Online Resources

Co-expression of C9orf72 related Dipeptide-repeats over 1000 repeat units reveals age- and combination-specific phenotypic profiles in *Drosophila*

Acta Neuropathologica Communications

Ryan J.H. West^{1,2,5}^{†,} Joanne L. Sharpe^{3,5}, André Voelzmann⁴, Anna L. Munro³, Ines

Hahn⁴, Richard A. Baines³ and Stuart Pickering-Brown³

¹ Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK.

² Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK

³ Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, UK

⁴ Division of Molecular & Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, UK

⁵ Authors contributed equally

r.j.west@sheffield.ac.uk

Online Resource 1. Full Genotype List For Each Figure

Figure 1a

;; UAS-AP1000¹/Tm6b (Undriven Stock) ;; UAS-AP1000²/Tm6b (Undriven Stock) ;; UAS-GA1000¹/Tm6b (Undriven Stock) ;; UAS-GA1000²/Tm6b (Undriven Stock) ;; UAS-PR1000¹/Tm6b (Undriven Stock) ;; UAS-GR1000²/Tm6b (Undriven Stock) ;; UAS-GR1000²/Tm6b (Undriven Stock) ;; UAS-GR1000²/Tm6b (Undriven Stock) ;; UAS-GR1000²/Tm6b (Undriven Stock) Wild-type (Canton S, w¹¹¹⁸ outcross)

Figure 1b

;;nsyb-gal4/UAS-AP1000¹ ;;nsyb-gal4/UAS-GA1000¹ ;;nsyb-gal4/UAS-PR1000¹ ;;nsyb-gal4/UAS-GR1000¹ ;;nsyb-gal4/UAS-mCD8-GFP Wild-type (Canton S, w¹¹¹⁸ outcross)

Figure 2a-b

;;nsyb-gal4/UAS-AP1000¹ ;;nsyb-gal4/UAS-AP1000² ;;nsyb-gal4/UAS-GA1000¹ ;;nsyb-gal4/UAS-GA1000² ;;nsyb-gal4/UAS-PR1000¹ ;;nsyb-gal4/UAS-GR1000² ;;nsyb-gal4/UAS-GR1000² ;;nsyb-gal4/UAS-GR1000² ;;nsyb-gal4/UAS-mCD8-GFP ;;nsyb-gal4/Tm6b (undriven siblings of each cross)

Figure 2c,3,5,6,7,8.

;;nsyb-gal4/UAS-AP1000¹ ;;nsyb-gal4/UAS-GA1000¹ ;;nsyb-gal4/UAS-PR1000¹ ;;nsyb-gal4/UAS-GR1000¹ ;;nsyb-gal4/UAS-mCD8-GFP Wild-type (Canton S, w¹¹¹⁸ outcross)

Figure 4

;OK6-gal4/+; UAS-mCD8-GFP/+ ;OK6-gal4/+;UAS-AP1000¹/+ ;OK6-gal4/+;UAS-GA1000¹/+ ;OK6-gal4/+;UAS-PR1000¹/+ ;OK6-gal4/+;UAS-GR1000¹/+

Figure 9.

```
;GMR-gal4/+;UAS-AP1000<sup>1</sup>/+
;GMR-gal4/+;UAS-GA1000<sup>1</sup>/+
;GMR-gal4/+;UAS-PR1000<sup>1</sup>/+
:GMR-gal4/+;UAS-GR1000<sup>1</sup>/+
;GMR-gal4/+;UAS-AP10001/ mCD8-GFP
;GMR-gal4/+;UAS-GA1000<sup>1</sup>/ mCD8-GFP
;GMR-gal4/+;UAS-PR1000<sup>1</sup>/ mCD8-GFP
;GMR-gal4/+;UAS-GR10001/ mCD8-GFP
:GMR-gal4/+;UAS-AP10001/ UAS-AP10001
;GMR-gal4/+;UAS-GA10001/ UAS-GA10001
;GMR-gal4/+;UAS-PR10001/ UAS-PR10001
:GMR-gal4/+:UAS-GR10001/ UAS-GR10001
;GMR-gal4/+;UAS-AP10001/ UAS-GA10001
;GMR-gal4/+;UAS-AP10001/ UAS-PR10001
;GMR-gal4/+;UAS-AP10001/ UAS-GR10001
;GMR-gal4/+;UAS-GA1000<sup>1</sup>/ UAS-PR1000<sup>1</sup>
;GMR-gal4/+;UAS-GA10001/ UAS-GR10001
;GMR-gal4/+;UAS-PR10001/ UAS-GR10001
```

Figure 10.

Wild-type (Canton S, w¹¹¹⁸ outcross) ; nsyb-gal4/+; UAS-AP10001/ UAS-AP10001 nsyb-gal4/+; UAS-AP1000¹/ UAS-GA1000¹ nsyb-gal4/+; UAS-AP1000¹/ UAS-PR1000¹ ; nsyb-gal4/+; UAS-AP1000¹/ UAS-GR1000¹ nsvb-gal4/+: UAS-GA1000¹/ UAS-GA1000¹ nsyb-gal4/+; UAS-GA1000¹/ UAS-AP1000¹ nsyb-gal4/+; UAS-GA1000¹/ UAS-PR1000¹ nsyb-gal4/+; UAS-GA1000¹/ UAS-GR1000¹ nsyb-gal4/+; UAS-PR1000¹/ UAS-PR1000¹ nsyb-gal4/+; UAS-PR1000¹/ UAS-AP1000¹ nsyb-gal4/+; UAS-PR1000¹/ UAS-GA1000¹ nsyb-gal4/+; UAS-PR10001/ UAS-GR10001 ; nsyb-gal4/+; UAS-GR1000¹/ UAS-GR1000¹ nsyb-gal4/+; UAS-GR1000¹/ UAS-AP1000¹ ; nsyb-gal4/+; UAS-GR1000¹/ UAS-GA1000¹ ; nsyb-gal4/+; UAS-GR10001/ UAS-PR10001

AP

gaattcggatgtagaccATG[GCCCCTGCTCCTGCCCCTGCGCCGGCTCCAGCTCCAGCGCCTGCACCAG CCCCTGCTCCTGCACCAGCACCAGCACCGGCGCCAGCTCCAGCACCAGCACCCGCTCCTGCTCCTGCTCC CGCTCCAGCACCAGCGCCTGCTCCTGCTCCGGCCCCAGCTCCTGCTCCAGCGCCCGCGCCCGGCCCGGCC CCAGCACCGGCCCCAGCTCCGqcccCTGCTCCTGCCCCTGCGCCGGCTCCAGCGCCTGCACCAG CCCCTGCTCCTGCACCAGCACCAGCACCGGCGCCAGCTCCAGCACCAGCACCCGCTCCTGCTCCTGCTCC CGCTCCAGCACCAGCGCCTGCTCCTGCTCCGGCCCCAGCTCCTGCTCCAGCGCCCGGCCCGGCCCGGCC CCAGCACCGGCCCCAGCTCCGGCCCCT]gtcttcCAAcgggatccaccggtcgccaccatggtgagcaag ggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagt tcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccac cggcaagetgeeegtgeeetggeeeacetegtgaeeacetgaeetaeggegtgeagtgetteageege taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgca $\verb|ccatcttcttcaaggacgacggcaactacaagacccgcgcgaggtgaagttcgagggcgacaccctggt||$ gaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtac aactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaaga tccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgag aagcgcgatcacatggtcctgctggagttcgtgaccgccgcgggatcactctcggcatggacgagctgtacaagtaaagcggccgcgactctaga

GA

gaattcggatgtagaccATG[GGTGCTGGCGCGGGAGCAGGCGCTGGTGCTGGTGCAGGAGCGGGTGCGG GAGCTGGTGCCGGCGCAGGAGCTGGAGCTGGCGCAGGAGCTGGTGCTGGGGGCTGGTGCCGGTGCCGGTGC TGGAGCTGGAGCAGGAGCAGGCGCGGGGGGGGGGCCGGAGCGGGTGCTGGTGCTGGAGCGGGGA GAGCTGGTGCCGGCGCAGGAGCTGGAGCTGGCGCAGGAGCTGGTGCCGGGGCTGGCGGTGCCGGTGC TGGAGCTGGAGCAGGAGCAGGCGCGGGGGGGGGGCCGGAGCGGGTGCTGGTGCTGGAGCGGGGA GCGGGCGCTGGAGCCGGCGCCGGTGCT]gtcttccaacgggatccaccggtcgccaccatggtgagcaag ggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagt tcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccac cggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgc taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgca $\verb|ccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggt||$ gaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtac aactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaaga tccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgag aagegegateacatggteetgetggagttegtgaeegeeggegggateaeteteggeatggaegagetgt acaagtaaagcggccgcgactctaga

PR

gaattcggatgtagaccATG[CCGCGACCTCGACCGCGGCCACGCCCACGCCCTCGGCCCAGACCACGTC CTAGGCCCAGACCCAGACCCAGGCCTAGACCTAGACCCCGGCCTAGACCCCGTCCTCGTCCTCGTCCAAG ACCAAGGCCGAGGCCACGCCCTAGGCCCCGTCCACGGCCTCGACCTCGTCCACGACCCAGACCCCGACCT CGCCCAAGGCCAAGACCACGCCGCGCGACCTCGACCGCGGCCACGCCCACGCCCTCGGCCCAGACCACGTC CTAGGCCCAGACCCAGACCCAGGCCTAGACCCCGGCCTAGACCCCGTCCTCGTCCTCGTCCAAG ACCAAGGCCGAGGCCACGCCCTAGGCCCCGTCCACGGCCTCGACCTCGTCCACGACCCAGACCCCGACCT CGCCCAAGGCCAAGACCACGCCCGCGA]gtcttccaacgggatccaccggtcgccaccatggtgagcaag ggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagt tcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccac cggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgc taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgca ccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggt gaaccqcatcqaqctqaaqqqcatcqacttcaaqqaqqacqqcaacatcctqqqqqcacaaqctqqaqtac aactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaaga tccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgag aagegegateacatggteetgetggagttegtgaeegeegeegggateaeteteggeatggaeggetgt acaagtaaagcggccgcgactctaga

GR

gaattcggatgtagaccATG[GGCAGAGGACGCGGTCGGGGGCGAGGAAGAGGACGGGGTAGAGGGCGAG GTCGCGGCCGTGGTAGAGGCAGAGGTCGTGGGAGAGGCAGGGGTCGCGGACGTGGACGGGGAAGGGGACG CGAGGCCGAGGACGAGGACGCGGCAGAGGACGCGGTCGGGGACGAGGACGAGGGCGGGGTAGAGGGCGAG GTCGCGGCCGTGGTAGAGGCAGAGGTCGTGGGAGAGGCAGGGGTCGCGGACGTGGACGGGGAAGGGGACG CGAGGCCGAGGACGAGGACGCGGCA]gagtcttccaacgggatccaccggtcgccaccatggtgagcaag ggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagt tcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccac cggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtgcttcagccgc taccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgca $\verb|ccatcttcttcaaggacgacggcaactacaagacccgcgcgaggtgaagttcgagggcgacaccctggt||$ gaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctgggggcacaagctggagtac aactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgag aagegegateacatggteetgetggagttegtgaeegeeggegggateaeteteggeatggaegggetgt acaagtaaagcggccgcgactctaga

Online Resource 2.

DPR Sequences. The regions within the [] show the DPR core sequences. These sequences are repeated up to full length (see Bennion Callister et al., 2016). For practicality only the core sequence is shown. Green highlighted region shows eGFP tag.

Online Resource 3.

Representative Southern Blots of all potential transformants at ~ 3 months post microinjection. Lanes are labelled with arbitrary labels used during transformant identification. - = negative control (wild type DNA), + = positive control (wild type DNA spiked with positive plasmid).

Online Resource 4. Comparison of transcript expression levels of DPR constructs in larval brains and adult heads using realtime qRT-PCR.

Expression of DPR UAS-constructs was detected using primers covering a 5' region common to all UAS transcript. Δ CTs (a, c, e) and relative transcript expressions (b, d, f) are shown for larval brains (a, b) and adult heads (c-f).

a-d. While expression levels of all pan-neuronally expressed (nSyb-Gal4) 1000 repeat DPRs are significantly different from wild-type controls (no expression) there is no statistical difference in expression levels between different 1000 repeat DPR species in either larval brains (a-b) or adult heads (c-d). Pan-neuronal expression of GR50, used as an established positive control, revealed GR50 had significantly lower expression than GR1000 in larval brains (a) but not adult brains (b).

e-f. Comparison of expression levels between different length models, using AP as a representative model, reveals significantly increased levels of AP1000 compared to AP100 and AP50. All DPR models showed significant greater expression than wild-type and driver only (GMR>+) controls. Constructs were expressed in the fly eye under the control of GMR-Gal4, as pan-neuronal expression of shorter repeats was lethal. Graphs show medians, 95% confidence intervals as whiskers and the datapoints for biological repeats (each derived as mean from technical duplicates). Relative expressions in **b** and **d** are normalised to the median of AP1000, relative expression in **f** is normalised to AP36. Statistical analysis was carried out on Δ CT using ANOVA with posthoc Tukey's multiple comparison. N≥3; * p<0.05; ** p<0.01, *** p<0.001; **** p<0.0001; ns: not significant.

Online Resource 5. Viability Assays for global DPR expression. Global expression (Tubulin-Gal4) of each DPR line results in a lethal phenotype in AP1000 and PR1000 expressing lines and semi-lethality in GR1000 expressing lines

	Р	P<.05	P<.01	P<.001
Bonferroni Correction Threshold (K=5):		(.01)	(.002)	(.0002)
Wild-type vs GFP	.3040	N	Ν	Ν
Wild-type vs AP1000	< .0001	Y	Y	Y
Wild-type vs GA1000	.001	Y	Y	Ν
Wild-type vs PR1000	.0735	Ν	Ν	Ν
Wild-type vs GR1000	< .0001	Y	Y	Y

Online Resource 6. Survival Log-Rank (Mantel-Cox) with Bonferroni Correction

Online Resource 7. Pan-neuronal expression (nSyb-Gal4) of mCD8-GFP in **a** the adult *Drosophila* brain, **b** the central nervous system of third instar larvae and **c** *Drosophila* primary neurons. **d.** Quantification of the number of elav positive neurons within the *Drosophila* adult brain (7 Days Post eclosion) that colocalise with GFP when mCD8-GFP or DPR-GFPs are pan-neuronally expressed (nSyb-Gal4). 300 neurons per brain. **** p <.0001, *** p < .001.

		Days Post Eclosion							
	1	3	7	14	21	28	42		
Wild-type	18	17	24	11	16	17	7		
mCD8-GFP	-	10	22	14	12	10	10		
AP1000	17	17	15	14	19	23	17		
GA1000	21	21	15	16	21	18	27		
PR1000	16	12	18	14	17	24	20		
GR1000	14	10	15	13	10	14	8		

Online Resource 8. Number of flies assayed at each time point for longitudinal negative geotaxis assays 8a

Online Resource 9. Quantification of the eye phenotype in flies expressing DPRs in the *Drosophila* eye (GMR-Gal4) at 29°C