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1. GBD 2017 air pollution estimation methods  
 
The materials presented here are adapted from:  
GBD 2017 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and 
territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 2018; 392: 1923–94. 

 
A. GBD estimation process for risk factors including air pollution  

 
The approach used in GBD 2017 for comparative risk assessment to estimate population attributable fractions for risk factors is shown in the following flowchart.  

 

 
 
GBD is Global Burden of Disease. SEV is summary exposure value. TMREL is theoretical minimum‐risk exposure level. PAF is population attributable fraction. YLL is years of life lost. YLD is years lived with disability. DALY is disability‐adjusted life‐

year. Ovals represent data inputs, rectangular boxes represent analytical steps, cylinders represent databases, and parallelograms represent intermediate and final results.  
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Ambient Particulate Matter Pollution 
The steps in the estimation of disease burden attributable to ambient particulate matter pollution are 
shown in the following flowchart: 

 

Exposure definition 
Exposure to ambient air pollution is defined as the population-weighted annual average mass 
concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic 
meter of air. This measurement is reported in µg/m3. 
 
Input Data  
The data used to estimate exposure to ambient air pollution is drawn from multiple sources, including 
satellite observations of aerosols in the atmosphere, ground measurements, chemical transport model 
simulations, population estimates, and land-use data. 
PM2.5 ground measurement database 
Updates of ground measurements used for GBD 2017 include using more recent data than that used 
previously and the addition of data from new locations. The data from the 2018 update of the WHO 
Global Ambient Air Quality Database include monitor-specific measurements of concentrations of 
PM10 and PM2.5 from 9,960 ground monitors (up from 6,003 in GBD 2016) from 108 countries. The 
majority of measurements were recorded in 2016 (as there is a lag in reporting measurements, little 
data from 2017 were available). Annual averages were excluded if they were based on less than 75% 
coverage within a year. Collection year ranged from 2008 to 2017 in data used. If information on 
coverage was not available then data were included unless they were already sufficient data within a 
country (monitor density greater than 0.1). 
 
Satellite-based estimates  
The updated satellite-based estimates for years 1998-2016 are described in detail in van Donkelaar et 
al. 2016.1 These estimates were available at 0.1o ×0.1o resolution (~11 x 11 km resolution at the 
equator) and combine aerosol optical depth retrievals from multiple satellites with the GEOS Chem 
chemical transport model and land use information. 
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Chemical transport model simulations  
Estimates of the sum of particulate sulfate, nitrate, ammonium and organic carbon and the 
compositional concentrations of mineral dust simulated using the GEOS Chem chemical transport 
model, and a measure combining elevation and the distance to the nearest urban land surface (as 
described in van Donkelaar et al. 20161) were available for 2000 to 2016 for each 0.1o ×0.1o grid cell. 
These were not included within the GBD 2013 analysis. 
 
Modelling strategy  
Significant advances have been made in the methodology used to estimate exposure to ambient 
particulate matter pollution since GBD 2013. The following is a summary of the modelling approach, 
known as the Data Integration Model for Air Quality (DIMAQ) used in GBD 2015, 2016, and 2017; 
further details can be found in Shaddick et al.2 In GBD 2010 and GBD 2013 exposure estimates were 
obtained using a single global function to calibrate available ground measurements to a ‘fused’ 
estimate of PM2.5; the mean of satellite-based estimates and those from the TM5 chemical transport 
model, calculated for each 0.1o ×0.1o grid cell. This was recognised to represent a trade-off between 
accuracy and computationally efficiency when utilising all the available data sources. In particular, the 
GBD 2013 exposure estimates were known to underestimate ground measurements in specific 
locations (see discussion in Brauer et al.3). This underestimation was largely due to the use of a single, 
global, calibration function, whereas in reality the relationship between ground measurements and 
other variables will vary spatially.  
In GBD 2015 and GBD 2016, coefficients in the calibration model were estimated for each country. 
Where data were insufficient within a country, information can be `borrowed’ from a higher 
aggregation (region) and if enough information is still not available from an even higher level 
(superregion). Individual country level estimates were therefore based on a combination of information 
from the country, its region and super-region. This was implemented within a Bayesian Hierarchical 
modelling (BHM) framework. BHMs provide an extremely useful and flexible framework in which to 
model complex relationships and dependencies in data. Uncertainty can also be propagated through the 
model allowing uncertainty arising from different components, both data sources and models, to be 
incorporated within estimates of uncertainty associated with the final estimates. The results of the 
modelling comprise a posterior distribution for each grid cell, rather than just a single point estimate, 
allowing a variety of summaries to be calculated. The primary outputs here are the median and 95% 
credible intervals for each grid cell. Based on the availability of ground measurement data, modelling 
and evaluation was focused on the year 2016. 
 
The GBD 2017 model was updated to also include within country calibration variation.4 The model 
used for GBD 2017, henceforth referred to as DIMAQ2, provides a number of substantial 
improvements over the initial formulation of DIMAQ. In DIMAQ, ground measurements from 
different years were all assumed to have been made in the primary year of interest (i.e. 2014 for GBD 
2015 before extrapolation) and then regressed against values from other inputs (e.g. satellites etc.) 
made in that year. In the presence of changes over time therefore, and particularly in areas where no 
recent measurements were available, there was the possibility of mismatches between the ground 
measurements and other variables. In DIMAQ2, ground measurements and matched with other inputs 
(over time) and the possibility of the (global level) coefficients being allowed to vary over time, subject 
to smoothing that is induced by a second-order random walk process. In addition, the manner in which 
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spatial variation can be incorporated within the model has developed: where there is sufficient data, the 
calibration equations can now vary (smoothly) both within and between countries, achieved by 
allowing the coefficients to follow (smooth) Gaussian processes. Where there is insufficient data within 
a country, to produce accurate equations, as before information is borrowed from lower down the 
hierarchy and it is supplemented with information from the wider region. 
 
Population-weighted exposure generation  
To generate a distribution of the population-weighted ambient particulate matter, we took a weighted 
sampling strategy, taking samples from all grid cells in a given location. For example, for a country 
with n grid cells, we randomly sampled 1000 values from the n (grid cells) x 1000 (samples) where the 
probability of being sampled was proportional to the population of that grid cell. 
 
Theoretical minimum-risk exposure level  
The TMREL was assigned a uniform distribution with lower/upper bounds given by the average of the 
minimum and 5th percentiles of outdoor air pollution cohort studies exposure distributions conducted in 
North America, with the assumption that current evidence was insufficient to precisely characterise the 
shape of the concentration-response function below the 5th percentile of the exposure distributions. The 
TMREL was defined as a uniform distribution rather than a fixed value in order to represent the 
uncertainty regarding the level at which the scientific evidence was consistent with adverse effects of 
exposure. The specific outdoor air pollution cohort studies selected for this averaging were based on 
the criteria that their 5th percentiles were less than that of the American Cancer Society Cancer 
Prevention II (CPSII) cohort’s 5th percentile of 8.2 based on Turner et al.5 This criterion was selected 
since GBD 2010 used the minimum, 5.8, and 5th percentile solely from the CPS II cohort. The resulting 
lower/upper bounds of the distribution for GBD 2017 were 2.4 and 5.9. This has not changed since 
GBD 2015. 
 
Relative risks and population attributable fractions  
We estimated the Ambient Air Pollution-attributable burden of disease based on the relation of long-
term exposure to PM2.5 with Ischemic Heart Disease, stroke, COPD, lung cancer and acute lower 
respiratory infection. These were also the pollutant-outcome pairs used to estimate the Ambient Air 
Pollution attributable burden since GBD 2010. For GBD 2017 we also added Type II Diabetes as an 
outcome of ambient air pollution. We used results from all cohort studies published as of July 2018 that 
reported cause-specific relative risk estimates based on measured or modelled PM2.5 and that adjusted 
for potential confounding due to other major risk factors such as tobacco smoking using data for each 
study participant. 
Bowe et al. recently published work that assembled the evidence for the relationship between 
particulate matter and diabetes to generate IER curves and attributable burden estimates based on 
methodologies similar to those of the GBD.6 

 
Integrated exposure response function  
The Integrated Exposure Response Function (IER) was created to ascertain the shape of the dose 
response curve for a variety of health outcomes across a wide range of exposure to PM2.5. The IER 
model is fit by integrating RR information from studies of outdoor air pollution (OAP), Second hand 
tobacco smoke (SHS), Household Air Pollution (HAP), and Active Smoking (AS). Because OAP 
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studies are often performed at the lower end of the ambient air pollution range, incorporating other 
exposures to particulate matter enables RR estimation across the global range of exposure. These 
methods have been described in detail elsewhere.7,8 

Notable changes for GBD 2017 include added studies for OAP, SHS, and HAP, updated literature 
reviews for AS studies, and more informative priors to stabilize the shape of the IER curves. 
-We added all newly published cohorts of long-term exposure to Ambient PM2.5 and incidence or 
mortality due to IHD, stroke, COPD, lung cancer, and LRI. One notable addition was the China Male 
Cohort which included mortality due to IHD, Stroke, COPD, Lung Cancer, and Diabetes (unpublished 
analysis).9 his study represented a higher exposure range than most of our previously incorporated 
studies with 5th and 95th percentile of 15.5 and 77.1 micrograms/m3 . For Type II Diabetes, the new 
outcome included in GBD 2017, we included all cohorts which measured long-term PM2.5 exposure 
and incident diabetes or mortality due to diabetes.  
-We did not change the SHS input studies with the exception of including all studies from a recent 
meta-analysis examining the relationship between SHS and Type II Diabetes.10 We also added seven 
studies found from a systematic review examining SHS exposure and COPD. We had previously not 
included SHS in the formation of this curve.  
-We added four cohort studies of HAP and any of our measured outcomes. Previously we have only 
included which measured levels of PM2.5 exposure. To incorporate cohort studies with binary exposure 
data (presence or absence of solid-fuel use for cooking) we used the PM2.5 mapping function (see 
Household Air Pollution section for more details) to obtain a PM2.5 level attributed to solid fuel use for 
cooking for the location-year of the study (ExpHAP). We also used the OAP exposure model to obtain 
an OAP PM2.5 level for the location-year (ExpOAP). The study RR was used to inform the curve on the 
range of ExpOAP to (ExpOAP + ExpHAP).  
-For all outcomes, we used updated systematic reviews of the literature performed by the GBD 
smoking team for studies examining cigarettes smoked per day and the six IER outcomes to inform the 
high exposure range of the curve. The smoking team found that the process of systematic review and 
inclusion of all acceptable studies led to lower relative risks. All citations for studies can be found 
using the GBD 2017 Data Input Sources Tool. 
-To help obtain more reasonable curve fits, we added more informative priors to two of three IER 
function parameters in the MCMC Bayesian fitting process. 
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2. Shaddick, G., Thomas, M.L., Jobling, A., Brauer, M., van Donkelaar, A., Burnett, R., Chang, H., 
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Household Air Pollution 
The steps in the estimation of disease burden attributable to household air pollution are shown in the 
following flowchart: 

 
Exposure definition 
Exposure to household air pollution from solid fuels (HAP) is defined as the proportion of households 
using solid cooking fuels. The definition of solid fuel in our analysis includes coal, wood, charcoal, 
dung, and agricultural residues. 
 
Input data  
Data were extracted from the standard multi-country survey series such as Demographic and Health 
Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple Indicator Cluster Surveys 
(MICS), and World Health Surveys (WHS), as well as country-specific survey series such as Kenya 
Welfare Monitoring Survey and South Africa General Household Survey. To fill the gaps of data in 
surveys and censuses, we also downloaded and updated HAP estimates from WHO Energy Database 
and extracted from literature through systematic review. Each nationally or sub-nationally 
representative data point provided an estimate for the percentage of households using solid cooking 
fuels. Estimates for the usage of solid fuels for non-cooking purpose were excluded, i.e. primary fuels 
for lighting. The database, with estimates from 1980 to 2017, contained about 680 studies from 150 
countries. As updates to systematic reviews are performed on an ongoing schedule across all GBD 
causes and risk factors, an update for household air pollution will be performed in the next 1-2 
iterations. 
The major data sources to measure this use in China included the China census1-3, China Chronic 
Disease and Risk Factor Surveillance4-6, China Energy Statistical Yearbook7, China Health and 
Nutrition Survey8.9, China National Health Services Survey10-12, and scientific literature13-17. 
 
Modelling strategy  
Household air pollution was modelled at household level using a three-step modelling strategy that 
uses linear regression, spatiotemporal regression and Gaussian Process Regression (GPR). The first 
step is a mixed-effect linear regression of logit-transformed proportion of households using solid 
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cooking fuels. The linear model contains maternal education, proportion of population living in urban 
areas, and lagged-distributed income as covariates and has nested random effect by GBD region, and 
GBD super region respectively. The full ST-GPR process is specified elsewhere this appendix. No 
substantial modelling changes were made in this round compared to GBD 2016. 
 
Theoretical minimum-risk exposure level  
For cataract, the TMREL is defined as no households using solid cooking fuel. For outcomes that 
utilise evidence based on the Integrated Exposure Response (IER), the TMREL is defined as uniform 
distribution between 2.4 and 5.9 ug/m3. 
 
Relative risks 
In addition to the previously included outcomes of lower respiratory infections (LRI), stroke, IHD, 
COPD, lung cancer, and cataract, in GBD 2017 we added Type II Diabetes as a new outcome of 
household air pollution. The relative risk for cataracts was extracted from a meta-analysis and is 2.47 
with 95% (1.61, 3.73).18 GBD currently only estimates cataracts as an outcome for females. In GBD 
2017, we adopted a new approach for risk attribution using the Integrated Exposure-Response Function 
(IER). 
 
In order to use the IER curve, we must estimate the exposure to PM2.5. Since GBD 2015 we have been 
using a mapping model relying on a database of now almost 90 studies which measures PM2.5 exposure 
in households using solid cooking fuel. Using socio-demographic index and study-level factors as 
covariates, we predict exposure for all location-years. In GBD 2017, we updated the model to estimate 
the individual exposure to PM2.5 over and above ambient levels due to the use of solid cooking fuel. 
We did this by subtracting off the estimated ambient level PM2.5 for the location-year of each study in 
the database before inputting them into the model. By doing this we have independent estimates for 
PM2.5 exposure due to ambient and household solid fuel use. These exposures are cross-walked to 
values for men, women, and children by generating the ratio of each group’s mean exposure to the 
overall mean personal exposure. The resulting location, year, sex, and age specific PM2.5 exposure 
values are used as inputs in the IER and attributable burden calculation process. 
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Ambient ozone pollution 
The steps in the estimation of disease burden attributable to ambient ozone pollution are shown in the 
following flowchart: 

 

Exposure definition 
For GBD 2017, exposure to ozone pollution is defined as the seasonal (6 month period with highest 
mean) 8 hour daily maximum ozone concentrations, measured in ppb. This was an update from the 
previous exposure metric in accordance with an update of the American Cancer Society Cancer 
Prevention Study II (ACS CPS-II).1 

 

Input data  
Previously, exposure estimates were based on a chemical transport model with no measurement 
database or evaluation. In GBD 2017, exposure estimates incorporated a new comprehensive ozone 
measurement database (TOAR).2 This enabled a continent-specific weighted blend of 6 chemical 
transport models with grid cell level bias correction. The use of ground measurements also enabled the 
incorporation of error estimation, where previously we had assumed a +/- 6% error. The output of this 
model is a global raster of ozone exposure which is a summary for the years 2008-2014.3 

 

Modelling strategy for trends  
To estimate ozone concentrations over time, we used the trend from the former GBD model for 1990, 
2000, and 2010 and cubic splines for 1995, 2005, and 2011, after applying an adjustment for the 
difference in trends between the previous (1 hour daily maximum) and current (8 hour daily maximum 
metrics. Annualised rate of change was used to predict for the years 2012-2017. 
 
Theoretical minimum-risk exposure level  
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The TMREL of ozone was updated this year based on the exposure distribution from the updated ACS 
CPS-II study.1 A uniform distribution was drawn around the minimum and 5th percentile values 
experienced by the cohort, defined as ~U(29.1, 35.7), in ppb. 
 
Relative risks  
Since the inclusion of ozone in GBD 2010, the relative risk of ozone exposure for COPD mortality has 
been defined to be 1.029, 95% CI. (1.01-1.048) per 10 ppb of ozone exposure. Note that this comes 
from one study that looked at all respiratory mortality.4 For GBD 2017, we performed a literature 
review and included five cohorts from Canada, the UK, and the US which all measured COPD 
mortality. For cohorts with multiple analyses we chose the most recent analysis. We found a resulting 
relative risk of 1.06, 95% C.I. (1.02, 1.10). 
 
Relative risk and proportional PAF approach  
For GBD 2017 we developed a new approach to use the IER for obtaining PAFs for both OAP and 
HAP. Previously, relative risks for both exposures were obtained from the IER as a function of 
exposure and relative to the same TMREL. In reality, were a country to reduce only one of these risk 
factors, the other would remain. We failed to consider the joint effects of particulate matter from 
outdoor exposure and burning solid fuels for cooking. 
 
In GBD 2017, relative risks were still estimated from the output of the IER curve. Everyone is exposed 
to some level of OAP, but only a proportion of the population in each location-year use solid cooking 
fuel and are exposed to HAP. For the proportion of the population not exposed to HAP the relative risk 
was obtained by RROAP=IER(z= ExpOAP) and used to calculate the PAF for each location based on the 
population-weighted exposure. For the proportion of the population exposed to both OAP and HAP, we 
calculated a joint relative risk from the IER by RROAP+HAP=IER(z= ExpOAP+ExpHAP). This joint relative 
risk is used to calculate a joint PAF for each location. For each location, we proportioned the joint PAF 
based on the proportion of exposure due to OAP and HAP respectively. See the table below for 
equations used to calculate proportional PAFs. 

 

Generally, as expected, this new strategy led to lower PAFs for both ambient and household particulate 
matter pollution. 
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2.Use of solid fuels in provinces of China, 1990 and 2017; population weighted mean ambient 
ozone in provinces of China, 1990 and 2017. 

  

A: use of solid fuels in provinces of China, 1990  
B: use of solid fuels in provinces of China, 2017 
C: population weighted mean ambient ozone in provinces of China, 1990 
D: population weighted mean ambient ozone in provinces of China, 2017. 
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3 Population weighted mean PM2.5 levels, age-standardized death rate and DALY rate due to 
ambient PM2.5 in China from 1990 to 2017. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: population weighted mean PM2.5 levels from 1990 to 2017 
B: age-standardized death rate due to ambient PM2.5 in China from 1990 to 2017 
C: age-standardized DALY rate due to ambient PM2.5 in China from 1990 to 2017 
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4 Population Attributable Fractions (%) of DALYs for air pollution in all provinces in China, 
2017 

Province Air pollution PM2.5 Household air 
pollution 

Ambient ozone 
pollution 

China 6·87 (5·93-7·82) 4·84 (4·04-5·70) 1·61 (1·26-2·06) 0·63 (0·23-1·02) 
Health area 1     
Shanghai 4·39 (3·68-5·18) 4·03 (3·34-4·78) 0·12 (0·06-0·21) 0·35 (0·14-0·59) 
Tianjin 7·88 (6·82-9·04) 7·32 (6·25-8·50) 0·31 (0·16-0·53) 0·39 (0·15-0·66) 
Zhejiang 4·90 (3·99-5·91) 4·05 (3·15-5·00) 0·46 (0·25-0·78) 0·55 (0·21-0·90) 
Beijing 5·90 (4·95-6·92) 5·52 (4·58-6·54) 0·14 (0·07-0·26) 0·37 (0·15-0·60) 
Hong Kong 4·16 (3·37-4·97) 3·26 (2·51-4·03) 0·81 (0·44-1·33) 0·11 (0·04-0·22) 
Macau 4·52 (3·67-5·39) 3·48 (2·72-4·26) 0·91 (0·50-1·42) 0·18 (0·06-0·34) 
Health area 2     
Jiangsu 6·22 (5·20-7·30) 5·00 (3·99-6·01) 0·69 (0·40-1·14) 0·78 (0·30-1·23) 
Hainan 4·77 (3·88-5·67) 2·51 (1·70-3·37) 2·03 (1·35-2·80) 0·31 (0·11-0·53) 
Guangdong 5·44 (4·53-6·49) 4·54 (3·60-5·56) 0·66 (0·40-1·06) 0·32 (0·11-0·54) 
Fujian 4·52 (3·73-5·40) 3·43 (2·72-4·24) 0·81 (0·50-1·25) 0·38 (0·14-0·64) 
Hubei 6·92 (5·79-8·13) 5·04 (3·85-6·36) 1·42 (0·84-2·15) 0·69 (0·26-1·11) 
Hunan 7·42 (6·27-8·67) 4·98 (3·76-6·30) 1·92 (1·20-2·79) 0·77 (0·28-1·25) 
Health area 3     
Shandong 7·53 (6·19-8·83) 5·87 (4·25-7·22) 1·21 (0·73-1·91) 0·69 (0·26-1·13) 
Hebei 7·52 (6·04-8·77) 6·01 (3·98-7·50) 1·15 (0·62-1·99) 0·58 (0·22-0·96) 
Ningxia 6·58 (5·61-7·56) 4·25 (3·29-5·28) 1·93 (1·33-2·73) 0·57 (0·22-0·92) 
Jilin 6·83 (5·77-8·07) 5·16 (3·85-6·52) 1·53 (0·87-2·33) 0·21 (0·07-0·46) 
Liaoning 7·20 (6·14-8·40) 5·99 (4·78-7·40) 1·01 (0·55-1·71) 0·28 (0·10-0·59) 
Shanxi 6·74 (5·66-7·87) 4·74 (3·50-5·95) 1·67 (1·09-2·47) 0·49 (0·19-0·85) 
Shaanxi 6·42 (5·37-7·59) 4·38 (3·07-5·62) 1·76 (1·16-2·62) 0·43 (0·16-0·73) 
Henan 8·02 (6·91-9·20) 5·88 (4·55-7·15) 1·78 (1·11-2·71) 0·56 (0·21-0·97) 
Anhui 6·40 (5·41-7·46) 4·27 (3·11-5·33) 1·76 (1·20-2·46) 0·58 (0·22-0·95) 
Inner Mongolia 6·94 (5·73-8·17) 4·29 (2·70-5·75) 2·28 (1·35-3·40) 0·53 (0·19-0·87) 
Heilongjiang 7·32 (5·86-8·90) 5·29 (3·37-7·22) 1·81 (1·03-2·86) 0·32 (0·12-0·61) 
Health area 4     
Jiangxi 6·55 (5·56-7·64) 3·73 (2·72-4·77) 2·42 (1·67-3·36) 0·59 (0·21-0·99) 
Chongqing 7·47 (6·16-8·86) 4·94 (3·80-6·21) 1·78 (1·21-2·57) 1·11 (0·41-1·81) 
Yunnan 6·93 (5·70-8·17) 3·24 (2·09-4·54) 3·18 (2·29-4·18) 0·72 (0·25-1·20) 
Gansu 7·61 (6·38-8·85) 3·62 (2·48-4·92) 3·24 (2·35-4·29) 1·13 (0·42-1·80) 
Sichuan 7·73 (6·12-9·13) 4·75 (2·70-6·24) 2·14 (1·37-3·22) 1·24 (0·47-1·99) 
Health area 5     
Tibet 7·97 (6·71-9·40) 2·01 (0·98-3·78) 5·27 (3·98-6·49) 1·00 (0·37-1·62) 
Xinjiang 8·88 (6·59-11·12) 6·09 (2·52-9·19) 2·26 (1·09-3·83) 0·82 (0·30-1·36) 
Qinghai 7·98 (6·54-9·30) 4·46 (2·38-5·94) 2·76 (1·88-4·04) 1·11 (0·42-1·80) 
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Guangxi 6·25 (5·30-7·23) 3·85 (2·89-5·00) 2·11 (1·50-2·87) 0·42 (0·15-0·69) 
Guizhou 7·46 (6·31-8·68) 3·52 (2·52-4·79) 3·38 (2·48-4·40) 0·82 (0·30-1·35) 

5. Percentage and 95% UI of DALYs attributable to air pollution for different diseases in China, 
2017 

Disease Percentage, 95%UI 
COPD 40.0% (29.4%-49.3%) 
Diabetes mellitus 26.1% (28.4%-42.5%) 
Ischemic heart disease 19.5% (17.4%-21.8%) 
Lower respiratory infections 35.6% (28.4%-42.5%) 
Stroke 12.8% (17.4%-21.8%) 
Lung cancer 25.8% (19.1%-32.5%) 
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6. DALYs (in thousand) attributable to air pollution with 95% uncertainty interval of China in 2017 

 Air pollution Ambient particulate matter pollution Household air pollution from solid fuels Ambient ozone pollution 

All causes 27934·1 (24391·0-31198·5)  19804·9 (16515·0-22947·5)  6463·9 (5095·3-8211·9)  2468·0 (938·8-3972·0)  

Disease         

Blindness and vision  

impairment 
174·8 (81·6-288·8)  

-  
174·8 (81·6-288·8)  

-  

COPD 8160·7 (6019·8-10155·3)  4794·5 (3088·9-6270·9)  1700·9 (1080·3-2413·4)  2468·0 (938·8-3972·0)  

Diabetes mellitus 2615·9 (1645·3-3513·2)  2020·7 (1249·7-2712·3)  595·2 (342·1-856·3)  -  

Ischemic heart disease 5868·1 (5221·8-6610·5)  4506·4 (3812·3-5231·2)  1361·6 (1056·9-1757·9)  -  

Lower respiratory infections 1529·8 (1189·0-1942·7)  1091·8 (822·3-1440·1)  438·0 (327·0-565·4)  -  

Stroke 5647·6 (4546·3-6757·6)  4290·9 (3342·1-5264·5)  1356·8 (985·3-1813·2)  -  

Lung cancer 3937·2 (2887·0-4939·9)  3100·5 (2238·0-3976·3)  836·7 (563·2-1141·9)  -  

Sex         

Male 16711·4 (14574·3-18722·0)  12493·5 (10574·9-14449·5)  3193·2 (2326·8-4230·3)  1507·0 (572·2-2423·3)  

Female 11222·8 (9721·5-12735·0)  7311·3 (6007·5-8606·6)  3270·8 (2604·0-4107·2)  961·0 (360·5-1602·9)  

Age         

Children<5 years 670·3 (518·8-822·1)  454·4 (332·8-584·2)  215·8 (155·3-285·1)  0·00 (0·00-0·00)  

Elderly>70 years 10773·8 (9182·5-12292·3)  7230·2 (5892·5-8543·2)  2456·1 (1910·9-3140·8)  1611·8 (612·4-2585·6)  

DALY=disability-adjusted life-year· 
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7. Age-standardized death rate and DALY rate attributable to air pollution of China, 1990 and 2017 with percentage changes 

 Age-standardized death rate, per 100,000 Age-standardized DALY rate, per 100,000  

 1990 2017 Percentage changes (%) 1990 2017 Percentage changes (%) 

Air pollution 

All causes 184·4 (161·4-205·6) 72·7 (63·2-81·5) -60·6 (-63·7--55·7) 4597·4 (4067·2-5096·6) 1513·1 (1324·9-1688·4) -67·1 (-70·1--63·8) 

Blindness and vision impairment    18·5 (10·3-28·0) 10·0 (4·7-16·6) -45·7 (-55·9--37·3) 

COPD 101·2 (78·6-119·5) 26·8 (19·4-33·8) -73·5 (-76·9--67·0) 1679·9 (1323·5-1971·7) 449·4 (330·7-558·7) -73·3 (-76·4--67·9) 

Diabetes mellitus 1·1 (0·8-1·4) 1·8 (1·2-2·1) 62·6 (37·4-109·8) 115·0 (76·1-157·7) 134·5 (84·7-181·2) 16·9 (4·6-26·9) 

Ischemic heart disease 18·1 (16·3-20·1) 16·6 (14·7-18·8) -7·9 (-17·0--0·3) 375·8 (340·7-416) 304·9 (271·8-342·0) -18·9 (-26·4--12·2) 

Lower respiratory infections 27·4 (21·9-32·0) 4·6 (3·6-5·9) -83·3 (-86·0--78·1) 1600·1 (1284·3-1898·1) 131·1 (101·9-165·0) -91·8 (-93·1--89·8) 

Stroke 26·0 (21·6-30·3) 13·5 (10·7-16·2) -48·1 (-52·8--43·9) 556·8 (471·4-646·9) 287·8 (233·6-343·6) -48·3 (-52·9--44·2) 

Lung cancer 10·7 (8·5-12·6) 9·4 (6·9-11·8) -11·8 (-24·6--1·0) 251·3 (200·2-297·6) 195·4 (143·2-245·0) -22·3 (-33·7--12·5) 

Ambient particulate matter pollution 

All causes 56·1 (43·1-67·5) 49·4 (41·2-57·5) -12·0 (-22·1-1·4) 1404·2 (1088·7-1690·4) 1065·9 (891·3-1237·4) -24·1 (-33·2--12·5) 

COPD 27·5 (19·0-35·4) 14·2 (9·3-18·7) -48·2 (-57·0--35·8) 471·2 (329·5-607·4) 263·1 (170·0-344·4) -44·2 (-53·2--32·9) 

Diabetes mellitus 0·4 (0·3-0·5) 1·4 (0·9-1·6) 237·8 (175·3-346·7) 42·2 (26·4-60·0) 104·0 (64·2-139·8) 146·6 (112·8-188·8) 

Ischemic heart disease 6·6 (5·3-7·9) 12·7 (10·7-14·7) 93·5 (69·9-122·3) 138·0 (110·0-164·8) 234·1 (200·2-269·1) 69·6 (49·7-93·8) 

Lower respiratory infections 8·3 (5·9-10·5) 3·4 (2·5-4·5) -59·4 (-66·6--46·4) 458·3 (322·4-590·1) 92·1 (68·5-119·0) -79·9 (-83·9--73·9) 

Stroke 9·3 (7·0-11·6) 10·2 (7·8-12·5) 10·5 (-2·5-25·7) 198·5 (150·7-249·9) 218·7 (171·2-268·0) 10·2 (-2·2-25·6) 

Lung cancer 4·1 (3·1-5·1) 7·4 (5·4-9·5) 81·5 (53·1-109·9) 96·0 (72·6-120·4) 153·9 (111·1-197·1) 60·4 (35·1-85·5) 

Household air pollution from solid fuels 

All causes 108·0 (89·9-126·2) 15·8 (12·2-20·2) -85·4 (-87·3--83·2) 2907·5 (2465·6-3348·8) 354·0 (279·4-448·2) -87·8 (-89·5--85·9) 

Blindness and vision impairment 53·4 (38·8-66·6) 5·0 (3·2-7·1) -90·5 (-92·3--88·0) 18·5 (10·3-28·0) 10·0 (4·7-16·6) -45·7 (-55·9--37·3) 

COPD 0·7 (0·5-0·9) 0·4 (0·3-0·5) -40·4 (-52·8--18·9) 923·0 (679·4-1149·7) 93·1 (59·2-132·1) -89·9 (-91·7--87·7) 

Diabetes mellitus 11·5 (9·7-13·5) 3·9 (3·0-5·0) -66·0 (-71·1--60·8) 72·9 (46·9-101·5) 30·5 (17·6-43·9) -58·1 (-65·0--50·4) 

Ischemic heart disease 19·1 (15·0-23·0) 1·2 (0·9-1·6) -93·6 (-94·8--92·0) 237·8 (201·4-278·1) 70·8 (55·1-91) -70·2 (-74·4--65·8) 

Lower respiratory infections 16·7 (13·5-20·2) 3·2 (2·4-4·3) -80·6 (-83·5--77·9) 1141·8 (894·2-1378) 39·0 (29·0-51·2) -96·6 (-97·2--95·8) 

Stroke 6·6 (5·0-8·2) 2·0 (1·3-2·7) -69·8 (-74·5--65·0) 358·3 (289·8-432·5) 69·1 (50·7-92·1) -80·7 (-83·5--78·1) 

Lung cancer 108·0 (89·9-126·2) 15·8 (12·2-20·2) -85·4 (-87·3--83·2) 155·3 (118·6-194·3) 41·5 (27·9-56·6) -73·3 (-77·5--69·0) 
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Ambient ozone pollution 

COPD 35·3 (13·5-56·6) 11·1 (4·2-17·8) -44·3 (-48·4--32·5) 495·1 (190·0-796·3) 138·1 (52·4-222·0) -72·1 (-74·2--66·1) 
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8. Comparison of age-standardized death rate and DALY rate attributable to air pollution in 2013 and 2017 in China 

 Age-standardized death rate, per 100,000 Age-standardized DALY rate, per 100,000  
   2013              2017              2013                 2017 
Air pollution    

All causes 81.7 (72.0-91.5) 72.7 (63.2-81.5) 1763.6 (1564.1-1962.6) 1513.1 (1324.9-1688.4) 

Blindness and vision impairment - - 13.3 (6.5-21.5) 10.0 (4.7-16.6) 

COPD 30.4 (22.8-38.0) 26.8 (19.4-33.8) 528.9 (392.4-650.9) 449.4 (330.7-558.7) 

Diabetes mellitus 1.7 (1.2-2.0) 1.8 (1.2-2.1) 141.3 (90.1-188.5) 134.5 (84.7-181.2) 

Ischemic heart disease 18.4 (16.3-20.5) 16.6 (14.7-18.8) 335.1 (300.8-372.8) 304.9 (271.8-342.0) 

Lower respiratory infections 6.1 (4.7-7.5) 4.6 (3.6-5.9) 220.0 (173.1-267.9) 131.1 (101.9-165.0) 

Stroke 15.0 (12.2-17.7) 13.5 (10.7-16.2) 313.6 (257.5-369.1) 287.8 (233.6-343.6) 

Lung cancer 10.1 (7.7-12.5) 9.4 (6.9-11.8) 211.4 (159.7-261.1) 195.4 (143.2-245.0) 

Ambient particulate matter pollution    

All causes 54.2 (45.1-63.2) 49.4 (41.2-57.5) 1201.8 (1001.1-1395.0) 1065.9 (891.3-1237.4) 

COPD 16.2 (11.0-21.1) 14.2 (9.3-18.7) 309.3 (210.0-400.9) 263.1 (170.0-344.4) 

Diabetes mellitus 1.3 (0.9-1.5) 1.4 (0.9-1.6) 105.9 (66.8-143.1) 104.0 (64.2-139.8) 

Ischemic heart disease 13.6 (11.5-15.7) 12.7 (10.7-14.7) 249.0 (209.9-285.7) 234.1 (200.2-269.1) 

Lower respiratory infections 4.2 (3.2-5.5) 3.4 (2.5-4.5) 145.3 (110.2-185.0) 92.1 (68.5-119.0) 

Stroke 11.0 (8.6-13.4) 10.2 (7.8-12.5) 230.6 (182.0-281.3) 218.7 (171.2-268.0) 

Lung cancer 7.8 (5.8-9.8) 7.4 (5.4-9.5) 161.7 (120.4-205.0) 153.9 (111.1-197.1) 
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