD groups (Chi-squared test). B *p*-value based on comparisons between the RRMS, atypical MS, and NMOSD groups (Kruskal-Wallis test).

Table S2. Validation of the differences in gender and immunotherapy based on gut microbiome beta diversity.

Beta diversity indexes based on UniFrac analysis. R² and statistical test in permutational multivariate analysis of variance between HCs (female) and HCs (male) and between RRMS patients receiving immunotherapy and RRMS patients not receiving immunotherapy. UniFrac distance was based on the 16S data.

Table S3. Summary of abundance of microbial species at the genus-level.

An average abundance was calculated from 3,000 16S reads. Data are represented as mean \pm SEM.

Table S4. The 16S-based significant changes in abundance for all species/OTUs between any two groups among the five subject groups.

Thirty species/OTUs exhibited a significant increase or decrease (Wilcoxon test, p < 0.05) between any pair of the five subject groups. The statistical procedure was based on Wilcoxon rank sum test with the Benjamini-Hochberg method for multiple group comparisons. 1 Hyphen indicates $\ge 97\%$ identity with 16S rRNA gene V1-2 of the corresponding closest known species. 2 G1 / G2 indicates an average relative abundance in the Group 1 (G1) / an average relative abundance in the Group 2 (G2). Read number = 1 was assumed for "not detected" to calculate G1 / G2.

Table S5. Similarity of 16S rRNA gene V1-V2 region for species/OTUs exhibiting significant changes in abundance (RRMS vs HC) between the present paper and our previous paper.

Seventeen species/OTUs (12 mapped clusters and five unmapped OTUs) with significant changes in abundance between RRMS and HC groups in the present paper are shown in blue. Twenty-one species/OTUs (15 mapped clusters and six unmapped OTUs) with significant changes in abundance between the RRMS and HC groups in our previous paper (1) are shown in red. "Mapped CLs" and "rclusts" correspond mapped clusters. "Unmapped OTUs" and "unmap_OTUs" correspond unmapped OTUs.

Table S6. KEGG orthologies having significant changes in abundance between two of the five groups based on the metagenomic data.

Abbreviations: KO = KEGG orthology; G1 = Group 1; G2 = Group 2.

Table S7. Demographics and characteristics of the three groups in metabolite analysis.

Demographics and characteristics of the HC, RRMS, and SPMS groups with respect to the measurements of fecal metabolites. Data are represented as mean \pm SEM. **Abbreviations:** BMI = body mass index; ARR = annual relapse rate; EDSS = expanded disability status scale; HC = healthy control; RRMS = relapsing remitting multiple sclerosis; SPMS = secondary progressive multiple sclerosis.

References

1. S. Miyake *et al.*, Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. *PLoS One* **10**, e0137429 (2015).

Figure	S3
--------	-----------

	HC (n = 55)	RRMS (n = 62)	SPMS (n = 15)	Atypical MS (n = 21)	NMOSD (n = 20)	p-value
Age, year	40.0 ± 1.09	39.0 ± 1.00	43.3 ± 2.60	42.3 ± 1.82	43.1 ± 2.59	0.20
Sex (female : male)	19 : 36	46 : 16	9:6	15 : 6	18 : 2	<0.0001 / 0.23 A
BMI, kg/m ²	22.2 ± 0.30	22.0 ± 0.41	21.3 ± 0.69	22.2 ± 0.88	22.9 ± 1.03	0.46
Onset age, year		30.0 ± 1.08	27.3 ± 2.25	34.7 ± 2.00	31.9 ± 2.53	0.08
Disease duration, year		9.0 ± 0.84	15.9 ± 1.54	7.6 ± 1.02	11.2 ± 1.77	0.002 / 0.40 B
ARR		0.68 ± 0.11	0.13 ± 0.13	1.05 ± 0.25	0.95 ± 0.22	0.02
EDSS		1.88 ± 0.17	5.53 ± 0.45	2.24 ± 0.32	3.55 ± 0.42	<0.0001
Immunotherapy						
Oral PSL, %		40 (n = 25)	60 (n = 9)	67 (n = 14)	95 (n = 19)	
IS, %		5 (n = 3)	27 (n = 4)	24 (n = 5)	45 (n = 9)	
DMDs						
IFN-β, %		37 (n = 23)	13 (n = 2)	14 (n = 3)	0	
GA, %		5 (n = 3)	0	0	0	
FTY, %		6 (n = 4)	13 (n = 2)	5 (n = 1)	0	
NTZ, %		0	7 (n = 1)	0	0	
DMF, %		3 (n = 2)	0	0	0	

Category	No. subject	Weighted	UniFrac	Unweighted UniFrac		
		R ²	<i>p</i> -value	R ²	<i>p</i> -value	
HC (female) vs HC (male)	Female: 19	0.02	0.40	0.02	0.07	
	Male: 36					
RRMS receiving immunotherapy vs	Receiving immunotherapy: 50	0.02	0.46	0.02	0.28	
RRMS not receiving immunotherapy	Not receiving immunotherapy: 12					

		Average relative abundance based on 16S data									
Phylum	Genus	НС	RRMS	SPMS	Atypical MS	NMOSD	Average				
Bacteroidetes	Alistipes	0.22 ± 0.03	0.80 ± 0.25	0.67 ± 0.17	0.51 ± 0.19	0.79 ± 0.24	0.6				
Firmicutes	Anaerostipes	2.23 ± 0.35	2.65 ± 0.41	3.35 ± 1.23	2.66 ± 0.58	1.57 ± 0.41	2.49				
Bacteroidetes	Bacteroides	14.26 ± 1.44	11.64 ± 1.25	13.82 ± 3.20	12.16 ± 2.39	10.04 ± 1.41	12.38				
Actinobacteria	Bifidobacterium	8.07 ± 1.22	13.02 ± 1.46	13.46 ± 3.39	9.95 ± 2.32	12.49 ± 2.74	11.4				
Firmicutes	Blautia	7.33 ± 0.69	6.96 ± 0.72	8.17 ± 2.14	7.53 ± 1.21	7.35 ± 1.31	7.47				
Firmicutes	Catenibacterium	0.95 ± 0.42	1.27 ± 0.66	1.16 ± 1.16	0	$0.07\ \pm\ 0.07$	0.69				
Firmicutes	Clostridium	12.96 ± 0.62	12.61 ± 0.81	9.86 ± 1.13	14.21 ± 1.74	12.71 ± 1.79	12.47				
Actinobacteria	Collinsella	2.73 ± 0.33	3.23 ± 0.55	$3.47~\pm~0.97$	$2.60\ \pm\ 0.74$	$3.05~\pm~0.74$	3.01				
Firmicutes	Coprococcus	0.44 ± 0.12	0.52 ± 0.09	0.71 ± 0.26	$0.27\ \pm\ 0.08$	0.75 ± 0.23	0.54				
Firmicutes	Dorea	0.56 ± 0.06	0.58 ± 0.06	$0.82\ \pm\ 0.16$	0.59 ± 0.11	0.56 ± 0.11	0.62				
Firmicutes	Eubacterium	8.32 ± 0.97	7.08 ± 0.94	3.68 ± 0.77	5.83 ± 1.17	$9.50\ \pm\ 2.09$	6.88				
Firmicutes	Faecalibacterium	7.05 ± 0.66	8.66 ± 0.88	4.52 ± 1.37	7.24 ± 1.13	$5.97~\pm~1.24$	6.69				
Firmicutes	Lactobacillus	0.16 ± 0.08	0.46 ± 0.21	1.12 ± 0.94	$3.99~\pm~3.88$	1.91 ± 1.19	1.53				
Firmicutes	Megamonas	4.18 ± 1.29	0.53 ± 0.27	$0.04\ \pm\ 0.03$	1.28 ± 0.94	1.72 ± 1.65	1.55				
Firmicutes	Oscillibacter	0.44 ± 0.11	0.84 ± 0.14	$0.72~\pm~0.20$	0.73 ± 0.27	0.69 ± 0.17	0.68				
Bacteroidetes	Parabacteroides	2.11 ± 0.30	1.49 ± 0.20	2.36 ± 0.54	2.17 ± 0.73	1.72 ± 0.53	1.97				
Firmicutes	Phascolarctobacterium	0.67 ± 0.09	0.83 ± 0.16	0.57 ± 0.21	0.50 ± 0.13	0.60 ± 0.17	0.63				
Bacteroidetes	Prevotella	5.44 ± 1.49	1.70 ± 0.71	1.47 ± 1.12	0.88 ± 0.64	1.59 ± 1.10	2.22				
Firmicutes	Robinsoniella	0.32 ± 0.09	0.46 ± 0.16	2.35 ± 1.23	0.57 ± 0.35	$0.58\ \pm\ 0.26$	0.86				
Firmicutes	Roseburia	2.19 ± 0.29	1.62 ± 0.24	0.75 ± 0.18	1.70 ± 0.34	1.69 ± 0.40	1.59				
Firmicutes	Ruminococcus	11.23 ± 0.81	11.37 ± 0.92	11.54 ± 2.11	13.56 ± 1.64	11.85 ± 1.69	11.91				
Firmicutes	Streptococcus	2.30 ± 0.52	4.10 ± 0.64	6.40 ± 1.89	6.07 ± 2.26	$3.\overline{67~\pm~0.98}$	4.51				
Firmicutes	Subdoligranulum	0.42 ± 0.11	0.86 ± 0.21	0.50 ± 0.20	0.13 ± 0.05	0.20 ± 0.09	0.42				

Table	S4
-------	-----------

Species/OTU ID	Closest species	Identity (%) 1	Group 1 (G1)	increase or decrease	Group 2 (G2)	LOG10 (G1 / G2) 2	Average relative abundance in G2 (%)	Adjusted <i>p</i> -value (G1 vs G2)
mapped_CL5	Streptococcus parasanguinis	-	RRMS	>	HC	0.43	0.12	0.03
mapped_CL5	Streptococcus parasanguinis	-	SPMS	>	HC	0.93	0.12	0.03
mapped_CL9	Anaerococcus vaginalis	-	SPMS	>	RRMS	2.41	0.0005	0.04
mapped_CL14	Bacteroides caccae	-	Atypical MS	<	HC	-0.96	0.09	0.03
mapped_CL78	Eubacterium hallii	-	SPMS	<	HC	-0.49	0.34	0.04
mapped_CL121	Streptococcus anginosus	-	RRMS	>	HC	1.13	0.002	0.01
mapped_CL121	Streptococcus anginosus	-	SPMS	>	HC	1.72	0.002	0.0004
mapped_CL121	Streptococcus anginosus	-	Atypical MS	>	HC	1.05	0.002	0.002
mapped_CL121	Streptococcus anginosus	-	NMOISD	>	HC	1.95	0.002	0.004
mapped_CL124	Lactobacillus casei	-	RRMS	>	HC	0.49	0	0.03
mapped_CL126	Bacteroides plebeius	-	RRMS	<	HC	-0.30	1.48	0.01
mapped_CL129	Lactobacillus fermentum	-	SPMS	>	HC	1.44	0	0.008
mapped_CL129	Lactobacillus fermentum	-	Atypical MS	>	HC	-0.85	0	0.04
mapped_CL145	Eubacterium rectale ATCC 33656	-	RRMS	<	HC	-0.33	3.60	0.005
mapped_CL145	Eubacterium rectale ATCC 33656	-	SPMS	<	HC	-0.79	3.60	0.03
mapped_CL169	Clostridium sp. HT03-22	-	SPMS	<	HC	-0.63	4.41	0.001
mapped_CL169	Clostridium sp. HT03-22	-	NMOISD	<	HC	-0.34	4.41	0.04
mapped_CL206	Lachnospiraceae bacterium 8 1 57FAA	-	RRMS	<	HC	-0.94	0.53	0.01
mapped_CL208	Akkermansia muciniphila	-	RRMS	>	HC	1.59	0.002	0.03
mapped_CL208	Akkermansia muciniphila	-	NMOISD	>	HC	1.63	0.002	0.04
mapped_CL267	Streptococcus salivarius/thermophilus	-	RRMS	>	HC	0.34	1.16	0.004
mapped_CL267	Streptococcus salivarius/thermophilus	-	SPMS	>	HC	0.57	1.16	0.002
mapped_CL267	Streptococcus salivarius/thermophilus	-	Atypical MS	>	HC	0.33	1.16	0.02
mapped_CL271	Lactobacillus amylovorus	-	SPMS	>	HC	0.05	0	0.008
mapped_CL271	Lactobacillus amylovorus	-	Atypical MS	>	HC	2.01	0	0.04
mapped_CL271	Lactobacillus amylovorus	-	NMOISD	>	HC	0.79	0	0.03
mapped_CL271	Lactobacillus amylovorus	-	SPMS	<	RRMS	-0.24	0.07	0.04
mapped_CL372	Ruminococcus sp. 5_1_39BFAA	-	RRMS	<	HC	-0.17	5.24	0.04
mapped_CL372	Ruminococcus sp. 5_1_39BFAA	-	RRMS	<	Atypical MS	-0.35	7.78	0.01
mapped_CL372	Ruminococcus sp. 5_1_39BFAA	-	Atypical MS	>	NMOSD	0.38	3.24	0.02
mapped_CL396	Lactobacillus johnsonii	-	RRMS	>	HC	0.93	0.003	0.03
mapped_CL396	Lactobacillus johnsonii	-	SPMS	>	HC	1.41	0.003	0.003
mapped_CL396	Lactobacillus johnsonii	-	Atypical MS	>	HC	0.76	0.003	0.04
mapped_CL406	Parasutterella excrementihominis	-	RRMS	<	Atypical MS	-0.58	0.44	0.02
mapped_CL428	Megamonas funiformis	-	RRMS	<	HC	-0.89	4.17	0.01
mapped_CL429	Eubacterium biforme	-	Atypical MS	<	HC	-1.90	2.64	0.01
mapped_CL432	Clostridium leptum	-	RRMS	>	HC	0.98	0.06	0.02
mapped_CL446	Clostridium hathewayi	-	SPMS	>	HC	1.16	0.01	0.001
mapped_CL446	Clostridium hathewayi	-	NMOISD	>	HC	0.50	0.01	0.006
mapped_CL446	Clostridium hathewayi	-	SPMS	>	Atypical MS	1.02	0.01	0.03
unmapped_OTU5	Clostridium indolis	95.34	RRMS	<	HC	-0.65	0.44	0.00002
unmapped_OTU5	Clostridium indolis	95.34	NMOISD	<	HC	-0.55	0.44	0.04
unmapped_OTU6	Clostridium indolis	95.99	RRMS	<	HC	-0.52	0.65	0.01
unmapped_OTU18	Blautia luti	94.12	Atypical MS	>	HC	0.87	0	0.04
unmapped_OTU18	Blautia luti	94.12	RRMS	<	Atypical MS	-0.87	0.25	0.03
unmapped_OTU31	Clostraium symbiosum	93.83	RRMS	<	HC	-0.38	0.31	0.03
unmapped_OTU45	Clostridiales 303A04	89.16	SPMS	>	HC	0.56	0.02	0.04
unmapped_01045	Clostrialaies 303A04	89.16	NMUISD	>	HC	0.84	0.02	0.002
unmapped_OTU217	Bacteroides xylanolyticus	94.75	RRMS	<	HC	-0.40	0.44	0.04
unmapped_OTU1474	Eubacterium fissicateria	93.56	RKMS	>	HC	0.80	0.03	0.02
unmapped_OTU1684	Anaerovorax odorimutans	87.31	SPMS	>	HC	1.59	0.005	0.005
unmapped_0102338	Ruminococcus obeum	95.98	SPMS	>	HC HC	1.13	0.02	0.0009

										Species	/OTUs in	the study	published	l in 2015								
		rclust00019	rclust00024	rclust00054	rclust00107	rclust00125	rclust00226	rclust00231	rclust00240	rclust00255	rclust00268	rclust00397	rclust00410	rclust00467	rclust00489	rclust00715	unmap_OTU00005	unmap_OTU00057	unmap_OTU00078	unmap_OTU00151	unmap_OTU00273	unmap_OTU00644
	mapped_CL5	68.85	68.51	89.24	78.06	77.27	75.42	78.64	82.58	69.93	70.45	78.83	69.61	81.05	77.42	77.12	76.38	78.96	78.03	80.46	78.06	77.81
	mapped_CL121	68.59	70.42	88.29	73.90	77.99	70.92	76.90	78.62	69.52	68.79	76.05	67.65	77.60	77.60	76.14	76.90	79.05	75.16	74.45	77.99	74.61
	mapped_CL124	68.59	68.47	80.89	80.37	78.85	75.32	81.33	81.00	72.12	68.37	82.79	75.08	81.17	79.13	81.64	78.37	78.68	78.98	77.50	75.54	76.64
	mapped_CL126	86.94	93.02	67.86	68.06	69.84	68.75	66.56	67.83	83.49	92.70	67.97	66.45	66.88	66.35	65.79	68.91	67.95	69.26	68.15	66.98	71.38
	mapped_CL145	72.08	69.45	79.68	89.57	82.12	75.00	90.68	96.01	70.06	66.03	79.94	71.66	90.61	90.80	87.54	89.47	89.78	88.71	87.85	91.02	87.65
	mapped_CL206	71.75	67.62	79.22	88.89	83.11	73.94	89.78	90.74	73.08	69.45	82.52	73.29	91.26	89.81	83.93	89.78	91.33	90.57	90.34	89.51	90.43
	mapped_CL208	71.38	71.38	72.39	74.07	79.04	72.97	74.32	75.08	73.90	72.11	80.34	75.60	76.95	76.69	76.29	73.99	72.64	74.83	74.07	73.40	73.74
Species/OTUs in	mapped_CL267	67.53	67.74	99.05	80.07	76.95	76.59	77.27	83.06	67.74	67.42	81.05	67.97	81.25	77.10	78.07	76.05	77.60	75.57	78.76	76.77	77.92
the present study	mapped_CL372	70.55	68.69	79.55	86.60	82.72	71.75	88.44	90.34	69.84	67.20	82.47	70.36	88.03	87.23	84.59	87.77	88.05	87.42	85.62	89.72	85.36
	mapped_CL396	71.88	70.06	77.53	77.09	76.38	70.45	76.09	76.92	70.70	68.47	78.50	72.22	78.50	74.46	77.38	76.01	76.32	74.84	76.03	74.61	73.77
	mapped_CL428	70.07	70.39	77.12	80.13	99.38	75.84	78.62	80.33	73.44	71.38	82.57	70.16	78.69	80.33	79.48	78.95	79.28	80.13	77.63	79.02	78.43
	mapped_CL432	70.38	67.62	78.21	79.57	82.95	73.20	79.38	81.31	71.61	69.11	83.12	74.92	80.39	80.80	83.06	79.69	78.95	81.09	80.82	81.25	79.19
	unmapped_OTU5	72.64	71.61	76.13	86.29	79.02	72.94	90.65	89.13	71.66	67.41	81.23	71.99	89.64	91.88	85.05	96.88	91.59	98.75	97.51	88.51	95.65
	unmapped_OTU6	72.96	70.32	76.45	86.38	80.33	73.68	89.16	88.27	73.31	68.91	82.52	71.99	90.29	91.02	84.11	98.14	91.64	98.12	96.26	86.73	97.22
	unmapped_OTU31	70.87	66.35	78.83	85.49	79.34	71.75	91.56	88.58	72.12	67.09	80.58	73.29	89.00	90.43	86.09	93.19	99.07	90.60	91.28	89.47	92.59
	unmapped_OTU217	71.34	68.59	76.13	85.80	81.46	72.40	88.24	87.96	71.06	68.69	82.20	71.66	90.61	89.44	85.25	90.71	89.78	91.22	91.90	87.04	91.36
	unmapped_OTU1474	71.01	66.56	78.10	88.31	78.69	73.62	90.40	87.69	71.06	67.20	82.52	73.62	88.03	86.20	84.54	88.16	85.76	90.51	91.51	87.04	89.75

Group 1 (G1)	Group 2 (G2)	KOs with significant changes in abundance	Significantly enriched KOs in G1 compared with G2	Significantly depleted KOs in G1 compared with G2	Number of KEGG pathways including at least one of the significantly enriched KOs or depleted KOs in G1 compared with G2
RRMS	нс	214	97	117	83
SPMS	нс	144	89	55	86
Atypical MS	нс	65	45	20	46
NMOSD	нс	149	105	44	80
SPMS	RRMS	52	38	14	38
RRMS	Atypical MS	48	10	38	33
RRMS	NMOSD	39	4	35	29
SPMS	Atypical MS	44	23	21	32
SPMS	NMOSD	29	18	11	29
Atypical MS	NMOSD	55	21	34	44

	HC (n = 8)	RRMS (n = 12)	SPMS (n = 9)	<i>p</i> -value
Age, year	36.5 ± 2.24	39.0 ± 2.02	38.7 ± 1.56	0.64
Sex (female : male)	4:4	7 : 5	5 : 4	0.93
BMI, kg/m²	21.8 ± 0.79	22.6 ± 1.20	21.3 ± 1.07	0.58
Onset age, year		28.5 ± 2.19	24.0 ± 1.43	0.14
Disease duration, year		10.5 ± 2.54	14.7 ± 2.12	0.13
ARR		0.67 ± 0.26	0.22 ± 0.22	0.21
EDSS		1.83 ± 0.27	5.39 ± 0.55	<0.0001
Immunotherapy, %		92 (n = 11)	89 (n = 8)	>0.99