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Supplementary Figures 

Supplementary Figure 1. Structures of the autoencoder and ARNN form. 

  

Supplementary Figure 1. Structures of the autoencoder and ARNN form. Information flow of ARNN is 

𝐹(𝐗𝑡) → 𝐘𝑡 → 𝐹(𝐗𝑡) (or 𝐗𝑡 → 𝐹(𝐗𝑡) → 𝐘𝑡 → 𝐹(𝐗𝑡) ← 𝐗𝑡), which is different from but similar to autoencoder 

𝐗𝑡 → 𝐘𝑡 → 𝐗𝑡 . The autoencoder-like form (a) can be transformed into the ARNN form (b) under the nonlinear 

transformation 𝐹, that is, 𝐹 acts on both sides of the second equation (the decoder equation) 𝐹−1(𝐵𝐘𝑡) = 𝐗𝑡 ,  and 

then we have 𝐵𝐘𝑡 = 𝐹(𝐗𝑡) of ARNN. (c) The left-hand-side is to encode the spatial information 𝐗𝑡  to the 

temporal information 𝐘𝑡 , while the right-hand-side is to decode/recover the encoded temporal information 𝐘𝑡  to 

the original spatial information 𝐗𝑡 . 
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Supplementary Figure 2. The future state prediction of Lorenz model based on ARNN. 

 

Supplementary Figure 2. The future state prediction of Lorenz model based on ARNN. In the noise-free 

situation, a synthetic time-course dataset was generated based on the 90-dimensional coupled Lorenz model. 

Among the 𝐷 = 90 variables {𝑥1, 𝑥2, … , 𝑥90}, three targets were randomly selected as 𝑦1 , 𝑦2  and 𝑦3 . Through 

ARNN algorithm, the future state prediction was carried out respectively for 𝑦1, 𝑦2 and 𝑦3, where the length of 

known series/input is 𝑚 = 50, and that of predicted series is 𝐿 − 1 = 18, i.e., 18-step-ahead prediction in one 

output. For different initial values, there were four cases, where (a), (b), and (c) were the cross-attractors cases, 

i.e., the known and to-be-predicted series distributed in two attractors, while (d) was the periodic case, i.e., the 

known and to-be-predicted series distributed in a single attractor. For four cases, the blue curves represent the 

known information. The cyan curves record the real dynamics of the system. The red points are the predicted 

information based on ARNN. It should be noted that the predicted information (the 18 red points) was obtained 

in a multi-step-ahead manner, that is, the ARNN provides a period of future information for each single prediction. 
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Supplementary Figure 3. The performance of ARNN and Linear method in a global 

time region of coupled Lorenz system. 

 

Supplementary Figure 3. The performance of ARNN and Linear method in a global time region of coupled 

Lorenz system. 
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Supplementary Figure 4. The performance of ARNN and a linear method under 

different noise conditions. 

    

Supplementary Figure 4. The performance of ARNN and a linear method under different noise conditions. 

With different noise strengths, i.e., 𝜎 = 0,  𝜎 = 0.5, and 𝜎 = 2, we demonstrated the performance of ARNN and 

the linear method of the linearized STI equations, which is of the same structure of ARNN except the 

reservoir/nonlinear part. (a) The ARNN beats the linear method in the noise-free situation. (b) The linear method 

loses in the noise-free situation. (c) Both ARNN and linear method perform well in the noise-free situation. When 

there is additive noise (𝜎 = 0.5, or 𝜎 = 2), the performance of ARNN beats that of the linear method for cases 

(a) and (b). 
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Supplementary Figure 5. The performance comparison among ARNN and other 

methods on four cases. 

       

Supplementary Figure 5. The performance comparison among ARNN and other methods on four cases. (a) 

The performance of ARNN. (b) The performance of the linearized STI method (Linear). (c) The performance of 

traditional reservoir computing (tRC). (d) The performance of the autoregression (AR). (e) The performance of 

the Long Short-Term Memory network (LSTM).  
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Supplementary Figure 6. The performances of ARNN and LSTM. 

 

Supplementary Figure 6. The performances of ARNN and LSTM. (a) To compare the performance of ARNN 

and LSTM, different observable/known length was set to predict a same zone 𝑡 ∈ [1449, 1553] of the Lorenz 

system with time varying parameters, i.e. Eq. (6) in the main text. (b) In order to solve the equation set (Eq. (3) 

in the main text) derived from the ARNN structure, an optimization approach (shown as in Supplementary Notes 

3-4) was applied to get 𝐴, 𝐵 and unknown part of 𝑦. The curve shows the average RMSE versus iteration number 

of the optimization method. 
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Supplementary Figure 7. The performance of robustness test of different prediction 

methods. 

 

Supplementary Figure 7. The performance of robustness test of different prediction methods. In order to 

compare the performance of five prediction methods including ARNN, Linear, tRC, AR, and LSTM, the whole 

time series of wind speed (from 0 to 138,600 minutes) was used to test. The correlations between each predicted 

series and original series are as follows: PCC(ARNN, Original) = 0.952 , PCC(Linear, Original) =  0.759 , 

PCC(tRC, Original) = 0.865, PCC(AR, Original) = 0.0616, PCC(LSTM, Original) = 0.8878. It is seen that the 

predicted series via ARNN is the most correlated to the real series. 
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Supplementary Figure 8. The prediction of Typhoon eye (Latitude, Longitude) based on 

ARNN and other nine methods. 

 

Supplementary Figure 8. The prediction of Typhoon eye (Latitude, Longitude) based on ARNN and other 

nine methods.  
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Supplementary Figure 9. The prediction of MNIST digits based on ARNN. 

 

Supplementary Figure 9. The prediction of MNIST digits based on ARNN. 
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Supplementary Tables  

Supplementary Table 1. The performances of prediction methods on the 90D coupled 

Lorenz system 

Data condition 

Method 

 

Metric* 

ARNN tRC AR LSTM 
ARI

MA 
SVR RBF SVE MVE 

Noise free, 

time 

invariant 

m=50, 

L-1=18 

RMSE 0.397 0.911 0.912 0.861 1.08 1.43 1.46 1.45 0.608 

PCC 0.961 0.855 0.809 0.724 0.804 0.828 0.841 0.833 0.913 

RT 4.33 2.93 0.873 19.1 1.08 3.84 6.33 4.91 15.7 

m=15, 

L-1=6 

RMSE 0.168 0.291 0.459 0.538 0.468 0.779 0.761 0.796 0.477 

PCC 0.954 0.914 0.906 0.836 0.873 0.604 0.878 0.877 0.893 

RT 2.27 1.11 0.214 8.91 0.381 2.19 3.31 2.33 12.4 

Noise=1, 

time 

invariant 

m=50, 

L-1=18 

RMSE 0.884 1.43 1.41 1.09 1.60 1.55 1.61 1.59 1.08 

PCC 0.865 0.755 0.834 0.636 0.786 0.793 0.801 0.699 0.827 

RT 4.76 2.81 0.931 19.4 1.13 3.88 6.26 5.24 17.1 

m=15, 

L-1=6 

RMSE 0.483 0.678 0.899 0.937 1.06 0.998 0.956 1.03 0.949 

PCC 0.907 0.845 0.824 0.648 0.724 0.788 0.842 0.672 0.803 

RT 2.33 1.31 0.252 8.75 0.434 2.30 3.62 2.59 13.1 

Noise free, 

time 

varying 

m=50, 

L-1=18 

RMSE 0.513 2.91 1.21 0.983 1.32 1.48 1.55 1.71 0.863 

PCC 0.924 0.838 0.804 0.719 0.801 0.818 0.822 0.793 0.914 

RT 4.26 2.88 0.812 18.8 1.19 3.65 6.29 5.14 16.6 

m=15, 

L-1=6 

RMSE 0.284 0.482 0.470 0.597 0.567 0.823 0.809 0.845 0.520 

PCC 0.934 0.911 0.912 0.854 0.858 0.682 0.877 0.838 0.883 

RT 2.24 1.10 0.209 9.02 0.383 2.21 3.28 2.35 12.6 

* For the performance metrics, the values of the root-mean-square error (RMSE), the Pearson correlation 

coefficient (PCC), and the running time (RT) are the averages from predictions in 500 cases. The RMSE was 

normalized by the standard deviation of the real data. The RT (CPU time in seconds) was measured on an Intel 

Xeon E5-2695 v4 2.10 GHz 36-core system with 256 GB RAM. The running environment was MATLAB 2019b. 
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Supplementary Table 2. The box-counting dimensions of the datasets used in this paper. 

Dataset Estimated dimension* 

The 90D coupled Lorenz system 2.68 ± 0.335 

Wind speed in Wakkanai, Japan 3.02 ± 0.224 

Solar irradiance in Wakkanai, Japan 1.26 ± 0.138 

Sea-level pressure & Average temperature in US  2.40 ± 0.206 

Route of typhoon center in Indian Ocean 5.64 ± 0.381 

Gene expressions related to circadian rhythm 1.86 ± 0.195 

B-Share index in Shanghai Stock Exchange 1.92 ± 0.173 

Daily number of cardiovascular inpatients  2.65 ± 0.168 

Traffic speed in multiple locations in Los Angeles, CA 2.03 ± 0.206 

* The box-counting dimensions are approximately estimated for the data matrix by using the R package “Rdimtools” provided 

by (Suh, C., You, K. 2018. Rdimtools v. 0.4.2. https://CRAN.R-project.org/package=Rdimtools). 
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Supplementary Table 3. The numbers of the unknown parameters and the known data 

for each dataset 

Dataset* 

Number of 

known 

time points   

(𝒎)  

Number of 

total known 

data      

(𝒎×𝑫) 

To-be-predicted 

length of 

unknown y  

(𝑳 − 𝟏) 

Number of 

unknown 

elements in 𝐴  

(𝑳 × 𝑫̃) 

Number of 

unknown 

elements in 𝐵  

(𝑫̃ × 𝑳) 

The 90D coupled 

Lorenz system 

50 50×90 18 19×150 150×19 

15 15×90 6 7×150 150×7 

Wind speed in 

Wakkanai, Japan 
110 110×155 45 46×150 150×46 

Solar irradiance in 

Wakkanai, Japan 
300 300×155 140 141×150 150×141 

Sea-level pressure in 

the US 
60 60×72 25 26×150 150×26 

Average temperature 

in the US 
60 60×72 25 26×150 150×26 

Route of typhoon 

center in Indian 

Ocean 

50 50×2402 21 22×150 150×22 

Gene expressions 

related to circadian 

rhythm 

16 16×84 6 7×150 150×7 

B-Share index in 

Shanghai Stock 

Exchange 

50 50×1130 20 21×150 150×21 

Daily number of 

cardiovascular 

inpatients  

130 130×48 60 61×150 150×61 

Traffic speed in 

multiple locations in 

Los Angeles, CA 

80 80×207 30 31×150 150×31 

* For each dataset, there are (𝐿 × 𝐷̃) + (𝐷̃ × 𝐿) + (𝐿 − 1) unknown values against (𝑚 × 𝐷) known values in ARNN. 
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Supplementary Table 4. Summary of parameters and variables in ARNN framework 

Symbols Dimensions Explanation 

𝛷 𝐿 Primary STI function 

𝛹 𝐷 Conjugate STI function 

𝐹 𝐷̃ A given neural network whose weights are randomly given 

ℝ𝑛 𝑛 𝑛-dimensional real number space 

𝑚 1 Scalar, the length of known time series 

𝐿 − 1 1 Scalar, the length of to-be-predicted time series for the target variable 𝑦  

𝑑 1 Scalar, box-counting dimension 

𝑡 1 Scalar, time point 

𝑛 1 Scalar, the dimension of the observed variables in time-series   

𝐷 1 Scalar, the dimension of the (selected) observed variables in time-series   

𝐷̃ 1 Scalar, the dimension of 𝐹 

𝐼 𝐿 × 𝐿 Matrix, the identity matrix 

𝑥𝑘
𝑡  1 Scalar, the value of the 𝑘-th variable in time series at time point 𝑡 
𝑦𝑡 1 Scalar, the value of the target variable y at time point 𝑡 

 𝑋 𝐷 ×𝑚 
Matrix, the high-dimensional time series for the observed variables during 

𝑚 time points 

𝐗𝑡  𝐷 Vector, the observed variables at time point 𝑡 

𝐗𝑡 𝐷 − 1 Vector, the observed variables except 𝑦𝑡 at time point 𝑡  
𝑌 𝐿 × 𝑚 Matrix, the delay embedding matrix of 𝑦 during m time points 

𝐘𝑡  𝐿 Vector, a delay embedding variables of 𝑦 at time point 𝑡 

𝐴 𝐿 × 𝐷̃ Matrix, the to-be-solved weights of 𝐹(𝑋𝑡) 

𝐵 𝐷̃ × 𝐿 Matrix, the to-be-solved weights of 𝑌𝑡 

∘  Function composition operation 

′  Transpose of a vector 

𝑖𝑑  The identity function 

 

 

 

 

 

Supplementary Movies 

Movie-Traffic & Movie-Satellite Image are attached to the following link:  

https://github.com/RPcb/ARNN 

https://github.com/RPcb/ARNN
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Supplementary Notes 

The summary of parameters and variables in ARNN framework is given in Supplementary Table 4.  

 

Supplementary Note 1. Dynamical systems and delay embedding theorem 

For a general discrete-time dissipative system, the dynamics can be defined as 

𝐗𝑡+1 = 𝜙(𝐗𝑡), 

where 𝜙: ℝ𝑛 → ℝ𝑛  is a nonlinear map, and its variables are defined in the n-dimensional state space 𝐗𝑡 =

(𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 )′ at a time point 𝑡, where symbol “ ′ ” is the transpose of a vector, and any time interval between 

two consecutive time points is equal. After a sufficiently long time, all of states are converged into a compact 

manifold 𝒱. Denoting 𝒜 as the attractor contained in manifold 𝑉 with the box-counting dimension 𝑑, the delay 

embedding theorem indicates that only using observed long-term data of a single variable can topologically 

reconstruct the attractor 𝒱 of the original high-dimensional system when certain conditions are satisfied. The 

Takens’ embedding theorem is stated as follows1–3. 

If 𝒱 is an attractor with the box-counting dimension 𝑑, for a smooth diffeomorphism 𝜙:𝒱 → 𝒱 and a smooth 

function ℎ: 𝒱 → ℝ1, there is a generic property that the mapping 𝛷𝜙,ℎ: 𝒱 → ℝ𝐿 is an embedding when 𝐿 > 2𝑑, 

that is,  

𝛷𝜙,ℎ(𝑋) = (ℎ(𝑋), ℎ ∘  𝜙(𝑋), … , ℎ ∘ 𝜙
𝐿−1(𝑋))′. 

where symbol “ ∘ ” is the function composition operation. Generally, the dimension of the original system or the 

manifold 𝒱 is usually much larger than that of attractor 𝒜, i.e., 𝑛 ≫ 𝑑. In particular, letting 𝑋 = 𝐗𝑡  and ℎ(𝐗𝑡) =

𝑦𝑡 where 𝑦𝑡 ∈ ℝ1, then the mapping above has the following form with 𝛷𝜙,ℎ = 𝛷 and 

𝛷(𝐗𝑡) = (𝑦𝑡 , 𝑦𝑡+1, … , 𝑦𝑡+𝐿−1)′ = 𝐘𝑡 

which is used in the following primary STI equations (Supplementary Eq. (1) or main text Eq. (1)). Moreover, 

since the embedding is one-to-one mapping, we can derive its conjugate form 𝛹:ℝ𝐿 → ℝ𝑛 as 𝐗𝑡 = 𝛷−1(𝐘𝑡) =

𝛹(𝐘𝑡). Note that 𝐗𝑡  is 𝑛-dimensional variables here, but sometime it is used as 𝐷-dimensional variables (≤ 𝑛) in 

this work. 

 

Supplementary Note 2. Spatiotemporal information transformation (STI) 

equations 

The steady-state or the attractor is constrained in a low dimensional space for a high-dimensional system, which 

also holds for most real-world systems. By exploring such a low-dimensional feature, Spatiotemporal information 

(STI) transformation3–5 has theoretically been derived from the delay-embedding theory2, which can transform 
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spatial information of high-dimensional data to the temporal information of any target variable. Assuming 𝐿 >

2𝑑 > 0 where 𝑑 is the box-counting dimension of the attractor 𝒜 or manifold 𝒱, 𝐿 is the number of embeddings, 

the STI equations can be stated as Supplementary Eq. (1) or as follows at 𝑡 = 1, 2, … ,𝑚,  (𝑚 is the length of 𝑋) 

{
𝛷(𝐗𝑡) = 𝐘𝑡

𝐗𝑡 = 𝛹(𝐘𝑡)
                                                     (1) 

where 𝛷:ℝ𝐷 → ℝ𝐿 and 𝛹:ℝ𝐿 → ℝ𝐷 are differentiable functions satisfying 𝛷 ∘ 𝛹 = 𝑖𝑑, with symbol “ ∘ ” is the 

function composition operation, and 𝑖𝑑 represents the identity function. Here, note that 𝑋 is D dimensions (≤n). 

Clearly, the left-hand side of Supplementary Eq. (1) is the spatial information of D variables while the right-hand 

side is the temporal information of the target variable. The first equation is the primary form and the second 

equation is the conjugate form of the STI equations in Supplementary Eq. (1). 

Based on STI transformation, randomly distributed embedding (RDE) framework has been developed for 

one-step-ahead prediction from short-term high-dimensional time-series4, by separately constructing a large 

number of partial STI transformations. Furthermore, the multi-step-ahead prediction is also performed by using 

multi-layer neural network to represent only the primary STI equation5.  

 

Supplementary Note 3. ARNN algorithm 

Given a high-dimensional time series 𝐗𝑡 = (𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 )′𝑡=1,2,…,𝑚  with length m and dimension n, a to-be-

predicted target y is any variable among 𝑥1, 𝑥2, … , 𝑥𝑛. Based on the STI equations or Supplementary Eq. (1), the 

linearized STI equations and further ARNN-based STI equations can be derived, and are given in Eq. (2) and Eq. 

(3) in the Results and Methods of the main text, respectively. The ARNN (auto-reservoir neural network) model 

is also described in Fig. 1 of the main text and Supplementary Fig. 1. Note that there are many ways to solve the 

ARNN-based equation (i.e. main text Eq. (3)) based on the observed data 𝐗𝑡  or the given 𝐹(𝐗𝑡). We design one 

algorithm in this work. Specifically, as a computational algorithm, ARNN is carried out to uncover the future 

values {𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1} of 𝑦 with the following procedure. 

 The process of ARNN is iteratively to solve (𝐴,𝐵,𝑌) of ARNN-based STI equations (Supplementary Eqs. 

(3)-(5)), respectively, where (𝐴, 𝐵) are unknown parameters and   

𝑌 = (

𝑦1 𝑦2 ⋯ 𝑦𝑚

𝑦2 𝑦3 ⋯ 𝑦𝑚+1

⋮ ⋮ ⋱ ⋮
𝑦𝐿 𝑦𝐿+1 ⋯ 𝑦𝑚+𝐿−1

)

𝐿×𝑚

, 

which contains the unknown/future values {𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1} (in the shadow area) of the target variable.  

In the detailed procedure, we use the following notations:  

⚫ A time series of high-dimensional samples is denoted as (𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝐷
𝑡 )′𝑡=1,2,…,𝑚 with 𝐷 variables and 𝑚 

time points, i.e. the length of known series is 𝑚. Symbol “ ′ ” is the transpose of a vector. 

⚫ The to-be-predicted target 𝑦 = 𝑥𝑘  is any variable among 𝐷 variables 𝑥1, 𝑥2, … , 𝑥𝐷.  
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⚫ L is the predetermined prediction length, i.e. the future values  {𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1}  are to be 

uncovered. 

⚫ Neural network 𝐹 is randomly given.  

⚫ 𝑁 is the maximum iteration number. 

Step 1: Constructing the ARNN-based STI equations from the observed data.  Through the feed-forward 

neural network 𝐹, 𝐗𝑡  are transformed into 𝐷̃ variables 𝐹(𝐗𝑡) = (𝐹1(𝐗
𝑡), … , 𝐹𝐷̃(𝐗

𝑡) )′. Then we have the 

following ARNN-based STI equations: 

{

𝐴𝐿×𝐷̃[𝐹(𝐗
1) 𝐹(𝐗2) ⋯ 𝐹(𝐗𝑚)]𝐷̃×𝑚 = 𝑌𝐿×𝑚

𝐵𝐷̃×𝐿𝑌𝐿×𝑚 = [𝐹(𝐗1) 𝐹(𝐗2) ⋯ 𝐹(𝐗𝑚)]𝐷̃×𝑚

𝐴𝐿×𝐷̃𝐵𝐷̃×𝐿 = 𝐼𝐿×𝐿

    , (2) 

where 𝐼𝐿×𝐿 is the identity matrix. It should be noted that, Supplementary Eq. (2) is another form of main text Eq. 

(3). In Supplementary Eq. (2), all of 𝐗𝑡  or 𝐹(𝐗𝑡) are available, while the unknowns are 𝐴𝐿×𝐷̃, 𝐵𝐷̃×𝐿, and the future 

values of 𝑦, i.e., {𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1}.  In this step, the weights of the neural network or 𝐹 are randomly 

given, 𝐴𝐿×𝐷̃  and 𝐵𝐷̃×𝐿  are initially given as null matrices (to be updated in Steps 3 and 2 respectively), and 

{𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1} are initialized to be 0. 

Step 2: Updating matrix 𝑩 through a dropout scheme. A part of 𝑘 (𝑘 < 𝐷̃) variables 𝐹̃(𝐗𝑡) are randomly 

chosen from 𝐹(𝐗𝑡) = (𝐹1(𝐗
𝑡), … , 𝐹𝐷̃(𝐗

𝑡) )′ . Solve 𝐵̃𝑘×𝐿  with given 𝐴̃𝐿×𝑘  and 𝑌𝐿×𝑚  by the following 

equations 

{
𝐵̃𝑘×𝐿𝑌𝐿×𝑚 = [𝐹̃(𝐗1) 𝐹̃(𝐗2) ⋯ 𝐹̃(𝐗𝑚)]𝑘×𝑚

𝐴̃𝐿×𝑘𝐵̃𝑘×𝐿 = 𝐼𝐿×𝐿
   ,  (3) 

where 𝐴̃𝐿×𝑘 is a part of weight matrix 𝐴𝐿×𝐷̃, while 𝐵̃𝑘×𝐿  is a part of weight matrix 𝐵𝐷̃×𝐿. Then 𝐵𝐷̃×𝐿 is updated 

with the following rules: 

(1) If the original element 𝑏𝑖𝑗  is null, it is replaced directly by the corresponding solution 𝑏̃𝑖∗𝑗∗  of 

Supplementary Eq. (3);  

(2) If the element 𝑏𝑖𝑗  is not null, it is replaced by 
𝑏𝑖𝑗+𝑏̃𝑖∗𝑗∗

2
. Here, 𝑏𝑖𝑗  is the (𝑖, 𝑗)-element of matrix 𝐵, 𝑏̃𝑖∗𝑗∗ is 

the (𝑖∗, 𝑗∗)-element of matrix 𝐵̃. The updating rule is 

𝑏𝑖𝑗(𝑟 + 1) = {
𝑏̃𝑖∗𝑗∗ ,             𝑖𝑓 𝑏𝑖𝑗

𝑟   𝑖𝑠 𝑛𝑢𝑙𝑙

 
𝑏𝑖𝑗(𝑟)+𝑏̃𝑖∗𝑗∗

2
,    𝑖𝑓 𝑏𝑖𝑗

𝑟   𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙
  (4) 

where  𝑏𝑖𝑗(𝑟) is the value of 𝑏𝑖𝑗  after 𝑟 times of updating or iterations with 𝑟 = 0, 1, 2, … , 𝑁 − 1. The procedure 

of solving 𝑏̃𝑖∗𝑗∗ is shown in the below Supplementary Note 4. 

Step 3: Updating matrices 𝑨 and 𝒀. Given 𝐵𝐷̃×𝐿, based on the following Supplementary Eq. (5) 

{
𝐴̃𝐿×𝑘[𝐹̃(𝐗

1) 𝐹̃(𝐗2) ⋯ 𝐹̃(𝐗𝑚)]𝑘×𝑚 = 𝑌𝐿×𝑚

𝐴̃𝐿×𝑘𝐵̃𝑘×𝐿 = 𝐼𝐿×𝐿
   ,  (5) 
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𝐴𝐿×𝐷̃ = (𝑎𝑖𝑗)𝐷̃×𝐿 and the unknown part of 𝑌𝐿×𝑚 are solved as follows: 

𝐴𝐿×𝐷̃ ∙ [𝐹(𝑋)|𝐵𝐷̃×𝐿] = [𝑌𝐿×𝑚|𝐼𝐿×𝐿],    (6) 

where [𝐹(𝑋)|𝐵𝐷̃×𝐿] and [𝑌𝐿×𝑚|𝐼𝐿×𝐿] are augmented matrices. 

Step 4: Checking the convergence. The convergence condition of the algorithm is 

∥ 𝐘𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑟 + 1) − 𝐘𝑢𝑛𝑘𝑛𝑜𝑤𝑛(𝑟) ∥L< 𝜀,   (7) 

where vector 𝐘𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = (𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1)′, 𝜀 is a small positive number, 𝑟 is the iteration number, and 

∥∙∥L is the L2-norm. 

Go to Step 2 for updating matrix   𝐵 = (𝑏𝑖𝑗)𝐷̃×𝐿 in next iteration if the convergence condition is not satisfied. 

After a sufficiently large number of such iterations, if the convergence condition is satisfied, then matrices 

(𝐴𝐿×𝐷̃, 𝐵𝐷̃×𝐿) as well as the unknown part of 𝑌𝐿×𝑚 are determined and go to Step 5 for output.  

Step 5: Output of the future values of 𝒚 . The unknown future values of the target variable 𝑦 , i.e., 

{𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑚+𝐿−1}, are obtained from the converged result of Step 3. 

 

Supplementary Note 4. The detailed procedure of solving 𝒃̃𝒊∗𝒋∗           

The first equation of Supplementary Eq. (3) is equivalent to the following matrix equation 

(

 

𝑏̃11 𝑏̃12 ⋯ 𝑏̃1𝐿
𝑏̃21 𝑏̃22 ⋯ 𝑏̃2𝐿
⋮ ⋮ ⋱ ⋮
𝑏̃𝑘1 𝑏̃𝑘2 ⋯ 𝑏̃𝑘𝐿)

 

𝑘×𝐿

(

𝑦1 𝑦2 ⋯ 𝑦𝑚

𝑦2 𝑦3 ⋯ 𝑦𝑚+1

⋮ ⋮ ⋱ ⋮
𝑦𝐿 𝑦𝐿+1 ⋯ 𝑦𝑚+𝐿−1

)

𝐿×𝑚

=

(

 

𝐹̃1(𝐗
1) 𝐹̃1(𝐗

2) ⋯ 𝐹̃1(𝐗
𝑚)

𝐹̃2(𝐗
1) 𝐹̃2(𝐗

2) ⋯ 𝐹̃2(𝐗
𝑚)

⋮ ⋮ ⋱ ⋮
𝐹̃𝑘(𝐗

1) 𝐹̃𝑘(𝐗
2) ⋯ 𝐹̃𝑘(𝐗

𝑚))

 

𝑘×𝑚

. (8) 

Supplementary Eq. (8) is expanded as the following equation sets, 

{
 
 
 
 

 
 
 
 

  

𝑏̃𝑠1𝑦
1 + 𝑏̃𝑠2𝑦

2 +⋯+ 𝑏̃𝑠𝐿𝑦
𝐿 = 𝐹̃𝑠(𝐗

1)

𝑏̃𝑠1𝑦
2 + 𝑏̃𝑠2𝑦

3 +⋯+ 𝑏̃𝑠𝐿𝑦
𝐿+1 = 𝐹̃𝑠(𝐗

2)

⋮

𝑏̃𝑠1𝑦
𝑚−𝐿+1 + 𝑏̃𝑠2𝑦

𝑚−𝐿+2 +⋯+ 𝑏̃𝑠𝐿𝑦
𝑚 = 𝐹̃𝑠(𝐗

𝑚−𝐿+1)

𝑏̃𝑠1𝑦
𝑚−𝐿+2 + 𝑏̃𝑠2𝑦

𝑚−𝐿+3 +⋯+ 𝑏̃𝑠,𝐿−1𝑦
𝑚 + 𝑏̃𝑠𝐿𝑦

𝑚+1 = 𝐹̃𝑠(𝐗
𝑚−𝐿+2)

⋮

𝑏̃𝑠1𝑦
𝑚 + 𝑏̃𝑠2𝑦

𝑚+1 +⋯+ 𝑏̃𝑠𝐿𝑦
𝑚+𝐿−1 = 𝐹̃𝑠(𝐗

𝑚)

, 𝑠 = 1,2, … , 𝑘.          (9) 

Notice that {𝑦1, 𝑦2, … , 𝑦𝑚} are known series. For each 𝑠, the first 𝑚 − 𝐿 + 1 equations of Supplementary Eq. (9) 

contain 𝐿 unknowns. When 2𝐿 − 1 ≤ 𝑚, the number of unknowns is less than or equal to that of equations. 

Therefore, the elements 𝑏̃𝑖∗𝑗∗ can be solved from the first 𝑚 − 𝐿 + 1 equations.  
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Supplementary Note 5. Computational complexity of ARNN 

Compared with the neural network method, ARNN takes much less time and computing resources in decoding 

the intertwined information among massive variables of a complex system, for the future value prediction of the 

target variable. The LSTM network, a famous artificial neural network, is widely used in the field of time series 

analysis, and is thus selected as a representative method for the time cost comparison. Based on multivariate 

tuning, the LSTM leverages its periodicity for iteration. First, we denote that the size of the training data is 𝑁. 

Because the operation of obtaining the periodic value only goes through one iteration, its time complexity is 𝑂(𝑁). 

Assume that there are 𝑛1 iterations in the iterative tuning part, each of which generates an LSTM network. For 

each LSTM network, suppose that it has 𝑛2 iterations. Then, a sequence in each iteration has a length of 𝑚, and 

the size of the input data is 𝐷 . The process of calculating the hidden states of the input data and forward 

propagation has a time complexity of 𝑚 ⋅ 𝐷 . Then, the adjustment of coefficients according to the Adam 

algorithm6 has a time complexity of 𝑚 ⋅ 1. Thus, the computational complexity of going through an 𝑚-long 

sequence is 𝑚 ⋅ (𝐷 + 1). Lastly, because there are 𝑛2 iterations within which the number of 𝑚-long sequences is 

⌈
𝑁

𝑚
⌉, the computational complexity of training an LSTM network7 is 𝑂 (𝑚 ∙ (𝐷 + 1) ∙ ⌈

𝑁

𝑚
⌉ ∙ 𝑛2) = 𝑂(𝑛2 ∙ 𝑁 ∙ 𝐷). 

In conclusion, for the overall training with 𝑛1 iterations, the total time complexity is  𝑂(𝑁) + 𝑛1 · 𝑂(𝑛2  ·  𝑁 ·

 𝐷)  =  𝑂(𝑁 +  𝑛1  ·  𝑛2  ·  𝑁 ·  𝐷). In the multi-step-ahead prediction, since the predicted length is 𝐿 − 1, the 

final computational complexity of LSTM is 𝑂(𝐿(𝑁 +  𝑛1  ·  𝑛2  ·  𝑁 ·  𝐷 + 𝑠1
3)) if there are 𝑠1 neurons in LSTM. 

On the other hand, given the weights (𝑊𝑖𝑛 and 𝑊) of the neural network in ARNN, the time complexity of 

the processing of reservoir converting is 𝑂(𝑠2
3) if there are 𝑠2 neurons in the neural network. A dropout scheme 

with 𝑛  iterations is deployed in solving the weight matrix 𝐵𝐷̃×𝐿 . In each iteration, 𝑘 (𝑘 < 𝐷̃ ) variables are 

selected, and the time complexity of solving the equations to obtain temporary submatrices of 𝐴𝐿×𝐷̃, 𝐵𝐷̃×𝐿 and 

𝑌𝐿×𝑚  is 𝑂(2𝑘(
2

3
𝐿3 + 2𝐿2)) , as the computational complexity to solve the indeterminate linear equations is 

O(
2

3
𝐿3 + 2𝐿2) if there are 𝐿 coefficients to be solved in the equations. Therefore, the total time cost of 𝑛 iteration 

is 𝑂(2𝑘𝑛 (
2

3
𝐿3 + 2𝐿2)). Finally, the total computational complexity of ARNN is 𝑂(2𝑘𝑛 (

2

3
𝐿3 + 2𝐿2) + 𝑠2

3).  

For the prediction of short-term data, the length of the training input and that of the predicted sequence are 

much shorter than the dimension of the input and the total number of iterations, i.e., 𝐿 ≪ 𝐷̃, 𝐿 ≪ 𝐷, 𝐿 ≪ 𝑛, 𝐿 ≪

𝑛1, and 𝐿 ≪ 𝑛2. Therefore, time complexity (TC) is  

TC(ARNN) = O(2𝑘𝑛 (
2

3
𝐿3 + 2𝐿2) + 𝑠2

3) ≈ 𝑂(𝑘𝑛𝐿3 + 𝑠2
3) = 𝑂(𝐿 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝐿 ⋅ 𝐿 + 𝑠2

3), 

TC(𝐿𝑆𝑇𝑀) = 𝑂((𝐿(𝑁 + 𝑛1  ·  𝑛2  ·  𝑁 ·  𝐷) + 𝑠1
3) ≈ 𝑂(𝐿𝑛1𝑛2𝑁𝐷 + 𝑠1

3) = 𝑂(𝐿 ⋅ 𝑛1  ⋅ 𝐷 ⋅ 𝑁 ⋅ 𝑛2 + 𝑠1
3). 

Here 𝑛1, 𝑛2,  𝑛 denote the iteration numbers that are of the same TC order in the above algorithms with 𝐷 > 𝑘. 

Additionally, 𝐿 in ARNN is the step length of the prediction, which is always a short series and much smaller than 

the training size 𝑁 in LSTM or iteration number 𝑛2, i.e., 𝐿 ≪ 𝑁, 𝐿 ≪ 𝑛2. In particular, it is generally considered 

that the time complexity of 𝑂(𝑠1
3)  and that of 𝑂(𝑠2

3)  are of the same order. Therefore, we obtain 
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𝑂(𝐿 ⋅ 𝑛 ⋅ 𝑘 ⋅ 𝐿 ⋅ 𝐿 + 𝑠2
3) ≪  𝑂(𝐿 ⋅ 𝑛1  ⋅ 𝐷 ⋅ 𝑁 ⋅ 𝑛2 + 𝑠1

3) , which means that the time complexity of ARNN is 

smaller than that of LSTM. 

 

Supplementary Note 6. Datasets used in this study 

6.1. Coupled Lorenz system  

To validate the effectiveness of ARNN in capturing the dynamics of a high-dimensional nonlinear system, we 

consider a 90D coupled Lorentz system8. The ith (𝑖 = 1,2, … , 30) coupled subsystem is given by   

{

𝑥𝑖̇ = 𝜎(𝑡)(𝑦𝑖 − 𝑥𝑖) + 𝐶𝑥𝑖−1

𝑦𝑖̇ = 𝜌𝑥𝑖 − 𝑦𝑖 − 𝑥𝑖𝑧𝑖

𝑧𝑖̇ = −𝛽𝑧𝑖 + 𝑥𝑖𝑦𝑖

.     (10) 

The coupling term 𝐶𝑥𝑖−1  represents that the ith subsystem is coupled with the (𝑖 − 1) th subsystem via 𝑥 

component. When 𝑖 = 1, we set 𝑖 − 1 as 30 so that the system could be closed. We set 𝜌, 𝛽 and 𝐶 to be typical 

values, i.e., 𝜌 = 28, 𝛽 = 83, 𝐶 = 0.1.  

It should be noted that in Supplementary Eq. (10) when 𝜎(𝑡) ≡ 10, Supplementary Eq. (10) is an ordinary 

Lorenz System (time-invariant system), which was used in Figs. 2a-2i of the main text, Supplementary Figs. 3-5 

and Supplementary Table 1. When time-switch parameter 𝜎(𝑡) = 10 + 0.2(𝑡|10) is a time-varying parameter 

with its value 𝜎(𝑡) being initially set to be 10 and increased by 0.2 after each ten-time intervals, Supplementary 

Eq. (10) is a time-switching Lorenz System, which was used in Figs. 2j, 2k and 2l of the main text. 

When generating the dataset, we set the initial values of {𝑥𝑖(0), 𝑦𝑖(0), 𝑧𝑖(0)}𝑖=1,2,…,30 as 0.1 and the time 

interval ∆𝑡 as 0.02. Data was collected after transient dynamics. In application, we select different sets of known 

series, i.e. 15 and 50 points as known data respectively, and then make the predictions (Supplementary Fig. 5 and 

Supplementary Table 1). Note that ARNN only uses the generated time-course datasets generated from 

Supplementary Eq. (10) to predict the time evolution as illustration examples, without using Supplementary Eq. 

(10). 

 

6.2. Wind speed dataset 

The wind speed dataset, which is provided by the Japan Meteorological Business Support Center, contains the 

wind speed (m/s) time series sampled every ∆𝑡 = 10 minutes between 2010 and 2012 from 𝐷 = 155 wind 

stations (variables) in Wakkanai, Japan9. As for the 155 stations, their specific locations (latitude and longitude) 

can be found in the original dataset file 201606241049longitudelatitude.mat accessible in 

https://github.com/RPcb/ARNN/tree/master/Data/wind%20speed. We use 𝑚 = 110 time points as the known 

series and make predictions on the next 𝐿 − 1 = 45 time points. As shown in Figs. 3a-3b of the main text, the 

performance of ARNN is better than the other methods. Besides, utilizing this dataset, we tested the robustness 

of ARNN with different prediction steps in Figs. 3c-3e of the main text, which proved the effectiveness of ARNN 

in any time region. 

https://github.com/RPcb/ARNN/tree/master/Data/wind%20speed
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6.3. Solar irradiance dataset 

The solar irradiance dataset, which is available via the Japan Meteorological Business Support Center, contains 

the time series of solar irradiance strength sampled every  ∆𝑡 = 10 minutes between 2010 and 2012 from 𝐷 =

155 wind stations (variables) in Wakkanai, Japan9. We use 𝑚 = 300 time points as the observable data and make 

predictions on the next 𝐿 − 1 = 140 time points. As shown in Fig. 4a and Table 1, ARNN predicts the solar 

irradiance.  

 

6.4. Ground meteorology dataset  

The ground meteorological dataset contains the one-hour-peak set and can be downloaded in website 

https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection. The data were collected from 1998 to 2004 at the 

Houston, Galveston and Brazoria area10. The dataset contains 𝐷 = 72 variables recorded every 1 hour. Because 

there are missing values, the mean of neighbor values was employed to fill the missing values. We use 𝑚 = 60 

time points as known series and make predictions on the next 𝐿 − 1 = 25 time points. As shown in Figs. 4b-4c, 

ARNN predicts the trends accurately (Table 1 of the main text). 

 

6.5. Satellite cloud image dataset  

This dataset contains satellite cloud images collected by National Institute of Informatics and we select the 

typhoon Marcus to predict (http://agora.ex.nii.ac.jp/digital-typhoon, 2019). The dataset is composed of a series of 

241 cloud images (𝐷 = 2402 variables) from 2018-3-15 to 2018-3-24 with one image taken per hour. The known 

series was set as 𝑚 = 50 time points/images. Then ARNN predicted the typhoon center for the next 𝐿 − 1 = 21  

time points. As shown in Table 1 and Fig. 4d, ARNN predicts the route of typhoon center accurately. The exact 

positions of the predicted typhoon center, i.e., the latitude and longitude of central position, were provided in 

Supplementary Fig. 8. A movie of the dynamical change of the typhoon center is provided in the following link: 

https://github.com/RPcb/ARNN 

 

6.6. Gene expression dataset of rats  

This dataset is composed of the gene expression profiles with Affymetrix microarray measured on the laboratory 

rat (Rattus norvegicus) cultured cells from SCN, which consists of the expression of 31,099 genes11. At the 

timepoint of 18h, the phase reset stimulus by drug forskolin was applied. The expressions of six genes (Nr1d1, 

Arntl, Pfkm, RGD72, Per2 and Cry1), which are related to circadian rhythm, are predicted. We use the first 𝑚 =

16 time points as the known series and make predictions for the next 𝐿 − 1 = 6  time points. 

Because the total 31,099 genes are not necessarily sharing the same attractor (biologically not all genes are 

in the same functional pathway), i.e., they are not necessarily intertwined. To make sure the one-to-one map exists, 

for each circadian rhythm-related gene, a set of 𝐷 = 84  most related genes were selected to carry out the 

prediction. As shown in Fig. 5a of the main text, compared with other methods, ARNN works well (Table 1 of 

the main text) on the prediction of gene expressions, which demonstrates the effectiveness of ARNN in 

transforming high-dimensional spatial information to the temporal information of target genes.  

https://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
http://agora.ex.nii.ac.jp/digital-typhoon
https://github.com/RPcb/ARNN
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6.7. Stock index dataset of the Shanghai Stock Exchange 

The dataset of B-share Index of the Shanghai Stock Exchange is collected from totally 𝐷 = 1130 stock indices 

(variables) with an interval of 1 day except Saturday and Sunday from 2018-05-01 to 2018-11-22, available via 

https://www.ricequant.com/doc/api/index/china. Each stock index is a relative number of stock price statistics that 

measure and reflect the overall price of the stock market and its changing trend. A representative stock index: the 

Shanghai Stock Exchange B-share Index was selected to predict. A series of 𝑚 = 50 time points were set as the 

known series, while the future states at 𝐿 − 1 = 20 time points were predicted. As shown in Fig. 5b and Table 1 

of the main text, ARNN predicts the dynamic trends of one target index.  

 

6.8. Hongkong cardiovascular inpatients dataset 

This dataset contains several time series, including the indices series of air pollutants and the number series of 

cardiovascular inpatients in major hospitals in Hongkong12. Under the assumption that some of the cardiovascular 

inpatients were caused by the air pollutants, the ARNN was applied to forecast the inpatient numbers. Considering 

the delay effect of every potential factor as well as a dummy vector of weekday effect13 we have a 𝐷 = 48 

dimensional system. A series of 𝑚 = 130 time points were set as the known series, while the future states at 𝐿 −

1 = 60 time points were predicted. Based on the daily concentrations of nitrogen dioxide (NO2), sulphur dioxide 

(SO2), ozone (O3), respirable suspended particulate (Rspar), mean daily temperature and relative humidity which 

were obtained from air monitoring stations in Hong Kong from 1994 to 1997, the ARNN method helps to 

predicted the short-term dynamical trend of the daily cardiovascular disease admissions (Fig. 5c of the main text). 

 

6.9. Traffic speed dataset of Los Angeles County 

This dataset contains the traffic speed collected from 𝐷 = 207 loop detectors (variables) in the 134-highway of 

the Los Angeles County from 2012-03-01 to 2012-06-3014. ARNN uses the data at 𝑚 = 80 time points, in four 

locations respectively and makes the predictions for the next 𝐿 − 1 = 30 time points. As shown in Fig. 6 and 

Table 1 of the main text, ARNN predicts the traffic flow accurately. The movie of traffic speed is attached to the 

following link: https://github.com/RPcb/ARNN 

 

6.10. MNIST dataset 

To illustrate that the proposed framework is also capable in predicting spatial information, ARNN has also been 

applied to the handwriting digits 0-9 from the digit database MNIST. It is seen that the ARNN performs well in 

predicting the numbers (Supplementary Fig. 9). Each handwriting digit is originally demonstrated in 28×28 grids. 

In order to apply the ARNN, the spatial information of each image is converted to a 28-dimensional time series, 

that is, input an image column by column, with 28 being as the size of each input vector. For each prediction, the 

length of known pixels (input) is 5, while the length of predicting pixels is 2, i.e., 2 steps ahead. The satisfactory 

performance of ARNN shows the effectiveness of our method for the spatiotemporal pattern prediction.  

 

https://www.ricequant.com/doc/api/index/china
https://github.com/RPcb/ARNN
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Supplementary Note 7. Methods for comparison 

In this study, we compared the performance of ARNN with that of the following methods.  

 

7.1. Traditional Reservoir computing (tRC) 

Traditional Reservoir Computing (tRC) is a unified computational framework15,16, derived from independently 

proposed RNN models, such as echo state network (ESN)17 and liquid state machine (LSM)18. Generally, ESN is 

the most studied RC framework. 

ESN uses an RNN-based reservoir consisting of discrete-time artificial neurons. When the feedback from 

the output to the reservoir is absent, the time evolution of the neuronal states in the reservoir is described as 

follows17:                                           

𝐫𝑡 = 𝑓(𝑊𝑖𝑛𝐗𝑡 +𝑊𝐫𝑡−1),     (11) 

where 𝑡 denotes the discrete time, 𝐫𝑡 is the state vector of the reservoir units, 𝐗𝑡  is the input vector, 𝑊𝑖𝑛 is the 

weight matrix for the input-reservoir connections, and 𝑊 is the weight matrix for the recurrent connections in the 

reservoir. In reservoir computing, both 𝑊𝑖𝑛 and 𝑊 are randomly given or fixed. The functions 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛) 

represents element-wise activation functions of the reservoir units, each of which is typically a sigmoid-type 

activation function. Supplementary Eq. (11) represents a non-autonomous dynamical system forced by the 

external input 𝐗𝑡 . The output is often given by a linear combination of the neuronal states as follows:  

𝐘𝑡 = 𝑊𝑜𝑢𝑡𝐫𝑡,      (12) 

where 𝐘𝑡  is the output vector and 𝑊𝑜𝑢𝑡 is the weight matrix in the readout. In supervised learning, this weight 

matrix is trained to minimize the difference between the network output and the desired output for a certain time 

period. The performance of the ESN depends on the design of the RNN-based reservoir. 

 

7.2. Autoregressive model (AR) 

An autoregressive (AR) model is a time-series model that uses observations from previous time steps as input to 

a regression equation to predict the value at the next time step19. For example, calculating 𝑦𝑡  from 𝑦𝑡−1: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦
𝑡−1 + 𝜖𝑡 .     (13) 

In this regression model Supplementary Eq. (13), the response variable 𝑦𝑡−1 in the previous time period has 

become the predictor and the errors 𝜖𝑡 have the usual assumptions about errors in a simple linear regression model. 

The order of an autoregression is the number of immediately preceding values in the series that are used to predict 

the value at the present time 𝑡. Here, Supplementary Eq. (13) is a first-order regression model. The multiple-order 

model used in the comparison is as the following Supplementary Eq. (14). 

𝑦𝑡 = 𝛽0 + 𝛽1𝑦
𝑡−1 + 𝛽2𝑦

𝑡−2 +⋯+ 𝜖𝑡 .   (14) 
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7.3. Long short-term memory network (LSTM) 

Long short-term memory network (LSTM) is an artificial recurrent neural network (RNN) architecture used in 

the field of deep learning20. A common LSTM unit is composed of a cell, an input gate, an output gate and a forget 

gate. The cell remembers values over arbitrary time intervals and the three gates regulate the flow of information 

into and out of the cell. An RNN using LSTM units can be trained in a supervised manner, on a set of training 

sequences, using an optimization algorithm, like gradient descent, combined with backpropagation through time 

to compute the gradients needed during the optimization process, in order to change each weight of the LSTM 

network in proportion to the derivative of the error (at the output layer of the LSTM network) with respect to 

corresponding weight. 

 

7.4. Autoregressive integrated moving average (ARIMA) 

AutoRegressive Integrated Moving Average (ARIMA) models21 are typically expressed like “ARIMA 

(𝑝, 𝑈, 𝑞)”, with the three terms 𝑝, 𝑈, and 𝑞 defined as follows: 

• 𝑝 means the number of preceding (“lagged”) S values that have to be added/subtracted to S in the 

model, so as to make better predictions based on local periods of growth/decline in our data. This 

captures the “autoregressive” nature of ARIMA. 

• 𝑈 represents the number of times that the data have to be “differenced” to produce a stationary signal 

(i.e., a signal that has a constant mean over time). This captures the “integrated” nature of ARIMA.  

• 𝑞 represents the number of preceding/lagged values for the error term that are added/subtracted to S. 

This captures the “moving average” part of ARIMA. 

 

7.5. Support vector regression (SVR) 

Support vector regression (SVR) uses the supporting vector machine to fit curves and perform regression 

analysis22. It is a multi-variable method and the function used to predict new values is  

𝑓(𝑥) = ∑ (𝛼𝑛 − 𝛼𝑛
∗)𝐺(𝑥𝑛 , 𝑥) + 𝑏

𝑁
𝑛=1 , 

where 𝑥𝑛 is a multivariable set of N observations with observed values 𝑥 and 𝐺(𝑥𝑛 , 𝑥) = 𝑒
−|𝑥𝑛−𝑥|

2
. 

 

7.6. Radial basis function network (RBF) 

A radial basis function network (RBF) is an artificial neural network that uses radial basis functions as activation 

functions23. The main feature of these functions is that their response decreases, or increases, monotonically with 

distance from a central point. The output of the network is a linear combination of radial basis functions of the 

inputs and neuron parameters. 

 

7.7. Single-variable embedding (SVE) 

Single Variable Embedding (SVE) is a forecast model which is based on the weighted average of the nearest 

neighbors in a single view24.  The prediction is based on the trend of delay coordinates and only the time series of 

the target variable is used to make the predictions. 

https://en.wikipedia.org/wiki/Radial_basis_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Linear_combination
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7.8. Multiview embedding (MVE) 

Multiview embedding (MVE) examines the top k reconstructions, and uses the single nearest neighbor from each25. 

The MVE forecast (e.g., for variable y) is then defined as a simple average 

𝑦̂𝑡+1 = 
1

𝑘
 ∑𝑦𝑛𝑛𝑖(𝑡)+1

𝑘

𝑖=1

 

where 𝑛𝑛𝑖(𝑡) is the time index of the nearest neighbor in the i-th attractor. MVE is intended to mitigate prediction 

errors that occur when nearest neighbors are misidentified or inaccurately weighted based on distance. 

 

7.9. Linear method (Linear) 

The linear method of the linearized STI equations (Eq. (2) of the main text) as follows 

{
𝐴𝐗𝑡 = 𝐘𝑡 ,

𝐗𝑡 = 𝐵𝐘𝑡 ,
       

where 𝐴𝐵 = 𝐼, 𝐴 and 𝐵 are 𝐿 × 𝐷 and 𝐷 × 𝐿 matrices, respectively, and 𝐼 represents an 𝐿 × 𝐿 identity matrix. 

Clearly, the linearized STI equation is of the same structure of ARNN (Eq. (3) of the main text) except the 

reservoir/nonlinear part. 
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