Supporting Information for

Original Article

Rational drug design, synthesis, and biological evaluation of novel chiral tetrahydronaphthalene-fused spirooxindole as MDM2-CDK4 dual inhibitor against glioblastoma

Biao Wang^{a,†}, Fu Peng^{b,†}, Wei Huang^a, Jin Zhou^a, Nan Zhang^{a,b}, Jia Sheng^c, Phensinee Haruehanroengra^c, Gu He^{b,*}, Bo Han^{a,*}

^aHospital of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^bState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China

^cDepartment of Chemistry and the RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA

Received 8 August 2019; received in revised form 17 November 2019; accepted 12 December 2019

*Corresponding authors. Tel.: +86 28 85503817; fax: +86 28 85164063.

E-mail addresses: hegu@scu.edu.cn (Gu He), hanbo@cdutcm.edu.cn (Bo Han).

[†]These authors made equal contributions to this work.

Table of content

1. The IC ₅₀ values of compounds 4a-4j against MDM2 and CDK4 (Table S1)	S3
2. Selected isomers of compound 4g inhibited MDM2 and CDK4 (Fig. S1)	S3
3. The kinase selectivity of <i>ent-</i> 4g screened by KINOMEscan [®] (Table S2)	S4
4. Molecular docking and dynamics studies (Figs. S2 and S3, Table S3)	S5
5. Analyzing the changes in gene expression via Illumina Hiseq4000 platform (Fig. S4)	S8
6. Compound ent-4g induced nuclei morphology change in glioblastoma cells (Fig. S5)	S9
7. The histopathological analysis of main organs in xenograft models (Fig. S6)	S10
8. The compound <i>ent</i> -4g concentrations in tumor tissues and plasma (Fig. S7)	S11
9. Experimental details	S11
9.1. Biochemical assays and KINOMEScan [®] experiment	S11
9.2. Homology modeling and molecular dynamics simulation	S12
9.3. Computational alanine scanning	S14
9.4. Cell proliferation and apoptosis assays	S15
9.5. RNA sequencing, data collection and bioinformatics analysis	S16
9.6. Xenograft models and immunohistochemical analysis	S17
9.7. Determination of drug concentrations in plasma and tumor, and the ADMET properties	S17
10. Asymmetric synthesis of THN-fused spirooxindole derivatives 4 and 4'	S19
10.1. Optimization of reaction conditions (Table S4)	S19
10.2. General information for synthesis	S20
10.3. General procedure for the asymmetric synthesis of int-4 and int-4' (Scheme S1)	S21
10.4. General procedure for the synthesis of 4 (Scheme S2)	S44
10.5. General procedure for the synthesis of 4' (Scheme S3)	S55
11. Plausible mechanism of the protecting group-controlled the stereoselectivity (Scheme S4)	S66
12. Crystal data	S68
13. NMR spectra and HPLC of THN-fused spirooindole derivatives int-4 and int-4'	S70
14. NMR spectra of compounds 4 and 4'	S138
15. The purity of compounds 4 and 4'	S178
16. The HRMS chromatography of the THN-fused spirooxindole derivatives	S196

1. The IC₅₀ values of compounds 4a-4j against MDM2 and CDK4

Compd.	IC ₅₀ (µmol/L)			
	MDM2	CDK4		
4a	0.82±0.10	4.20±0.37		
4b	$0.57{\pm}0.08$	1.10±0.09		
4c	0.77 ± 0.09	0.99±0.12		
4d	0.52 ± 0.07	0.78 ± 0.11		
4e	0.79 ± 0.09	$0.94{\pm}0.06$		
4 f	1.40±0.13	2.90±0.33		
4 g	0.28 ± 0.06	0.32 ± 0.05		
4h	0.85±0.11	1.10±0.14		
4i	2.6±0.34	3.31±0.28		
4j	$0.98{\pm}0.07$	$0.91 {\pm} 0.08$		
Nutlin-3a	0.49±0.12	N.D.		
Palbociclib	N.D.	0.007 ± 0.002		

Table S1 The IC₅₀ values of compounds 4a-4j against MDM2 and CDK4^a.

^aEach compound was tested in triplicate; data are mean \pm SD (n = 3). N.D., not detected.

2. Selected isomers of compound 4g inhibited MDM2 and CDK4

Figure S1 Selected isomers were serially diluted from 50 μ mol/L to 5 nmol/L and tested against MDM2 (A) and CDK4 (B) in TR-FRET assays.

3. The kinase selectivity of *ent*-4g screened by KINOMEscan[®]

Gene symbol	Ctrl. at 100 nmol/L (%)	Gene symbol	Ctrl. at 100 nmol/L (%)
ABL1(E255K)-phosphorylated	60	KIT(D816V)	84
ABL1(T315I)-phosphorylated	84	KIT(V559D, T670I)	95
ABL1-nonphosphorylated	74	LKB1	54
ABL1-phosphorylated	90	MAP3K2	25
ACVR1B	89	MAP3K4	97
ADCK3	100	MARK3	16
AKT1	76	MEK1	55
AKT2	51	MEK2	47
ALK	55	MET	57
AURKA	57	MKNK1	94
AURKB	83	MKNK2	100
AXL	53	MLK1	53
BMPR2	100	P38-alpha	95
BRAF	88	P38-beta	99
BRAF(V600E)	72	PAK1	81
BTK	74	PAK2	85
CDK2	4	PAK4	93
CDK3	41	PCTK1	89
CDK4-CyclinD1	0.8	PDGFRA	100
CDK4	2.2	PDGFRB	81
CDK7	58	PDPK1	48
CDK9	76	PIK3C2B	99
CSF1R	92	PIK3CA	100
CSNK1D	61	PIK3CG	58
CSNK1G2	91	PIM1	41
DCAMKL1	46	PIM2	52
DYRK1B	99	PIM3	46
EGFR	87	PKAC-alpha	100
EGFR(L858R)	98	PLK1	69
EPHA2	100	PLK3	55
ERBB2	47	PLK4	45
ERBB4	58	PRKCE	71
ERK1	46	RAF1	93
FAK	63	RET	40
FGFR2	51	RIOK2	97
FGFR3	75	ROCK2	24
FLT3	60	RSK2	84
GSK3B	44	SNARK	54
IGF1R	72	SRC	88
IKK-alpha	47	SRPK3	71

 Table S2 The kinase selectivity of *ent*-4g screened by KINOMEscan.

IKK-beta	100	TGFBR1	100
INSR	77	TIE2	98
JAK2	11	TRKA	68
JAK3	46	TSSK1B	82
JNK1	100	TYK2	72
JNK2	100	ULK1	59
JNK3	75	ULK2	100
KIT	57	VEGFR2	100
ZAP70	74	WEE1	78
		YANK3	67

4. Molecular docking and dynamics studies

Figure S2 The root-mean-square deviations (RMSD) of the backbone atoms relative to their initial minimized complex structures as a function of time for 4g (green), 4g' (black), *ent*-4g (orange) and *ent*-4g' (blue) against MDM2 (A) and CDK4 (B), respectively; and the root-mean-square fluctuation (RMSF) of the backbone atom *versus* atom numbers for the MDM2-inhibitor complexes (C) and CDK4-inhibitor complexes (D).

Contribution	MDM2			CDK4				
	4g	4g′	Ent-4g	Ent-4g'	4g	4g′	Ent-4g	Ent-4g'
$\Delta E_{\rm int}^{\rm ele}$	-37 38	-29 24	-35 17	-33 60	-36.88	-34 73	_34 12	-36 44
(kcal/mol)	57.50	29.24	55.17	55.00	50.00	54.75	54.12	50.11
$\Delta E_{\rm int}^{\rm vdw}$	-27 43	25.84	-29.49	-32.01	-28.71	-30.84	-30.31	-33.98
(kcal/mol)	27113	25.61						
$\Delta G_{\rm sol}^{\rm nopole}$	-4.26	-6.13	-4.74	-5.03	-3.9	-5.67	-4.74	-4.20
(kcal/mol)		0.15						
$\Delta G_{ m sol}^{ m ele}$	50.83	55.06	43.35	54.66	40.80	47.49	41.35	47.74
(kcal/mol)		22100	10100	2	10100			
$\Delta G_{\rm sol}$	46.57	48.92	38.61	49.62	36.90	41.81	36.60	43.53
(kcal/mol)								
$\Delta G_{\rm ele}$	13.45	25.81	8.18	21.05	3.92	12.76	7.22	11.29
(kcal/mol)								
$-T\Delta S$	-7.67 ol)	-8.70 -	-8.08	-8.22	-9.81	-8.34	-9.91	-9.01
(kcal/mol)			0.00					
ΔG_{bind}	-25.90	-25.90 -14.86 -	-34.14	-34.14 -24.21	-38.50	-32.10	-37.73	-35.91
(kcal/mol)	20190	1 1100	0					
IC ₅₀ (μmol/L) ^a 0.28	2.5	0.078	1.3	0.32	10.6	0.25	3.7	
	2.5	0.070	1.5	0.52	10.0	0.20	5.7	

Table S3 Binding free energies and individual energy terms of inhibitors in complex with MDM2

 and CDK4 (kcal/mol).

^aExperimental mean IC₅₀ values.

Figure S3 Effects of selected amino acid residues of the MDM2 binding pocket on the calculated free energies (kcal/mol) for the binding of *ent-4g* or SAR405838 to MDM2 in the MM/GBSA computational alanine scanning ($\Delta\Delta G_{\text{bind}} = \Delta G_{\text{mut}} - \Delta G_{\text{wt}}$).

5. Analyzing the changes in gene expression *via* Illumina Hiseq4000 platform

6. Compound *ent*-4g induced nuclei morphology change in glioblastoma cells

Figure S5 The nuclei morphology of U251 cells incubated with different concentration of *ent*-4g for 24 h.

7. The histopathological analysis of main organs in xenograft models

Figure S6 The representative H&E staining images of tumor and main organ tissues in each group of xenograft models.

8. The compound ent-4g concentrations in tumor tissues and plasma

Figure S7 The drug concentrations in tumor tissues and plasma. The tumor and plasma concentrations of compound *ent-4g* in mice were measured after the last of four-days i.p. administration (30 mg/kg per day). Mice were sacrificed at 0.5, 1.0 and 4.0 h respectively after administration, then blood and tumor samples were collected.

9. Experimental details

9.1. Biochemical assays and KINOMEScan[®] experiment

The in vitro MDM2 and CDK4 assays were performed according to the previous reports and manufacturer's protocols. For the MDM2 assay, the HTRF assay used a GST-tagged MDM2 protein, and then, the biotinylated substrate peptide of P53 and two HTRF detection reagents were added. The HTRF signal was proportional to the amount of interaction between GST-tagged MDM2 protein and biotinylated P53 substrate peptide. For the CDK4 assays, kinase activity was measured using Lantha Screen technology from Invitrogen. In brief, GST-tagged truncated CDK4 kinase domain was incubated with fluorescein-labeled peptide substrate in the presence of a dose response of compound. Upon completion, the assay was stopped and detected with a terbium labeled anti-phosphorylated antibody. After an incubation of 1 h at room temperature, the plate was read on an Envision with an excitation wavelength of 340 nm and a reading emission at both 520 and 495 nm. The ratio of the 520 and 495 nm emission was used to analyze the data. The protein kinase selectivity of compound ent-4g (100 nmol/L) was detected in a high-throughput binding assay (KINOMEscan, DiscoveRx, Fremont, CA, USA) against a panel of 99 kinases. For the human kinase dendrogram, red circles indicated the main hits (< 5% of control), weak or no hits were labeled with small red circles (10%–35% of control) and smaller green circles (>

35% of control). TREEspot is a proprietary data visualization software developed by KINOMEscan that shows the protein kinase binding affinity.

9.2. Homology modeling and molecular dynamics simulation

The Accelrys Discovery Studio (DS3.5, Accelrys, San Diego, CA, USA) is utilized for the homology modeling of CDK4 binds to allosteric inhibitors. The brief procedures are listed as follows: in brief, the protein sequence of CDK4 kinase domain (Arg10 to Leu300) is retrieved from the UniProt database (UniProt entry P11802). The PSI-BLAST search module in Discovery Studio is used for the template search, and CDK2 (PDB No. 3PXZ) showed good identity to CDK4 kinase domain (56% of identity), then it is chosen as template for homology modeling. Then the initial model is optimized by the standard molecular dynamics protocol in AMBER12 package. The MDM2 in complex with SAR405838 (PDB No. 5 TRF) was utilized to perform MD simulation between inhibitors and MDM2 protein. The inhibitors 4g, 4g', ent-4g and ent-4g' were constructed by using the DS3.5 molecular modeling software based on the X-ray crystallized confirmation. All compounds were energy minimized with the MMFF94 force field. The missing hydrogen atoms of the inhibitors were added while the missing atoms of CDK4 and MDM2 proteins were added using the tleap program in AMBER 12.0. The inhibitors were minimized using the Hartree-Fock (HF)/6-31G^{*} optimization in Gaussian09, and the atom partial charges were obtained by fitting the electrostatic potentials derived by Gaussian via the RESP fitting technique in AMBER 12.0. The generations of the partial charges and the force field parameters for the inhibitors were accomplished by the antechamber program in AMBER 12.0. In the following molecular mechanics (MM) minimizations and MD simulations, the AMBER99 force field and the general AMBER force field (gaff) were used to establish the potential of proteins and inhibitors, respectively. An appropriate number of chloride counter ions were placed around four CDK4-inhibitor complexes (or MDM2-inhibitor complexes) to neutralize the charges of the systems. Finally, the whole system was solvated in a cubic periodic box of TIP3P water molecules, and the distance between the edges of the water box and the closest atom of the solutes was at least 10 Å. To avoid edge effects, periodic boundary conditions were applied during the whole molecular dynamics (MD) simulation.

For each system, energy minimization and MD simulation were performed by using the Sander module of the Amber12. Prior to MD simulations, the entire system was subject to energy minimization in two stages to remove bad contacts between the complex and the solvent molecules. Firstly, the water molecules and counterions were minimized by freezing the solute using a harmonic constraint of a strength of 100 kcal/mol Å. Secondly, the entire system was minimized without restriction. Each stage was consisted of a 5000-step steepest descent and a 5000-step conjugate gradient minimization. In MD simulations, Particle Mesh Ewald (PME) was employed to deal with the long-range electrostatic interactions. The cutoff distances for the long-range electrostatic and van der Waals energy interaction were set to 10 Å. The systems were gradually heated in the NVT ensemble from 0 to 300 K over 1000 ps. Finally, 100ns MD simulations were carried out for each system in an isothermal isobaric ensemble (NPT) with periodic boundary conditions. The SHAKE method, with a tolerance of 10^{-5} Å, was applied to constrain all covalent bonds involving hydrogen atoms. Each simulation was coupled to a 300 K thermal bath at 1.0 atm (1 atm = 101.3 kPa) by applying the Langevin algorithm. The temperature and pressure coupling parameters were set as 1.0 ps. During the sampling process, the coordinates were saved every 1.0 ps and the conformations generated from the simulations were used for further binding free energy calculations and decomposition analysis.

Based on the previous MD simulation studies, we extracted a total number of 300 snapshots from the last 30 ns trajectory with an interval of 100 ps for binding free energy calculations. The MM/GBSA method and Nmod module included in the Amber 12 were applied to compute the binding free energies of four inhibitors to CDK4 or MDM2 according to the following Eq. (1):

$$\Delta G_{\rm b} = \Delta E_{\rm MM} + \Delta G_{\rm sol} - T \Delta S \tag{1}$$

Where $\Delta E_{\rm MM}$ is the difference in molecular mechanics energy between the complex and each binding partner in the gas phase, $\Delta G_{\rm sol}$ is the solvation free energy contribution to binding and $T\Delta S$ is the contribution of entropy changes to the binding free energy. $\Delta E_{\rm MM}$ is further divided into two parts:

$$\Delta E_{\rm MM} = \Delta E_{\rm int}^{\rm ele} + \Delta E_{\rm int}^{\rm vdw} \tag{2}$$

Where $\Delta E_{\text{int}}^{\text{ele}}$ and $\Delta E_{\text{int}}^{\text{vdw}}$ are described as the electrostatic interaction and van der Waals energy in the gas phase, respectively. The solvation free energy is expressed as Eq. (3):

$$\Delta G_{\rm sol} = \Delta G_{\rm sol}^{\rm ele} + \Delta G_{\rm sol}^{\rm nopol} \tag{3}$$

The electrostatic contribution to the solvation free energy (ΔG_{sol}^{ele}) was calculated using the generalized Born (GB) model of Onufriev et al¹. The hydrophobic contribution to the solvation free energy (ΔG_{sol}^{nopol}) was determined with a function of the solvEnt-accessible surface area:

$$\Delta G_{\rm sol}^{\rm nopol} = \gamma {\rm SASA} + \beta \tag{4}$$

In which SASA is the solvEnt-accessible surface area and was calculated with the MSMS program. In our calculations, the values for γ and β were set to 0.0072 and 0 kcal/mol, respectively. The normal-mode analysis was performed to estimate the change of the conformational entropy upon the ligand binding ($-T\Delta S$) via the nmode program in AMBER 12.0. The protein–ligand binding free energy was calculated based on 300 snapshots taken from 70 to 100 ns MD simulation trajectories of the complex. Considering the high computational demand, only 100 snapshots for each complex were used to estimate the binding entropy.

9.3. Computational alanine scanning

To study the detailed mechanisms of the inhibitor-residue interaction at the energetic and atomic levels, computational alanine scanning was carried out on MDM2, and the binding free energies of compound *ent-4g* and SAR405838 to the protein mutants were calculated by using the MM/GBSA method. For alanine-scanning, snapshots were generated every 100 ps from 50 to 100 ns in the wild type trajectory. Mutations to alanine were performed only on selected residues in the active site. Alanine mutations were generated by truncation of residues after the C β and adding a hydrogen atom in the same direction as the C γ . Partial charges for the mutated residue were then changed to those of alanine. None of the residues mutated in this study were glycines. The binding free energy difference between the mutant and wild-type complexes is defined as:

$$\Delta\Delta G_{\rm bind} = \Delta G_{\rm mut} - \Delta G_{\rm wt} \tag{5}$$

The polar contribution (ΔG_{GB}) of ΔG_{sol}^{ele} was computed using the generalized Born model, and the parameters for GB calculations were developed by Onufriev et al. The charges used in GB calculations were taken from the AMBER parameter set. All energy components in Eq. (1) were calculated using 500 snapshots taken from 50 to 100 ns of MD trajectory with the time interval of 100 ps were used. The key residues of MDM2: Val14, Thr16, Leu54, Phe55, Leu57, Ile61, Met63, Tyr67, Phe91, Val93, Lys94, His96, Ile99 and Tyr100 were chosen for mutating.

9.4. Cell proliferation and apoptosis assays

The glioblastoma cell lines U87MG, U251 and T98G were obtained from the ATCC (American Type Culture Collection) and cultured in the state key laboratory of biotherapy, west china hospital, Sichuan University. All cells were cultured in DMEM supplemented with 10% fetal bovine serum and maintained at 37 °C with 5% CO₂ in atmosphere. The cell proliferation assay was measured by using the MTT method. Cells treated with DMSO were set as negative control. In brief, about 5×10^3 cells were incubated with test compounds in 96-well plate for 24-48 h, then 10 µL MTT (5 mg/mL) was added and incubated for an additional 4 h, added the extraction buffer and incubated overnight, the absorbance values were measured at 570 nm on a microplate reader (Thermo Scientific Multiskan, Finland). The annexin V-propidium iodide (PI) dual-staining method was used as apoptosis assay. U251 cells with or without compounds incubated were harvested and washed twice with cold PBS. The early and late apoptosis cells were identified on a flowcytometry instrument (BD Biosciences, San Jose, CA, USA) by staining with FITC-conjugated annexin V-PI kit according to the manufacturer's instructions (Keygen, Nanjing, China). In addition, U251 cells were plated in six-well plates, the cells were grown and adhered for 24 h, then incubated with 80 or 200 nmol/L of ent-4g for an additional 12 h followed by Hoechst 33258 addition. The morphology of nuclei was visualized under an Olympus fluorescence microscope.

The Western blot (WB) analysis were performed according to our previously reports. In brief, the equivalent concentrations of total proteins in cell lysate were separated by SDS-PAGE and then transferred to PVDF (poly-vinylidene difluoride membrane, Millipore, MA, USA). After blocked by 0.5%–1% of BSA under 4 °C overnight, the PVDF membranes were incubated by corresponding primary antibodies

at 4 °C overnight or room temperature for two hours. The PVDF membranes were washed twice by TBST solution and then incubated with HRP-conjugated second antibodies. The immunoblotting slides were collected by using ECL (enhanced chemiluminescence) method according to the manufacturer's instruction.

9.5. RNA sequencing, data collection and bioinformatics analysis

Total RNA from U251 cells with or without ent-4g incubation were extracted using the Trizol reagent according to the manufacturer's protocol. RNA concentrations were quantified using a Nano-drop Spectrophotometer (Thermo Scientific Technologies) at a wavelength of 260 nm. RNA samples were analyzed by Bioanalyzer at a concentration of 100–200 ng/ μ L to verify the concentration and the purity of samples. Only the samples with RNA integrity values of >7.0 were used for mRNA sequencing at the Genomic Core Facility at Novogene Co., Ltd. (Beijing, China). The RNA-seq data were analyzed by following the procedure described below. Briefly, after sequence quality filtering at a cutoff of a minimum quality score Q20 in at least 90% bases, the good-quality reads aligned to Reads were processed and aligned to the University of California Santa Cruz (UCSC) human reference genome and transcriptome (build hg38) using the Burrows-Wheeler Aligner (BWA). The reads that are uniquely aligned to the exon and splicing junction sites for each transcript were combined to calculate an expression level for a corresponding transcript and further normalized based on reads per kilobase per million reads in order to compare transcription levels among samples. The transcripts with a low raw read count < 100in all the samples were excluded for downstream analysis. Gene expression value was transformed to the log 2 base scale.

9.6. Xenograft models and immunohistochemical analysis

The *in vivo* antitumor activity and preliminary safety of *ent*-4g were carried out according to the Guidelines for the Care and Use of Laboratory Animals that were approved by the by the Committee of Ethics of Animal Experimentation of Sichuan University, China. The six to eight weeks old SPF (specific pathogen-free) nude mice were purchased from Beijing Huafukang Biotechnology Co., Ltd, and were randomly grouped by weighed and coded (n = 8). After five to eight days adaptation, the mice were grafted s.c. into the dorsal flank with 0.1 mL of phosphate buffer containing 2×10^6 U251 cells. When the tumors grew to a size of approximate leg diameter of 6

mm, the mice were initially treated and orally administered with *ent-4g*, nulin-3a, palbociclib, N+P or saline on days 1–21, and were monitored on a daily basis during treatment (tumor volume and body weights). On the last day, the animals were sacrificed; tumors and main organs were isolated and weighed. The tumor and various organs tissues were sectioned, then fixed in 4% paraformaldehyde in PBS for immunohistochemistry analysis and stained with H&E, TUNEL, Ki67, MDM2, P53, P21, phos-CDK4 and phos-RB antibodies as the previous studies stated.

9.7. Determination of drug concentrations in plasma and tumor, and the ADMET properties

When the volume of xenograft tumors beyond 100 mm³, the BALB/c nude mice were randomly divided to treatment and control groups. The treatment groups received specified concentrations of compounds by intraperitoneal administration, and the control group received i.p. administration of equal volume of PBS (5% DMSO). After four-day treatment of compound *ent-4g*, mice were sacrificed at 0.5, 1.0 and 4.0 h respectively after administration and dissected to collect the blood and weigh the tumor tissues at the specific time points. Plasma was separated from the blood by centrifugation and stored in a freezer at -80 °C. The tumor tissues were homogenized with normal saline (5:1 *v/w*) before ultrasound treatment. The protein components in plasma and tumor samples were removed by methanol containing an internal standard. After centrifugation again. The compound concentrations in the supernatants were analyzed by a Waters UPLC–MS instrument.

Pharmacokinetic properties of compound *ent-*4g were assessed in Sprague–Dawley rats (350–400 g). The compound was prepared as a solution in 10:10:80 dimethyl sulfoxide/Tween 80/water (v/v/v) at a concentration of 1 mg/mL for i.v. and *p.o.* administration of 7.5 and 15 mg/kg, respectively. All procedures and handling were according to standard operating procedures approved by the Institutional Animal Care and Use Committee (IACUC). Compound concentrations were determined using peripheral whole blood. At selected time points (5 min for i.v. only, 0.25, 0.5, 1, 2, 4, 8, and 24 h post-dose), blood was collected from jugular vein cannulas for pooled plasma analysis.

For the liver microsomes stability assay, compounds were prepared as 5 mmol/L stock solutions in DMSO then diluted to 500 μ mol/L with acetonitrile. Microsomes

were separated from mice liver and then diluted with warm KPhos buffer to prepare a 5% microsomal mixture. The compound stock solution was then added to each well and turbidity was assessed after each addition. The microsomal preparation was then added to each well and shaken gently and warmed at 37 °C. Sample aliquots were taken out of the mixtures at T = 0, 10, 20, 30, 60, and 90 min and quenched immediately with acetonitrile containing bioanalytical internal standards and maintained at 5 °C. The samples were centrifuged for 5 min at 5 °C and then the supernatant was assessed by the UPLC/MS described in the MDCK procedure. The percent remaining was calculated relative to T = 0 using peak area ratios.

10. Asymmetric synthesis of THN-fused spirooxindole derivatives 4 and 4'

10.1. Optimization of reaction conditions (Table S4)^a

PG	Cat.	Solvent	Product	Yield (%) ^b	dr ^c	ee ^d (%)
Boc	C1	CH ₂ Cl ₂	int-4a	47	65:35	24
Boc	C2	CH_2Cl_2	int-4a	54	73:27	8
Boc	C3	CH_2Cl_2	int-4a	52	75:25	7
Boc	C4	CH_2Cl_2	int-4a	65	71:29	72
Boc	C5	CH_2Cl_2	int-4a	59	78:22	78
Boc	C6	CH_2Cl_2	int-4a	66	55:45	82
Boc	C7	CH_2Cl_2	int-4a	73	80:20	96
Boc	C8	CH_2Cl_2	int-4a	63	70:30	92
Boc	C9	CH_2Cl_2	int-4a	45	81:19	95
Boc	C7	Toluene	int-4a	47	60:40	92
Boc	C7	THF	int-4a	49	55:45	65
Boc	C7	MeCN	int-4a	84	50:50	71
Boc	C7	CH_2Cl_2	int-4a ^e	80	88:12	99
Boc	C7	CH_2Cl_2	int-4 a^{f}	65	90:10	99
Bn	C7	CH_2Cl_2	int-4a' ^g	51	91:9	89

We commenced our research by screening the reaction between Boc-protected 3-ylideneoxindole **1a** and nitro-substituted 2-methyl-3,5-dinitrobenzaldehyde (**3a**, Table S4), promoted by a range of bifunctional hydrogen-bonding catalysts or chiral tertiary amine catalysts (C1–C9). We planned to convert the intermediate product to its analogue **int-4a** and isomer **int-4a'** in order to protect the hydroxyl group and thereby ensure solubility in CDCl₃ for clear NMR spectra.

First, we investigated a series of cinchona alkaloid-based thiourea or squaramide catalysts (C1–C6), providing int-4a as the major diastereoisomer with dr values of 55:45 to 78:22 and moderate ee values (Table S4, entries 1–6). We also evaluated several chiral amine catalysts (C7–C9), which did not increase stereoselectivity (Table S4, entries 8 and 9).

To our satisfaction, using Takemoto's bifunctional chiral thiourea catalyst C7 gave high diastereo- and enantioselectivities (Table S4, entry 7). Then we explored more reaction parameters in order to improve yield (Table S4, entries 10–14). The optimal conditions were found to be reaction in anhydrous CH_2Cl_2 at -10 °C for 48 h (entry 13). Applying these optimized conditions to the Bn-protected substrate **2a** led to inverted diastereoselectivity, generating **int-4a'** as the major product in 51% yield with 91:9 dr and 89% ee (entry 15). Hence, the optimal reaction conditions were established: (i) for the Boc-protected substrates 1, 20 mol% of C7 and 4 Å MS in CH_2Cl_2 at -10 °C for 48 h under N₂; (ii) for the Bn-protected substrates 2, 20 (mol/mol %) of C7 and 4 Å MS in CH_2Cl_2 at -10 °C for 7 days under N₂.

10.2. General information for synthesis

Nuclear Magnetic Resonance (NMR) data were obtained for ¹H at 400 MHz and for ¹³C at 100 MHz or for ¹H at 600 MHz and for ¹³C at 150 MHz. Chemical shifts were reported in parts per million (ppm) with tetramethylsilane resonance as the internal standard in CDCl₃ or DMSO-d₆ solution. Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant (s, Hz), integration]. ESI high resolution mass spectra (HRMS) were recorded using electrospray ionization on a Waters SYNAPT G2 (Q-TOF) instrument. The enantiomeric ratio was determined by High Performance Liquid Chromatography (HPLC) analysis on chiral column in comparison with authentic racemates, using the Daicel Chiralpak AD/OD/IE (250 mm \times 4.6 mm). UV detection was monitored at 254 nm. Purity of compounds 4 and 4' was determined by reverse-phase HPLC analysis to be >95% at 254 nm. HPLC instrument: Dionex Summit HPLC (column: Thermo Scientific Technologies, Hypersil GOLDTM, 5 μ m, 250 mm \times 4.6 mm), detector: PDA-100 photodiode array, injector: ASI-100 auto sample injector, pump: p-680A LPG-4. A flow rate of 1.0 mL/min was used with mobile phase of MeOH in H₂O. Optical rotation data were examined in CH₂Cl₂ solution at 25 °C and λ = 589 nm. Column chromatography was performed on a silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass backed silica plates; products were visualized using UV light. Melting points were determined on a Mel-Temp apparatus.

10.3. General procedure for the asymmetric synthesis of int-4 and int-4' (Scheme S1)

Scheme S1 General procedure for the asymmetric synthesis of int-4 and int-4'.

The reaction was carried out with 3-ylideneoxidole **1** or **2** (0.3 mmol), 2-methylbenzaldehyde (**3**, 0.36 mmol) and **C7** (49.6 mg, 0.06 mmol) with 4Å MS in anhydrous CH₂Cl₂ (4.0 mL) at -10 °C for 48 h or 7 days under N₂. The reaction mixture was direct purified by flash chromatography on a silica gel to afford the unprotected intermediate.

Next, the protection hydroxyl group of the intermediate gave the corresponding easily separable THN-fused spirooxindole derivative **int-4** or **int-4'**. To a solution of intermediate in CH₂Cl₂ (4 mL) was added TMSCl (25.9 μ L, 0.3 mmol) and imidazole (45.8 mg, 0.6 mmol). The mixture was stirred at 0 °C until the reaction was completed based on TLC. The reaction was quenched with aqueous NaHCO₃ (aq) and CH₂Cl₂. The organic layer was dried by Na₂SO₄ and concentrated. The residue was purified by chromatography on silica gel to give the major isomer product **int-4** or **int-4'** which were dried under vacuum and further analyzed by ¹H-NMR, ¹³C-NMR, HPLC and HRMS.

10.3.1. 1-(tert-Butyl) 3'-ethyl (1'R,3R,3'S)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indolin e-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4a**)

Prepared according the to general procedure using *tert*-butyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1a, 95.2 mg, 0.3 mmol), 2-methyl-3,5-dinitrobenzaldehydes (3a, 75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4a as a white solid in 80% yield (144.5 mg, 0.26 mmol) for two steps after flash chromatography. The dr was calculated to be 88:12 by crude ¹H-NMR analysis and the ee was determined to be 99% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{\text{minor}} = 7.75 \text{ min}$, $t_{\text{major}} = 10.31 \text{ min}$, $[\alpha]_{D}^{25} = +62.64$ (c 1.00 in CH₂Cl₂), m.p. 158–160 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.51 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.26 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 5.01 (s, 1H), 3.93 (dd, J = 12.8 Hz, 1H), 3.76–3.63 (m, 2H), 3.24 (q, J = 12.4 Hz, 2H), 1.64 (s, 9H), 0.73 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.8, 170.3, 149.1, 148.4, 146.8, 143.6, 141.6, 137.6, 129.9, 128.8, 124.8, 124.0, 123.1, 119.0, 115.5, 85.0, 75.8, 61.4, 55.9, 47.2, 28.3, 25.7, 13.5, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₃N₃O₁₀SiNa [M + Na]⁺: 622.1833, Found: 622.1832.

10.3.2. 1-(tert-Butyl) 3'-ethyl

(1'R,3R,3'S)-5-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spir o[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4b**)

Prepared according to the general procedure using *tert*-butyl (E)-3-(2-ethoxy-2-oxoethylidene)-5-fluoro-2-oxoindoline-1-carboxylate (1b, 100.6 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4b as a white solid in 79% yield (145.8 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be 84:16 by crude ¹H-NMR analysis and the ee was determined to be 99% by HPLC on Chiralpak IE column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 7.11 min, t_{minor} = 8.08 min, $\left[\alpha\right]_{D}^{25} = -14.55$ (c 1.00 in CH₂Cl₂), m.p. 140–142 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.28 (s, 1H), 7.88 (dd, J = 9.2, 4.8 Hz, 1H), 7.07 (td, J = 8.8, 2.8 Hz, 1H), 6.78 (dd, J = 8.0, 2.8 Hz, 1H), 4.83 (s, 1H), 4.03–3.97 (m, 2H), 3.79 (dd, J = 17.2, 5.6 Hz, 1H), 3.72–3.60 (m, 2H), 1.60 (s, 9H), 1.06 (t, J = 7.2 Hz, 3H), 0.03 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 172.8, 170.1, 158.9 (d, J_{CF} = 242.1 Hz), 148.3, 148.0, 145.3, 140.5, 137.6, 135.5 (d, $J_{CF} = 2.5$ Hz), 129.1 (d, $J_{CF} = 8.2$ Hz), 126.8, 119.2, 115.6 (d, $J_{CF} = 7.9$ Hz), 115.1 (d, $J_{CF} = 22.5$ Hz), 112.0 (d, $J_{CF} = 25.0$ Hz), 84.4, 72.2, 61.1, 52.1, 42.8, 27.5, 26.0, 13.1, -0.3; HRMS (ESI): m/z Calcd. for $C_{28}H_{32}FN_{3}O_{10}SiNa [M + Na]^+: 640.1739$, Found: 640.1738.

10.3.3. 1-(tert-Butyl) 3'-ethyl (1'R,3R,3'S)-7-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spir o[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4c**)

Prepared according to the general procedure using *tert*-butyl (E)-3-(2-ethoxy-2-oxoethylidene)-7-fluoro-2-oxoindoline-1-carboxylate (1c, 100.6 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4c as a white solid in 76% yield (140.1 mg, 0.23 mmol) for two steps after flash chromatography. The dr was calculated to be 83:17 by crude ¹H-NMR analysis and the ee was determined to be 91% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 5.92 min, t_{major} = 10.80 min, $[\alpha]_{D}^{25} = +15.40$ (c 1.00 in CH₂Cl₂), m.p. 83–85 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.29 (s, 1H), 7.16–7.06 (m, 2H), 6.77 (dd, J = 7.2, 0.8 Hz, 1H),

4.89 (s, 1H), 4.08–3.95 (m, 2H), 3.80 (dd, J = 16.0, 4.0 Hz, 1H), 3.70–3.59 (m, 2H), 1.59 (s, 9H), 1.05 (t, J = 7.2 Hz, 3H), 0.03 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.4, 170.5, 148.5, 148.4 (d, $J_{CF} = 249.4$ Hz), 147.2, 145.9, 141.3, 138.7 (d, $J_{CF} = 1.8$ Hz), 138.1, 131.3 (d, $J_{CF} = 1.9$ Hz), 127.0, 125.0 (d, $J_{CF} = 6.8$ Hz), 120.6 (d, $J_{CF} = 3.6$ Hz), 119.7, 117.6 (d, $J_{CF} = 20.4$ Hz), 85.4, 72.7, 61.8, 53.5, 43.8, 27.7, 26.4, 13.6, 0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂FN₃O₁₀SiNa [M + Na]⁺: 640.1739, Found: 640.1738.

10.3.4. 1-(tert-Butyl) 3'-ethyl (1'R,3R,3'S)-5-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spir o[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4d**)

Prepared according to the general procedure using *tert*-butyl (E)-5-chloro-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1d, 105.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4d as a white solid in 81% yield (154.7 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be 91:9 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak IE column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{\text{major}} = 7.33 \text{ min}, \lceil \alpha \rceil_{D}^{25} =$ -25.85 (c 1.00 in CH₂Cl₂), m.p. 141-143 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.54 (s, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.38 (dd, J = 8.8, 2.4 Hz, 1H), 7.21 (d, J = 2.0 Hz, 1H), 5.08 (s, 1H), 4.01–3.92 (m, 3H), 3.60 (dd, J = 18.8, 6.0 Hz, 1H), 3.44 (dd, J = 12.0, 6.4 Hz, 1H), 1.59 (s, 9H), 1.01 (t, J = 7.2 Hz, 3H), -0.08 (s, 9H);¹³C-NMR (100 MHz, CDCl₃): δ 171.7, 169.6, 148.7, 148.0, 146.4, 142.1, 140.3, 136.6, 130.1, 129.8, 129.4, 125.9, 122.2, 119.1, 116.8, 84.7, 76.2, 61.7, 52.5, 46.1, 28.0, 26.8, 13.5, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂ClN₃O₁₀SiNa [M + Na]⁺: 656.1443, Found: 656.1440.

10.3.5.1-(tert-Butyl)3'-ethyl(1'R,3R,3'S)-6-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (int-4e)

Prepared according to the general procedure using *tert*-butyl (E)-6-chloro-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1e, 105.5 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained **int-4e** as a white solid in 78% yield (148.6 mg, 0.23 mmol)

for two steps after flash chromatography. The dr was calculated to be 87:13 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 7.13$ min, $[\alpha]_D^{25} = -58.19$ (*c* 1.00 in CH₂Cl₂), m.p. 130–132 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 8.42 (s, 1H), 7.99 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.88 (d, J = 8.0 Hz, 1H), 5.23 (s, 1H), 3.93–3.82 (m, 3H), 3.78 (t, J = 8.4 Hz, 1H), 3.61 (dd, J = 19.2, 8.0 Hz, 1H), 1.67 (s, 9H), 0.97 (t, J = 7.2 Hz, 3H), 0.20 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.8, 169.2, 148.4, 148.3, 146.3, 143.0, 142.0, 135.8, 134.9, 124.4, 123.9, 123.8, 122.9, 118.9, 115.3, 84.9, 74.8, 61.5, 54.6, 44.1, 27.8, 25.0, 13.2, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂ClN₃O₁₀SiNa [M + Na]⁺: 656.1443, Found: 656.1445.

10.3.6.1-(tert-Butyl)3'-ethyl(1'R,3R,3'S)-4-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (int-4f)

Prepared according the general procedure using *tert*-butyl to (E)-4-bromo-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1f, 118.9 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4f as a white solid in 81% yield (166.2 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be >95:5 by crude ¹H-NMR analysis and the ee was determined to be 37% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 5.70 min, t_{minor} = 7.39 min, $[\alpha]_{D}^{25} = +28.80$ (c 1.00 in CH₂Cl₂), m.p. 161–163 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.74 (s, 1H), 8.52 (s, 1H), 7.93 (dd, J = 8.4, 1.2 Hz, 1H), 7.38 (dd, J = 8.4, 0.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 5.70 (s, 1H), 4.26 (dd, J = 8.8, 6.4 Hz, 1H), 4.05 (dd, J = 18.0, 8.8 Hz, 1H), 3.95 (q, J = 7.2 Hz, 2H), 3.49 (dd, J = 17.6, 6.4 Hz, 1H), 1.58 (s, 9H), 1.01 (t, J = 7.2 Hz, 3H), -0.07 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.7, 170.1, 148.4, 148.2, 146.2, 143.7, 142.7, 137.2, 130.8, 128.9, 126.4, 125.3, 118.6, 117.8, 114.4, 84.8, 71.7, 61.5, 55.8, 43.1, 27.9, 25.9, 13.5, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂BrN₃O₁₀SiNa [M + Na]⁺: 700.0938, Found: 700.0941. 10.3.7. 1-(tert-Butyl) 3'-ethyl

(1'R,3R,3'S)-5-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spir o[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4g**)

Prepared according the procedure using *tert*-butyl to general (E)-5-bromo-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1g, 118.9 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4g as a white solid in 79% yield (161.4 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be 90:10 by crude ¹H-NMR analysis and the ee was determined to be 95% by HPLC on Chiralpak IE column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 7.65 min, t_{minor} = 8.58 min, $\left[\alpha\right]_{D}^{25} = -38.84$ (c 1.00 in CH₂Cl₂), m.p. 123–125 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.54 (s, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.53 (dd, J = 8.8, 2.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 5.07 (s, 1H), 4.01–3.93 (m, 3H), 3.60 (dd, J = 18.8, 6.0 Hz, 1H), 3.44 (dd, J = 12.0, 6.4 Hz, 1H), 1.59 (s, 9H), 1.01 (t, J = 7.2 Hz, 3H), -0.08 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.6, 169.6, 148.7, 148.1, 146.3, 142.1, 140.8, 136.8, 132.3, 130.5, 125.8, 125.0, 119.1, 117.2, 117.1, 84.8, 76.3, 61.7, 52.5, 46.1, 28.0, 26.8, 13.5, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂BrN₃O₁₀SiNa [M + Na]⁺: 700.0938, Found: 700.0939.

10.3.8.1-(tert-Butyl)3'-ethyl(1'R,3R,3'S)-6-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (int-4h)

Prepared according procedure to the general using *tert*-butyl (E)-6-bromo-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1h, 118.9 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4h as a white solid in 78% yield (158.3 mg, 0.23 mmol) for two steps after flash chromatography. The dr was calculated to be 85:15 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{major} = 7.23 \text{ min}$, $\left[\alpha\right]_{D}^{25} =$ -30.75 (c 1.00 in CH₂Cl₂), m.p. 128–130 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 8.42 (s, 1H), 8.14 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.82 (d, J = 8.0 Hz, 1H), 5.22 (s, 1H), 3.93–3.83 (m, 3H), 3.78 (t, *J* = 8.4 Hz, 1H), 3.61 (dd, *J* = 19.2, 8.0 Hz, 1H), 1.67 (s, 9H), 0.97 (t, J = 7.2 Hz, 3H), 0.20 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.7, 169.1, 148.4, 148.3, 146.3, 143.0, 142.1, 135.8, 126.8, 124.4, 124.1, 123.4, 122.8, 118.9, 118.1, 84.9, 74.8, 61.5, 54.6, 44.0, 27.8, 25.0, 13.2, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂BrN₃O₁₀SiNa [M + Na]⁺: 700.0938, Found: 700.0938.

10.3.9.

1-(tert-Butyl)

3'-ethyl

(1'R,3R,3'S)-5,5',7'-trinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indo line-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4i**)

according Prepared to the general procedure using *tert*-butyl (E)-3-(2-ethoxy-2-oxoethylidene)-5-nitro-2-oxoindoline-1-carboxylate (1i, 108.7 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4i as a white solid in 74% yield (143.3 mg, 0.22 mmol) for two steps after flash chromatography. The dr was calculated to be 87:13 by crude ¹H-NMR analysis and the ee was determined to be 79% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 8.63 \text{ min}, t_{major} =$ 10.87 min, $[\alpha]_{D}^{25} = -13.05$ (c 1.00 in CH₂Cl₂), m.p. 109–111 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.79 (s, 1H), 8.54 (s, 1H), 8.35 (dd, J = 9.2, 2.4 Hz, 1H), 8.15 (d, J = 2.0Hz, 1H), 8.12 (d, J = 8.8 Hz, 1H), 5.18 (s, 1H), 4.02–3.93 (m, 3H), 3.68 (dd, J = 18.8, 6.0 Hz, 1H), 3.58 (dd, J = 11.6, 6.4 Hz, 1H), 1.61 (s, 9H), 1.04 (t, J = 7.2 Hz, 3H), -0.11 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.5, 169.0, 148.3, 146.4, 142.7, 140.2, 135.6, 131.9, 126.7, 126.1, 124.7, 119.1, 116.8, 116.1, 84.7, 74.9, 61.6, 54.6, 44.1, 27.8, 25.1, 13.2, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₂N₄O₁₂SiNa [M + Na]⁺: 667.1684, Found: 667.1685.

10.3.10. 1-(tert-Butyl) 3'-ethyl (1'R,3R,3'S)-5-methyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spi ro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4j**)

Prepared according to the procedure *tert*-butyl general using (E)-3-(2-ethoxy-2-oxoethylidene)-5-methyl-2-oxoindoline-1-carboxylate (1j, 99.4 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4j as a white solid in 73% yield (135.1 mg, 0.22 mmol) for two steps after flash chromatography. The dr was calculated to be 84:16 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{\text{major}} = 8.33 \text{ min}, \lceil \alpha \rceil_{D}^{25} =$ -74.09 (c 1.00 in CH₂Cl₂), m.p. 146–148 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 8.44 (s, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 5.74 (d, J = 1.2 Hz, 1H), 5.24 (s, 1H), 3.94 (dd, J = 19.2, 8.4 Hz, 1H), 3.85–3.74 (m, 3H), 3.59 (dd, J

= 19.2, 8.0 Hz, 1H), 2.07 (s, 3H), 1.66 (s, 9H), 0.91 (t, J = 7.2 Hz, 3H), 0.19 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.3, 169.3, 148.6, 148.3, 146.2, 143.4, 138.7, 136.1, 133.3, 129.4, 124.4, 124.3, 123.7, 118.7, 114.2, 84.1, 74.9, 61.3, 54.8, 44.1, 27.8, 25.0, 20.9, 13.1, -0.3; HRMS (ESI): m/z Calcd. for C₂₉H₃₅N₃O₁₀SiNa [M + Na]⁺: 636.1989, Found: 636.1987.

10.3.11.

tert-Butyl

(1'R,3R,3'S)-3'-benzoyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-s piro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4k**)

Prepared according to the general procedure using *tert*-butyl (E)-2-oxo-3-(2-oxo-2-phenylethylidene)indoline-1-carboxylate (1k, 104.8 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4k as a white solid in 76% yield (143.6 mg, 0.23 mmol) for two steps after flash chromatography. The dr was calculated to be 88:12 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 4.99 min, t_{major} = 10.46 min, $[\alpha]_{D}^{25} = +121.73$ (c 1.00 in CH₂Cl₂), m.p. 178–180 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.84 (s, 1H), 8.37 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.43–7.35 (m, 3H), 7.23 (t, J = 7.6 Hz, 2H), 7.10 (t, J = 8.4 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H), 5.57 (d, J = 7.2 Hz, 1H), 5.36 (s, 1H), 4.74 (dd, *J* = 7.6, 5.6 Hz, 1H), 4.10 (dd, *J* = 17.6, 5.6 Hz, 1H), 3.36 (dd, J = 17.6, 7.6 Hz, 1H), 1.61 (s, 9H), 0.15 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): *δ* 197.8, 176.9, 148.4, 148.0, 146.1, 143.7, 140.5, 137.7, 135.9, 133.0, 128.6, 128.2, 127.6, 124.4, 123.9, 123.8, 118.8, 114.0, 84.3, 74.6, 55.8, 48.1, 27.8, 25.1, -0.3; HRMS (ESI): m/z Calcd. for C₃₂H₃₃N₃O₉SiNa [M + Na]⁺: 654.1884, Found: 654.1886.

10.3.12. tert-Butyl (1'R,3R,3'S)-3'-(2-fluorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihy dro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4l**)

Prepared according to the general procedure using *tert*-butyl (E)-3-(2-(2-fluorophenyl)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (11, 110.2 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4l as a white solid in 75% yield (145.4 mg, 0.22 mmol) for two steps after flash chromatography. The dr was calculated to be 87:13 by crude

¹H-NMR analysis and the ee was determined to be 87% by HPLC on Chiralpak OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 8.54$ min, $t_{minor} = 12.27$ min, $[\alpha]_D^{25} = +16.80$ (*c* 1.00 in CH₂Cl₂), m.p. 191–193 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.74 (s, 1H), 8.58 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.56–7.53 (m, 2H), 7.32 (t, J = 8.4 Hz, 1H), 7.18–7.12 (m, 3H), 7.09 (t, J = 7.2 Hz, 1H), 5.23 (s, 1H), 4.54 (dd, J = 12.6, 6.0 Hz, 1H), 3.88 (dd, J = 19.2, 12.6 Hz, 1H), 3.62 (dd, J = 19.2, 6.0 Hz, 1H), 1.64 (s, 9H), -0.12 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 195.4, 173.2, 160.5, 149.1, 147.2 (d, $J_{CF} = 253.7$ Hz), 142.8, 142.1, 137.3, 135.7 (d, $J_{CF} = 10.2$ Hz), 131.5, 129.3, 128.6, 126.2, 125.1, 124.2, 121.2, 119.0, 116.7 (d, $J_{CF} = 24.5$ Hz), 115.8, 84.3, 52.3, 52.0 (d, $J_{CF} = 8.7$ Hz), 28.1, 26.8, -0.2; HRMS (ESI): m/z Calcd. for C₃₂H₃₂N₃O₉FSiNa [M + Na]⁺: 672.1790, Found: 672.1793.

10.3.13.

tert-Butyl

(1'R,3R,3'S)-3'-(4-fluorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihy dro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4m**)

Prepared according procedure using *tert*-butyl to the general (E)-3-(2-(4-fluorophenyl)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1m, 110.2 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4m as a white solid in 79% yield (153.9 mg, 0.23 mmol) for two steps after flash chromatography. The dr was calculated to be 90:10 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak IE column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 17.04 min, $[\alpha]_{D}^{25} = -57.69$ (c 2.00 in CH₂Cl₂), m.p. 173–175 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.74 (s, 1H), 8.59 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.83 (dd, J = 9.0, 5.4Hz, 2H), 7.32 (t, J = 8.4 Hz, 1H), 7.13 (dd, J = 7.2, 1.2 Hz, 1H), 7.12–7.09 (m, 3H), 5.25 (s, 1H), 4.52 (dd, J = 12.0, 6.0 Hz, 1H), 3.93 (dd, J = 18.6, 12.0 Hz, 1H), 3.57 $(dd, J = 19.2, 6.0 \text{ Hz}, 1\text{H}), 1.63 (s, 9\text{H}), -0.11 (s, 9\text{H}); {}^{13}\text{C-NMR} (150 \text{ MHz}, \text{CDCl}_3):$ δ 195.3, 173.2, 166.3 (d, $J_{\rm CF}$ = 255.9 Hz), 149.0, 148.0, 146.4, 142.8, 142.1, 137.2, 131.4, 131.2 (d, $J_{CF} = 9.3$ Hz), 129.5, 128.5, 126.1, 124.3, 120.8, 119.0, 116.3 (d, J_{CF} = 22.2 Hz), 115.9, 84.3, 76.7, 52.2, 47.7, 28.1, 27.8, -0.3; HRMS (ESI): m/z Calcd. for $C_{32}H_{32}N_3O_9FSiNa [M + Na]^+$: 672.1790, Found: 672.1792.

10.3.14.

(1'R,3R,3'S)-3'-(3,4-dichlorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4n**)

Prepared according the general procedure *tert*-butyl to using (E)-3-(2-(3,4-dichlorophenyl)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (**1n**, 125.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4n as a white solid in 75% yield (157.9 mg, 0.22 mmol) for two steps after flash chromatography. The dr was calculated to be 88:12 by crude ¹H-NMR analysis and the ee was determined to be 89% by HPLC on Chiralpak OD column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 11.90 min, $t_{\text{minor}} = 16.56$ min, $[\alpha]_{D}^{25} = -50.69$ (c 1.00 in CH₂Cl₂), m.p. 183–185 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.76 (s, 1H), 8.58 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.60 (dd, J = 8.4, 2.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.35 (t, J = 6.6 Hz, 1H), 7.16-7.12 (m, 2H), 5.25 (s, 1H), 4.46 (dd, J = 12.0, 6.0 Hz, 1H),3.94 (dd, J = 19.2, 12.0 Hz, 1H), 3.55 (dd, J = 18.6, 6.0 Hz, 1H), 1.62 (s, 9H), -0.12(s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 194.9, 172.9, 148.9, 148.0, 146.4, 142.7, 142.0, 139.0, 136.9, 134.5, 133.9, 131.2, 130.3, 129.7, 128.4, 127.3, 126.0, 124.4, 120.8, 119.1, 115.9, 84.4, 76.5, 52.3, 47.9, 28.1, 27.5, -0.3; HRMS (ESI): m/z Calcd. for $C_{32}H_{31}N_3O_9Cl_2SiNa [M + Na]^+$: 722.1104, Found: 722.1102.

10.3.15.

tert-Butyl

(1'R,3R,3'S)-3'-(4-bromobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihy dro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4o**)

according the *tert*-butyl Prepared to general procedure using (E)-3-(2-(4-bromophenyl)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (10, 128.5 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.12 mol). Purification of the crude product obtained int-40 as a white solid in 80% yield (169.8 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be 92:8 by crude ¹H-NMR analysis and the ee was determined to be 96% by HPLC on Chiralpak IE column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 14.23 min, t_{minor} = 16.58 min, $[\alpha]_{D}^{25}$ = -78.14 (c 2.00 in CH₂Cl₂), m.p. 204–206 °C.¹H-NMR (600 MHz, CDCl₃): δ 8.74 (s, 1H), 8.58 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 8.4 Hz, 1H), 7.13–7.09 (m, 2H), 5.24 (s, 1H),

4.50 (dd, J = 12.0, 6.0 Hz, 1H), 3.93 (dd, J = 18.6, 12.0 Hz, 1H), 3.56 (dd, J = 19.2, 6.0 Hz, 1H), 1.62 (s, 9H), -0.12 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 195.9, 173.1, 149.0, 148.0, 146.4, 142.8, 142.0, 137.1, 133.6, 132.4, 129.8, 129.6, 129.5, 128.5, 126.1, 124.3, 120.8, 119.0, 115.9, 84.3, 76.6, 52.2, 47.8, 28.1, 27.7, -0.3; HRMS (ESI): m/z Calcd. for C₃₂H₃₂N₃O₉BrSiNa [M + Na]⁺: 732.0989, Found: 732.0991.

10.3.16.

tert-Butyl

(1'R,3R,3'S)-3'-(4-methoxybenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-di hydro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4p**)

Prepared according to the general procedure using *tert*-butyl (E)-3-(2-(4-methoxyphenyl)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (**1p**, 113.8 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.12 mol). Purification of the crude product obtained int-4p as a white solid in 79% yield (158.2 mg, 0.24 mmol) for two steps after flash chromatography. The dr was calculated to be 89:11 by crude ¹H-NMR analysis and the ee was determined to be >99% by HPLC on Chiralpak OD column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 8.33 min, $\left[\alpha\right]_{D}^{25} = -171.87$ (c 2.00 in CH₂Cl₂), m.p. 178–180 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.73 (s, 1H), 8.59 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 9.0 Hz, 2H), 7.30 (t, J = 8.4 Hz, 1H), 7.12 (d, J = 6.6 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 6.90 (d, J =8.4 Hz, 2H), 5.25 (s, 1H), 4.52 (dd, *J* = 12.6, 6.0 Hz, 1H), 3.92 (dd, *J* = 19.2, 12.2 Hz, 1H), 3.86 (s, 3H), 3.58 (dd, J = 19.2, 6.0 Hz, 1H), 1.63 (s, 9H), -0.12 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 195.1, 173.4, 164.3, 149.1, 148.0, 146.3, 142.9, 142.1, 137.5, 130.8, 129.3, 128.8, 127.8, 126.1, 124.2, 120.8, 118.9, 115.9, 114.3, 84.1, 55.6, 52.1, 47.4, 28.1, 28.1, -0.2; HRMS (ESI): *m*/*z* Calcd. for C₃₃H₃₅N₃O₁₀SiNa [M + Na]⁺: 684.1989, Found: 684.1987.

10.3.17.1-(tert-Butyl)3'-ethyl5'-nitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (int-4q racemate)

Prepared according to the general procedure using *tert*-butyl (E)-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (**1a**, 95.2 mg, 0.3 mmol), 2-methyl-3-nitrobenzaldehydes (**3b**, 75.7 mg, 0.36 mmol) and DBU (9.13 mg, 0.06 mmol). Purification of the crude product obtained **int-4q** racemate as a semisolid in 47% yield (78.1 mg, 0.14 mmol) for two steps after flash chromatography.

¹H-NMR (400 MHz, CDCl₃): δ 8.26 (d, J = 1.6 Hz, 1H), 8.07 (dd, J = 8.4, 2.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.39–7.35 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 4.0 Hz, 2H), 5.10 (s, 1H), 3.94–3.81 (m, 3H), 3.49 (dd, J = 12.4, 5.6 Hz, 1H), 3.25 (dd, J = 17.2, 5.6 Hz, 1H), 1.60 (s, 9H), 0.94 (t, J = 7.2 Hz, 3H), -0.14 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 172.6, 170.3, 149.1, 146.9, 142.0, 141.7, 138.5, 129.2, 128.9, 128.6, 124.2, 122.5, 122.0, 121.8, 115.3, 84.0, 61.1, 52.9, 46.7, 29.3, 28.0, 13.5, -0.3; HRMS (ESI): *m*/*z* Calcd. for C₂₈H₃₄N₂O₈Si+Na [M + Na]⁺: 577.1982, Found: 577.1984.

Prepared according general procedure using *tert*-butyl to the (E)-3-(2-ethoxy-2-oxoethylidene)-2-oxoindoline-1-carboxylate (1a, 95.2 mg, 0.3 mmol), 2-methyl-5-nitrobenzaldehydes (3c, 75.7 mg, 0.36 mmol) and DBU (9.13 mg, 0.06 mmol). Purification of the crude product obtained int-4r racemate as a semisolid in 47% yield (78.1 mg, 0.14 mmol) for two steps after flash chromatography. ¹H-NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 8.4, 2.0 Hz, 1H), 8.15 (s, 1H), 7.87 (d, J= 8.0 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 5.96 (d, J = 7.6 Hz, 1H), 5.25 (s, 1H), 3.86–3.72 (m, 3H), 3.60 (dd, J = 18.4, 8.0 Hz, 1H), 3.40 (dd, J = 18.4, 9.2 Hz, 1H), 1.67 (s, 9H), 0.90 (t, J = 7.2 Hz, 3H), 0.18 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.8, 170.1, 148.7, 146.9, 141.5, 141.0, 139.3, 128.5, 128.4, 125.1, 123.6, 123.3, 122.3, 121.0, 114.1, 83.9, 75.0, 61.0, 55.5, 44.2, 27.8, 27.4, 13.0, -0.3; HRMS (ESI): m/z Calcd. for C₂₈H₃₄N₂O₈Si+Na [M + Na]⁺: 577.1982, Found: 577.1980.

10.3.19.

Ethyl

(1'S,3S,3'S)-1-benzyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spir o [indoline-3,2'-naphthalene]-3'-carboxylate (**int-4a'**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetate (**2a**, 92.2 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.06 mol). Purification of the crude product obtained **int-4a'** as a white solid in 51% yield (90.8 mg, 0.15 mmol) for two steps after flash

chromatography. The dr was calculated to be 91:9 by crude ¹H-NMR analysis and the ee was determined to be 89% by HPLC on Chiralpak OD column (25% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 10.40$ min, $t_{major} = 16.35$ min, $[\alpha]_{D}^{25} = +55.09$ (*c* 1.00 in CH₂Cl₂), m.p. 133–135 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.56 (s, 1H), 7.38–7.22 (m, 7H), 7.05 (t, J = 7.2 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 5.17 (s, 1H), 4.88 (s, 2H), 3.96 (dd, J = 16.0, 4.0 Hz, 1H), 3.68 (q, J = 7.2 Hz, 2H), 3.33–3.20 (m, 2H), 0.60 (t, J = 7.2 Hz, 3H), -0.21 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.5, 170.9, 148.4, 146.8, 144.7, 144.3, 137.5, 135.8, 129.6, 129.6, 128.9, 128.1, 127.9, 123.8, 123.6, 122.9, 118.8, 109.5, 74.6, 61.3, 54.8, 46.8, 44.4, 25.7, 13.5, -0.3; HRMS (ESI): *m*/*z* Calcd. for C₃₀H₃₁N₃O₈SiNa [M + Na]⁺: 612.1778, Found: 612.1779.

10.3.20.

Ethyl

(1'S,3S,3'S)-1-benzyl-5-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4b'**)

Prepared according the procedure to general using ethyl (E)-2-(1-benzyl-5-fluoro-2-oxoindolin-3-ylidene)acetate (2b, 97.6 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4b' as a white solid in 59% yield (107.6 mg, 0.18 mmol) for two steps after flash chromatography. The dr was calculated to be 90:10 by crude ¹H-NMR analysis and the ee was determined to be 89% by HPLC on Chiralpak OD column (25% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 10.23$ min, $t_{major} = 16.64$ min, $[\alpha]_{D}^{25} = +84.39$ (c 1.00 in CH₂Cl₂), m.p. 105–107 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.55 (s, 1H), 7.34–7.28 (m, 5H), 7.04 (dd, J = 8.0, 2.8 Hz, 1H), 6.96 (td, J = 8.8, 2.4 Hz, 1H), 6.69 (q, J = 4.4 Hz, 1H), 5.17 (s, 1H), 4.87 (s, 2H), 3.98 (dd, J =15.6, 3.2 Hz, 1H), 3.84-3.72 (m, 2H), 3.32-3.21 (m, 2H), 0.70 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.1, 170.7, 159.2 (d, J_{CF} = 241.1 Hz), 148.4, 146.8, 143.8, 140.7, 137.2, 135.4, 131.1 (d, $J_{CF} = 7.4$ Hz), 129.0, 128.1, 127.8, 123.9, 118.9, 115.7 (d, $J_{CF} = 23.2$ Hz), 112.0 (d, $J_{CF} = 24.3$ Hz), 110.0 (d, $J_{CF} = 7.6$ Hz), 74.4, 61.4, 55.1, 46.5, 44.5, 25.8, 13.6, -0.3; HRMS (ESI): m/z Calcd. for $C_{30}H_{30}N_{3}O_{8}FSiNa [M + Na]^{+}: 630.1684$, Found: 630.1683.

(1'S,3S,3'S)-1-benzyl-7-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4c'**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-7-fluoro-2-oxoindolin-3-ylidene)acetate (2c, 97.6 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4c' as a white solid in 55% yield (100.7 mg, 0.17 mmol) for two steps after flash chromatography. The dr was calculated to be 89:11 by crude ¹H-NMR analysis and the ee was determined to be 73% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 7.00 \text{ min}$, $t_{maior} = 14.37 \text{ min}$, $[\alpha]_{D}^{25} = +49.74$ (c 1.00 in CH₂Cl₂), m.p. 84–86 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.54 (s, 1H), 7.41-7.28 (m, 5H), 7.0-7.01 (m, 3H), 5.13 (s, 1H), 5.02 (dd, J = 23.2, 15.2 Hz, 2H), 3.95 (dd, J = 15.6, 3.2 Hz, 1H), 3.72-3.62 (m, 2H),3.30-3.18 (m, 2H), 0.61 (t, J = 7.2 Hz, 3H), -0.19 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.3, 170.6, 148.4, 147.6 (d, J_{CF} = 243.6 Hz), 146.8, 143.9, 137.3, 137.0, 132.8 (d, J_{CF} = 3.5 Hz), 131.4 (d, J_{CF} = 8.5 Hz), 128.7, 128.2 (d, J_{CF} = 1.5 Hz), 128.0, 123.8, 123.6, 123.6, 119.4 (d, $J_{CF} = 3.2$ Hz), 118.9, 117.8 (d, $J_{CF} = 19.5$ Hz), 74.8, 61.3, 46.9, 45.9 (d, $J_{CF} = 4.5$ Hz), 25.8, 13.5, -0.3; HRMS (ESI): m/z Calcd. for $C_{30}H_{30}N_3O_8FSiNa [M + Na]^+: 630.1684$, Found: 630.1685.

10.3.22.

Ethyl

(1'S,3S,3'S)-1-benzyl-5-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4d**')

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-5-chloro-2-oxoindolin-3-ylidene)acetate (2d, 102.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4d' as a white solid in 58% yield (107.2 mg, 0.17 mmol) for two steps after flash chromatography. The dr was calculated to be 94:6 by crude ¹H-NMR analysis and the ee was determined to be 86% by HPLC on Chiralpak OD column (10% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, tminor = 15.31 min, tmajor = 18.68 min, $[\alpha]_{D}^{25} = +153.03$ (c 1.00 in CH₂Cl₂), m.p. 104–106 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.55 (s, 1H), 7.34–7.21 (m, 7H), 6.69 (d, J = 8.4 Hz, 1H), 5.18 (s, 1H), 4.86 (s, 2H), 3.98 (dd, J = 16.0, 4.0 Hz, 1H), 3.85–3.74 (m, 2H), 3.32–3.20 (m, 2H),

0.72 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.9, 170.6, 148.3, 146.7, 143.7, 143.1, 137.2, 135.2, 131.3, 129.3, 129.0, 128.2, 128.2, 127.8, 124.1, 123.6, 119.0, 110.4, 74.3, 61.5, 54.8, 46.5, 44.5, 25.8, 13.6, -0.3; HRMS (ESI): m/z Calcd. for C₃₀H₃₀N₃O₈ClSiNa [M + Na]⁺: 646.1388, Found: 646.1390.

10.3.23.

Ethyl

(1'S,3S,3'S)-1-benzyl-6-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4e'**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-6-chloro-2-oxoindolin-3-ylidene)acetate (2e, 102.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4e' as a white solid in 54% yield (101.4 mg, 0.16 mmol) for two steps after flash chromatography. The dr was calculated to be 92:8 by crude ¹H-NMR analysis and the ee was determined to be 75% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 9.18$ min, $t_{major} = 11.66$ min, $[\alpha]_{D}^{25} = +59.34$ (c 1.00 in CH₂Cl₂), m.p. 106–108 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.54 (s, 1H), 7.3–7.29 (m, 5H), 7.16 (d, J = 8.0 Hz, 1H), 7.04 (dd, J = 8.0, 2.0 Hz, 1H), 6.77 (d, J = 1.6 Hz, 1H), 5.13 (s, 1H), 4.85 (s, 2H), 3.96 (dd, J =16.0, 3.6 Hz, 1H), 3.74 (q, J = 7.2 Hz, 2H), 3.31–3.19 (m, 2H), 0.70 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.3, 170.6, 148.3, 146.7, 145.9, 143.8, 137.2, 135.4, 135.1, 129.0, 128.2, 127.9, 127.7, 124.4, 123.8, 122.4, 118.9, 109.9, 74.3, 61.4, 54.4, 46.5, 44.4, 25.7, 13.6, -0.3; HRMS (ESI): m/z Calcd. for $C_{30}H_{30}N_3O_8ClSiNa [M + Na]^+: 646.1388$, Found: 646.1385.

10.3.24.

Ethyl

(1'S,3S,3'S)-1-benzyl-4-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4f**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-4-bromo-2-oxoindolin-3-ylidene)acetate (**2f**, 115.9 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.06 mol). Purification of the crude product obtained **int-4f** as a white solid in 55% yield (110.3 mg, 0.16 mmol) for two steps after flash chromatography. The dr was calculated to be >95:5 by crude ¹H-NMR analysis and the ee was determined to be 85% by HPLC on Chiralpak AD column (30%)

2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 5.15$ min, $t_{minor} = 23.35$ min, $[\alpha]_{D}^{25} = -45.14$ (*c* 1.00 in CH₂Cl₂), m.p. 152–154 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 8.56 (s, 1H), 7.35–7.08 (m, 7H), 6.68 (d, J = 6.8 Hz, 1H), 5.80 (s, 1H), 5.12 (d, J = 15.6 Hz, 1H), 4.56 (d, J = 16.0 Hz, 1H), 4.32 (dd, J = 10.0, 6.4 Hz, 1H), 4.13–4.10 (m, 1H), 3.99–3.90 (m, 2H), 3.54 (dd, J = 18.0, 6.4 Hz, 1H), 0.97 (t, J =7.2 Hz, 3H), -0.11 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.8, 170.4, 148.1, 146.8, 146.3, 143.0, 137.4, 135.1, 130.8, 128.7, 127.7, 127.4, 126.9, 126.8, 125.3, 118.7, 118.2, 108.5, 71.7, 61.3, 54.9, 43.9, 42.4, 26.2, 13.7, -0.3; HRMS (ESI): *m/z* Calcd. for C₃₀H₃₀N₃O₈BrSiNa [M + Na]⁺: 690.0883, Found: 690.0881.

10.3.25.

Ethyl

(1'S,3S,3'S)-1-benzyl-5-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4g'**)

Prepared according the general procedure using ethyl to (E)-2-(1-benzyl-5-bromo-2-oxoindolin-3-ylidene)acetate (2g, 115.9 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4g' as a white solid in 60% yield (120.1 mg, 0.18 mmol) for two steps after flash chromatography. The dr was calculated to be 93:7 by crude ¹H-NMR analysis and the ee was determined to be 85% by HPLC on Chiralpak OD column (10% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 14.65 \text{ min}$, $t_{major} = 19.58 \text{ min}$, $[\alpha]_{D}^{25} = +26.15$ (c 1.00 in CH₂Cl₂), m.p. 161–163 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 8.55 (s, 1H), 7.39–7.28 (m, 7H), 6.64 (d, *J* = 8.4 Hz, 1H), 5.18 (s, 1H), 4.86 (s, 2H), 3.98 (dd, J = 16.4, 4.0 Hz, 1H), 3.86–3.75 (m, 2H), 3.32–3.18 (m, 2H), 0.73 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.8, 170.6, 148.3, 146.7, 143.7, 143.6, 137.2, 135.2, 132.3, 131.7, 129.0, 128.2, 127.7, 126.8, 123.8, 119.0, 115.2, 110.8, 74.3, 61.5, 54.7, 46.5, 44.4, 25.8, 13.6, -0.3; HRMS (ESI): m/z Calcd. for C₃₀H₃₀N₃O₈BrSiNa [M + Na]⁺: 690.0883, Found: 690.0880.

10.3.26.

Ethvl

(1'S,3S,3'S)-1-benzyl-6-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro -1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4h'**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-6-bromo-2-oxoindolin-3-ylidene)acetate (**2h**, 115.9 mg, 0.3 mmol),

3a (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.06 mol). Purification of the crude product obtained **int-4h'** as a white solid in 59% yield (118.5 mg, 0.18 mmol) for two steps after flash chromatography. The dr was calculated to be 91:9 by crude ¹H-NMR analysis and the ee was determined to be 80% by HPLC on Chiralpak AD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 10.69$ min, $t_{major} = 13.53$ min, $[\alpha]_{D}^{25} = +45.44$ (*c* 1.00 in CH₂Cl₂), m.p. 89–91 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.77 (s, 1H), 8.53 (s, 1H), 7.35–7.28 (m, 5H), 7.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.92 (s, 1H), 5.13 (s, 1H), 4.85 (s, 2H), 3.95 (dd, J = 16.0, 3.6 Hz, 1H), 3.74 (q, J = 7.2 Hz, 2H), 3.31–3.19 (m, 2H), 0.71 (t, J = 7.2 Hz, 3H), -0.16 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.2, 170.6, 146.7, 146.0, 143.7, 137.2, 135.1, 129.0, 128.5, 128.2, 127.7, 125.5, 124.7, 123.8, 123.1, 118.9, 112.6, 74.3, 61.4, 54.5, 46.4, 44.4, 25.7, 13.6, -0.3; HRMS (ESI): m/z Calcd. for C₃₀H₃₀N₃O₈BrSiNa [M + Na]⁺: 690.0883, Found: 690.0884.

10.3.27.

Ethyl

(1'S,3S,3'S)-1-benzyl-5,5',7'-trinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-s piro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4i'**)

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-5-nitro-2-oxoindolin-3-ylidene)acetate (2i, 105.7 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4i' as a white solid in 53% yield (100.6 mg, 0.16 mmol) for two steps after flash chromatography. The dr was calculated to be 90:10 by crude ¹H-NMR analysis and the ee was determined to be 92% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{major} = 7.75$ min, $t_{minor} = 12.00$ min, $[\alpha]_{D}^{25} = -20.85$ (c 1.00 in CH₂Cl₂), m.p. 111–113 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.89 (s, 1H), 8.44 (s, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.41–7.30 (m, 5H), 6.80 (d, J =8.4 Hz, 1H), 6.69 (s, 1H), 5.42 (d, J = 15.6 Hz, 1H), 5.31 (s, 1H), 4.68 (d, J = 16.0 Hz, 1H), 3.99 (dd, *J* = 18.4, 7.6 Hz, 1H), 3.89 (t, *J* = 7.6 Hz, 1H), 3.82–3.72 (m, 2H), 3.61 $(dd, J = 18.4, 7.6 Hz, 1H), 0.80 (t, J = 7.2 Hz, 3H), 0.17 (s, 9H); {}^{13}C-NMR (100 MHz, 100 MHz)$ CDCl₃): δ 177.4, 169.1, 149.7, 148.3, 146.2, 142.7, 142.5, 136.0, 133.7, 128.6, 127.8, 127.1, 126.8, 125.6, 124.2, 119.2, 118.9, 108.3, 73.9, 61.3, 54.5, 44.4, 44.3, 25.2, 13.2, -0.2; HRMS (ESI): m/z Calcd. for C₃₀H₃₀N₄O₁₀SiNa [M + Na]⁺: 657.1629, Found: 657.1628.

Prepared according to the general procedure using ethyl (E)-2-(1-benzyl-5-methyl-2-oxoindolin-3-ylidene)acetate (2j, 96.4 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4j' as a white solid in 47% yield (86.5 mg, 0.14 mmol) for two steps after flash chromatography. The dr was calculated to be 89:11 by crude ¹H-NMR analysis and the ee was determined to be 77% by HPLC on Chiralpak OD column (10% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 12.81 \text{ min}$, $t_{major} = 16.61 \text{ min}$, $[\alpha]_{D}^{25} = +50.99$ (c 1.00 in CH₂Cl₂), m.p. 90–92 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.56 (s, 1H), 7.36–7.25 (m, 5H), 7.08 (s, 1H), 7.33 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 5.16 (s, 1H), 4.86 (dd, J = 23.6, 15.6 Hz, 2H), 3.96 (dd, J = 16.0, 4.0 Hz, 1H), 3.75-3.66 (m, 2H), 3.32-3.18 (m, 2H), 2.31 (s, 3H), 0.62 (t, J = 7.2Hz, 3H), -0.20 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.4, 170.9, 148.4, 146.7, 144.4, 142.2, 137.5, 135.9, 132.5, 129.7, 129.7, 129.0, 128.0, 128.0, 124.4, 123.8, 118.8, 109.3, 74.6, 61.2, 54.8, 46.7, 44.4, 25.9, 21.3, 13.5, -0.3; HRMS (ESI): m/z Calcd. for $C_{31}H_{33}N_3O_8SiNa [M + Na]^+$: 626.1935, Found: 626.1931.

10.3.29.

(1'S,3S,3'S)-3'-Benzoyl-1-benzyl-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H -spiro[indoline-3,2'-naphthalen]-2-one (**int-4k'**)

Prepared according to the general procedure using (E)-1-benzyl-3-(2-oxo-2-phenylethylidene)indolin-2-one (2k, 101.8 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4k' as a white solid in 58% yield (108.1 mg, 0.17 mmol) for two steps after flash chromatography. The dr was calculated to be 91:9 by crude ¹H-NMR analysis and the ee was determined to be 95% by HPLC on Chiralpak OD column (25% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 11.24 min, t_{major} = 18.78 min, $[\alpha]_{D}^{25} = +36.34$ (c 1.00 in CH₂Cl₂), m.p. 146–148 °C. ¹H-NMR (400 MHz, CDCl₃): δ 8.81 (s, 1H), 8.59 (s, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.32–7.12 (m, 10H), 7.04–6.96 (m, 2H), 6.32 (d, J = 7.2 Hz, 1H), 5.17 (s, 1H), 5.03 (d, J = 15.2 Hz, 1H), 4.10–3.95 (m,

3H), 3.47 (dd, J = 16.8, 11.6 Hz, 1H), -0.27 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 199.3, 177.1, 148.7, 146.9, 144.6, 144.4, 138.4, 137.0, 135.7, 133.4, 129.5, 129.2, 128.7, 128.6, 128.3, 128.2, 128.1, 125.1, 123.9, 123.3, 119.1, 109.3, 75.2, 55.3, 49.2, 44.7, 26.0, -0.2; HRMS (ESI): m/z Calcd. for C₃₄H₃₁N₃O₇SiNa [M + Na]⁺: 644.1829, Found: 644.1832.

10.3.30.

(1'S,3S,3'S)-1-Benzyl-3'-(2-fluorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-di hydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**int-4l**')

according to the Prepared general procedure using (E)-1-benzyl-3-(2-(2-fluorophenyl)-2-oxoethylidene)indolin-2-one (21, 107.2 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4l' as a white solid in 56% yield (107.8 mg, 0.17 mmol) for two steps after flash chromatography. The dr was calculated to be 86:14 by crude ¹H-NMR analysis and the ee was determined to be 99% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 7.98 min, t_{major} = 19.94 min, $[\alpha]_{D}^{25} = +261.51$ (c 2.00 in CH₂Cl₂), m.p. 102–104 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.81 (s, 1H), 8.58 (s, 1H), 7.34 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 7.2 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 7.19 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.01 (t, J =7.8 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.82 (dd, J = 10.8, 8.4 Hz, 1H), 6.42 (d, J = 7.8Hz, 1H), 5.25 (s, 1H), 4.98 (d, J = 15.6 Hz, 1H), 4.14–4.10 (m, 3H), 4.05 (dd, J =16.8, 4.8 Hz, 1H), 3.43 (dd, J = 16.8, 10.8 Hz, 1H), -0.26 (s, 9H); ¹³C-NMR (150) MHz, CDCl₃): δ 197.3, 176.4, 147.7 (d, J_{CF} = 276.2 Hz), 144.5, 137.9, 135.7, 134.7 (d, $J_{\rm CF} = 9.3$ Hz), 130.7, 129.5, 129.1, 129.0, 128.7, 128.1, 128.0, 128.0, 127.9, 124.8, 124.4, 124.1, 123.2, 122.5, 119.1, 116.5 (d, $J_{CF} = 22.8$ Hz), 109.3, 74.8, 60.8, 54.6, 51.7, -0.2; HRMS (ESI): m/z Calcd. for C₃₄H₃₀N₃O₇FSiNa [M + Na]⁺: 662.1735, Found: 662.1732.

10.3.31.

(1'S,3S,3'S)-1-Benzyl-3'-(4-fluorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-di hydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**int-4m'**)

Prepared according to the general procedure using (*E*)-1-benzyl-3-(2-(4-fluorophenyl)-2-oxoethylidene)indolin-2-one (**2m**, 107.2 mg,
0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.06 mol). Purification of the crude product obtained **int-4m'** as a white solid in 59% yield (113.9 mg, 0.18 mmol) for two steps after flash chromatography. The dr was calculated to be 90:10 by crude ¹H-NMR analysis and the ee was determined to be 98% by HPLC on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 6.49$ min, $t_{major} = 18.86$ min, $[\alpha]_{D}^{25} = +209.32$ (*c* 2.00 in CH₂Cl₂), m.p. 99–101 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.86 (s, 1H), 8.39 (s, 1H), 7.40 (dd, J = 9.0, 5.4 Hz, 2H), 7.27 (dd, J = 6.6, 3.0 Hz, 3H), 7.15 (dd, J = 6.6, 2.4 Hz, 2H), 6.99 (t, J = 7.8 Hz, 1H), 6.77 (t, J = 9.0 Hz, 2H), 6.66 (t, J = 7.8 Hz, 1H), 6.45 (d, J = 7.8 Hz, 1H), 5.54 (d, J = 7.2 Hz, 1H), 5.39 (s, 1H), 4.78–4.74 (m, 2H), 4.70 (d, J = 15.6 Hz, 1H), 4.10 (dd, J = 17.4, 4.8 Hz, 1H), 3.32 (dd, J = 17.4, 7.8 Hz, 1H), 0.12 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 196.6, 177.6, 165.7 (d, $J_{CF} = 254.3$ Hz), 148.8, 146.3, 144.2, 143.9, 138.6, 135.0, 132.7, 130.8 (d, $J_{CF} = 21.8$ Hz), 109.0, 73.9, 55.9, 47.1, 44.5, 25.8, 0.2; HRMS (ESI): m/z Calcd. for C₃₄H₃₀N₃O₇FSiNa [M + Na]⁺: 662.1735, Found: 662.1730.

10.3.32.

(1'S,3S,3'S)-1-Benzyl-3'-(3,4-dichlorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3', 4'-dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**int-4n'**)

Prepared according to the general procedure using (E)-1-benzyl-3-(2-(3,4-dichlorophenyl)-2-oxoethylidene)indolin-2-one (2n, 122.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4n' as a white solid in 56% yield (114.3 mg, 0.17 mmol) for two steps after flash chromatography. The dr was calculated to be 93:7 by crude ¹H-NMR analysis and the ee was determined to be 97% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 6.52 min, t_{major} = 21.28 min, $[\alpha]_{D}^{25} = +129.38$ (c 2.00 in CH₂Cl₂), m.p. 109–111 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.82 (s, 1H), 8.58 (s, 1H), 7.34–7.29 (m, 4H), 7.28–7.26 (m, 2H), 7.14 (d, J = 7.8 Hz, 1H), 7.10 (dd, J = 18.0, 8.4 Hz, 2H), 7.05–7.01 (m, 2H), 6.43 (d, J = 7.8 Hz, 1H), 5.11 (s, 1H), 5.08 (d, J = 15.0 Hz, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.98–3.94 (m, 2H), 3.45 (dd, J = 16.8, 13.2 Hz, 1H), -0.27 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 197.1, 176.9, 148.6, 147.0, 144.4, 144.3, 138.0, 137.9, 136.4, 135.5, 133.4, 130.6, 130.1, 129.8, 129.2, 128.4, 128.3, 128.2, 127.0, 125.0, 123.8, 123.5, 119.2, 109.4,

75.2, 55.2, 49.5, 44.8, 25.7, -0.2; HRMS (ESI): *m*/*z* Calcd. for C₃₄H₂₉N₃O₇Cl₂SiNa [M + Na]⁺: 712.1050, Found: 712.1049.

10.3.33.

(1'S,3S,3'S)-1-Benzyl-3'-(4-bromobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-di hydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**int-4o'**)

Prepared according the to general procedure using (E)-1-benzyl-3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one (20, 125.5 mg, 0.3 mmol), 3a (75.7 mg, 0.36 mmol) and C7 (24.8 mg, 0.06 mol). Purification of the crude product obtained int-4o' as a white solid in 61% yield (125.7 mg, 0.18 mmol) for two steps after flash chromatography. The dr was calculated to be 92:8 by crude ¹H-NMR analysis and the ee was determined to be 93% by HPLC on Chiralpak OD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 6.86 min, t_{major} = 23.91 min, $[\alpha]_{D}^{25} = +207.72$ (c 2.00 in CH₂Cl₂), m.p. 108–110 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.81 (s, 1H), 8.58 (s, 1H), 7.32 (d, J = 6.6 Hz, 3H), 7.26–7.21 (m, 5H), 7.16 (d, J = 6.6 Hz, 1H), 7.08 (dd, J = 15.6, 7.8 Hz, 3H), 7.00 (t, J = 7.2 Hz, 1H), 6.42 (d, J = 7.8 Hz, 1H), 5.12 (s, 1H), 4.96 (d, J = 15.0 Hz, 1H), 4.19 (d, J = 15.6 Hz, 1H), 4.01 (dd, J = 11.4, 3.6 Hz, 1H), 3.95 (d, J = 16.8 Hz, 1H), 3.46 (dd, J = 15.6, 12.0 Hz, 1H), -0.27 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 198.2, 177.0, 148.6, 146.9, 144.4, 144.3, 138.2, 135.6, 135.5, 131.9, 129.6, 129.6, 129.2, 128.7, 128.4, 128.3, 128.2, 125.1, 123.8, 123.3, 119.1, 109.4, 75.2, 55.3, 49.1, 44.7, 25.8, -0.2; HRMS (ESI): *m*/*z* Calcd. for $C_{34}H_{30}N_3O_7BrSiNa [M + Na]^+$: 722.0934, Found: 722.0932.

10.3.34.

(1'S,3S,3'S)-1-Benzyl-3'-(4-methoxybenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**int-4p'**)

Prepared according to the general procedure using (E)-1-benzyl-3-(2-(4-methoxyphenyl)-2-oxoethylidene)indolin-2-one (**2p**, 110.8 mg, 0.3 mmol), **3a** (75.7 mg, 0.36 mmol) and **C7** (24.8 mg, 0.06 mol). Purification of the crude product obtained **int-4p'** as a white solid in 54% yield (106.2 mg, 0.16 mmol) for two steps after flash chromatography. The dr was calculated to be 91:9 by crude ¹H-NMR analysis and the ee was determined to be 96% by HPLC on Chiralpak OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 7.77 \text{ min}, t_{major} =$

16.34 min, $[\alpha]_{D}^{25} = +138.38$ (*c* 1.00 in CH₂Cl₂), m.p. 103–105 °C. ¹H-NMR (600 MHz, CDCl₃): δ 8.86 (s, 1H), 8.41 (s, 1H), 7.48 (d, *J* = 9.0 Hz, 2H), 7.25 (dd, *J* = 6.6, 4.2 Hz, 3H), 7.10 (dd, *J* = 6.6, 2.4 Hz, 2H), 6.99 (dd, *J* = 8.4, 7.2 Hz, 1H), 6.68–6.66 (m, 3H), 6.44 (d, *J* = 7.8 Hz, 1H), 5.66 (d, *J* = 7.8 Hz, 1H), 5.41 (s, 1H), 4.86 (d, *J* = 15.6 Hz, 1H), 4.75 (dd, *J* = 7.2, 6.0 Hz, 1H), 4.66 (d, *J* = 15.6 Hz, 1H), 4.05 (dd, *J* = 18.0, 6.0 Hz, 1H), 3.78 (s, 3H), 3.35 (dd, *J* = 17.4, 7.2 Hz, 1H), 0.13 (s, 9H); ¹³C-NMR (150 MHz, CDCl₃): δ 196.1, 177.6, 163.7, 148.7, 146.2, 144.2, 143.8, 138.8, 135.1, 130.6, 129.1, 128.8, 128.5, 127.7, 127.4, 125.7, 125.0, 124.2, 122.5, 119.0, 113.7, 109.0, 74.1, 55.9, 55.6, 46.4, 44.4, 26.3, 0.2; HRMS (ESI): *m/z* Calcd. for C₃₅H₃₃N₃O₈SiNa [M + Na]⁺: 674.1935, Found: 674.1934.

10.3.35.

Ethyl

1-benzyl-5'-nitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-n aphthalene]-3'-carboxylate (**int-4q'** racemate)

Prepared according to the general procedure using ethyl (*E*)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetate 92.2 (2a,mg, 0.3 mmol), 2-methyl-3-nitrobenzaldehydes 3b (59.5 mg, 0.36 mmol) and DBU (9.13 mg, 0.06 mmol). Purification of the crude product obtained int-4q' racemate as a semisolid in 52% yield (84.7 mg, 0.16 mmol) for two steps after flash chromatography. ¹H-NMR (400 MHz, CDCl₃) δ 8.16 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 8.08 (d, J = 2.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.36-7.25 (m, 5H), 7.19 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.6 Hz,1H), 6.98 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.6 Hz, 1H), 4.95 (d, J = 15.6 Hz, 1H), 4.79 (d, J = 15.6 Hz, 1H), 4.70 (s, 1H), 3.99-3.91 (m, 1H), 3.86-3.78 (m, 2H), 3.71 (dd, J= 17.2, 12.0 Hz, 1H, 3.35 (dd, J = 16.8, 6.0 Hz, 1H), 0.86 (t, J = 7.2 Hz, 3H), -0.03(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.9, 171.6, 145.9, 143.2, 142.5, 137.0, 135.4, 128.9, 128.8, 128.3, 128.2, 127.2, 127.0, 125.2, 123.9, 122.5, 121.5, 108.5, 72.2, 60.5, 52.4, 43.3, 41.9, 28.8, 13.2, -0.1; HRMS (ESI): m/z Calcd. for $C_{30}H_{32}N_2O_6Si^+Na [M + Na]^+: 567.1927$, Found: 567.1929.

10.3.36.

Ethyl

1-benzyl-7'-nitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-n aphthalene]-3'-carboxylate (**int-4r'** racemate)

Prepared according the procedure using ethyl to general (*E*)-2-(1-benzyl-2-oxoindolin-3-ylidene)acetate 92.2 (2a,mg, 0.3 mmol), 2-methyl-5-nitrobenzaldehydes 3c (59.5 mg, 0.36 mmol) and DBU (9.13 mg, 0.06 mmol). Purification of the crude product obtained int-4r' racemate as a semisolid in 58% yield (94.7 mg, 0.17 mmol) for two steps after flash chromatography. ¹H-NMR (400 MHz, CDCl₃): δ 8.21 (dd, J = 8.4, 2.4 Hz, 1H), 8.14 (d, J = 1.2 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.35–7.27 (m, 3H), 7.06 (t, J = 8.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 6.61 (t, J = 7.6 Hz, 1H), 5.63 (d, J = 7.6 Hz, 1H), 5.25 (d, J =4.8 Hz, 2H), 4.69 (d, J = 15.6 Hz, 1H), 3.88 (dd, J = 9.2, 5.6 Hz, 1H), 3.63-3.54 (m, 3H), 3.26 (dd, J = 17.2, 9.2 Hz, 1H), 0.52 (t, J = 7.2 Hz, 3H), 0.15 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 178.1, 170.1, 147.1, 144.5, 142.8, 140.5, 135.7, 128.6, 128.6, 128.3, 127.7, 127.6, 126.8, 124.1, 122.6, 122.0, 120.8, 108.7, 74.2, 60.9, 56.1, 44.9, 44.3, 28.1, 13.2, 0.2; HRMS (ESI): m/z Calcd. for C₃₀H₃₂N₂O₆Si⁺Na [M + Na]⁺: 567.1927, Found: 567.1931.

10.4. General procedure for the synthesis of 4 (Scheme S2)

Scheme S2 General procedure for the synthesis of 4.

To a solution of **int-4** (50 mg) in CH_2Cl_2 was added HCl/EtOAc (5–10 mL) at room temperature until the reaction was completed based on TLC. The reaction was quenched by EtOAc and water. The organic layer was dry by Na₂SO₄ and concentrated, which was purified by chromatography on silica gel to give the deprotected spiro-oxindole derivative **4** which was further analyzed by ¹H-NMR, ^{13}C -NMR, HPLC and HRMS.

10.4.1.

Ethyl

(1'R,3R,3'S)-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naph thalene]-3'-carboxylate (4a)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'*H*-spiro[indoli ne-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4a**, 50 mg) and HCl/EtOAc (5–10 mL).

Purification of the crude product obtained **4a** as a white solid in 84% yield (30.1 mg, 0.07 mmol) after flash chromatography, $[a]_{D}^{25} = +58.26$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 10.43 (s, 1H, NH), 8.68 (s, 1H, ArH), 8.46 (s, 1H, ArH), 7.31 (d, *J*=7.6 Hz, 1H, ArH), 7.22 (t, *J*=7.6 Hz, 1H, ArH), 6.95 (t, *J*=7.6 Hz, 1H, ArH), 6.84 (d, *J*=7.6 Hz, 1H, ArH), 6.40 (d, *J*=6.4 Hz, 1H, CHOH), 5.11 (d, *J*=6.0 Hz, 1H, CHOH), 3.64–3.55 (m, 3H, CH₃CH₂, COCH), 3.40 (dd, *J*=16.4, 12.0 Hz, 1H, H of CH₂), 3.06 (dd, *J*=11.6, 4.4 Hz, 1H, H of CH₂), 0.66 (t, *J*=7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (100 MHz, DMSO-*d*₆): δ 178.4, 171.2, 148.3, 146.0, 145.5, 144.1, 138.9, 131.3, 128.9, 124.2, 123.2, 121.6, 118.3, 109.5, 71.6, 60.5, 55.0, 46.4, 25.7, 13.7; HRMS (ESI): *m/z* Calcd. for C₂₀H₁₇N₃O₈Na [M+Na]⁺: 450.0913, Found 450.0916. HPLC analysis: MeOH-H₂O (60:40), 11.27 min, HPLC purity 99.7%.

10.4.2.

Ethyl

(1'R,3R,3'S)-5-fluoro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4b**)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-5-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-sp iro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4b**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4b** as a white solid in 85% yield (30.8 mg, 0.07 mmol) after flash chromatography, $[\alpha]_{D}^{25} = -18.61$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.60 (s, 1H, NH), 8.72 (s, 1H, ArH), 8.43 (s, 1H, ArH), 7.07 (td, *J* = 9.6, 2.4 Hz, 1H, ArH), 6.94 (dd, *J* = 9.0, 3.0 Hz, 1H, ArH), 6.83 (dd, *J* = 8.4, 4.2 Hz, 1H, ArH), 6.54 (d, *J* = 6.6 Hz, 1H, CHOH), 4.78 (d, *J* = 6.6 Hz, 1H, CHOH), 3.91–3.84 (m, 2H, CH₃CH₂), 3.61–3.56 (m, 2H, COCH, H of CH₂), 3.48–3.42 (m, 1H, H of CH₂), 0.87 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 176.4, 171.3, 157.3 (d, *J*_{CF} = 234.2 Hz), 148.0, 145.4, 142.1, 138.6, 137.3, 131.2 (d, *J*_{CF} = 8.3 Hz), 127.6, 118.7, 114.6 (d, *J*_{CF} = 23.0 Hz), 113.7 (d, *J*_{CF} = 24.8 Hz), 109.6 (d, *J*_{CF} = 7.7 Hz), 68.7, 60.3, 52.2, 41.2, 25.5, 13.3; HRMS (ESI): *m*/*z* Calcd. for C₂₀H₁₆N₃O₈FNa [M + Na]⁺: 468.0819, Found 468.0821. HPLC analysis: MeOH-H₂O (60:40), 12.80 min, HPLC purity 97.5%.

(1'R,3R,3'S)-7-fluoro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4***c*)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-7-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-sp iro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4c**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4c** as a white solid in 82% yield (29.5 mg, 0.07 mmol) after flash chromatography, $[\alpha]_{D}^{25} = +18.87$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 11.23 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.38 (s, 1H, ArH), 8.19 (s, 1H, CHOH), 7.09 (t, *J* = 7.8 Hz, 1H, ArH), 6.87 (d, *J* = 6.6 Hz, 1H, ArH), 6.67 (td, *J* = 7.8, 4.8 Hz, 1H, ArH), 6.25 (d, *J* = 7.8 Hz, 1H, CHOH), 5.35 (d, *J* = 7.2 Hz, 1H, COCH), 4.15–4.10 (m, 2H, CH₃CH₂), 3.40–3.30 (m, 2H, CH₂), 1.16 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 178.8, 163.8, 147.6, 146.7, 146.3 (d, *J*_{CF} = 240.8 Hz), 143.1, 136.8, 130.3, 129.9 (d, *J*_{CF} = 12.3 Hz), 129.7, 128.5 (d, *J*_{CF} = 2.1 Hz), 123.4, 121.7 (d, *J*_{CF} = 5.1 Hz), 119.5, 119.2, 116.0 (d, *J*_{CF} = 17.1 Hz), 72.0, 61.5, 56.1, 13.5; HRMS (ESI): *m/z* Calcd. for C₂₀H₁₆N₃O₈FNa [M + Na]⁺: 468.0819, Found 468.0822. HPLC analysis: MeOH-H₂O (60:40), 14.20 min, HPLC purity 99.3%.

10.4.4. Ethyl (1'R,3R,3'S)-5-chloro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-

3,2'-naphthalene]-3'-carboxylate (4d)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-5-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-s piro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4d**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4d** as a white solid in 87% yield (31.6 mg, 0.07 mmol) after flash chromatography, the ee was determined to be 99% by HPLC on Chiralpak IE column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 33.30$ min, $t_{major} = 36.78$ min, $[a]_D^{25} = -75.99$ (*c* 0.10 in CH₂Cl₂), *ent*-4d: +67.89, m.p. >220 °C. ¹H-NMR (400 MHz, DMSO-*d*₆): δ 10.48 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.53 (s, 1H, ArH), 7.60 (d, *J* = 2.0 Hz, 1H, ArH), 7.26 (dd, *J* = 8.4, 2.0 Hz, 1H, ArH), 6.79 (d, *J* = 8.0 Hz, 1H, ArH), 6.62 (d, *J* = 6.8 Hz, 1H, CHOH), 5.25 (d, *J* = 6.8 Hz, 1H, CHOH), 3.90–3.72 (m, 4H, CH₃CH₂, COCH, H of CH₂),

3.33 (dd, J = 15.2, 2.4 Hz, 1H, H of CH₂), 0.83 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (100 MHz, DMSO-*d*₆): δ 176.3, 171.1, 148.3, 146.2, 144.3, 142.9, 137.4, 133.2, 128.6, 125.7, 125.4, 124.2, 118.6, 110.7, 72.1, 60.8, 52.8, 44.6, 26.3, 13.9; HRMS (ESI): *m*/*z* Calcd. for C₂₀H₁₆N₃O₈ClNa [M + Na]⁺: 484.0524, Found 484.0526. HPLC analysis: MeOH/H₂O (60:40), 9.80 min, HPLC purity 99.7%. (*ent*-4d, 9.67 min, HPLC purity 98.3%).

10.4.5.

Ethyl

Ethyl

(1'R,3R,3'S)-6-chloro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4e**)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-6-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-s piro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4e**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4e** as a white solid in 86% yield (31.2 mg, 0.07 mmol) after flash chromatography, $[\alpha]_{D}^{25} = -76.28$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.73 (s, 1H, NH), 8.72 (s, 1H, ArH), 8.42 (s, 1H, ArH), 7.08 (d, *J* = 7.8 Hz, 1H, ArH), 6.99 (dd, *J* = 7.8, 1.8 Hz, 1H, ArH), 6.85 (d, *J* = 1.8 Hz, 1H, ArH), 6.52 (d, *J* = 6.6 Hz, 1H, CHOH), 4.78 (d, *J* = 6.6 Hz, 1H, CHOH), 3.92–3.85 (m, 2H, CH₃CH₂), 3.60–3.53 (m, 2H, COCH, H of CH₂), 3.45 (dd, *J* = 15.0, 3.0 Hz, 1H, H of CH₂), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 176.7, 171.4, 148.1, 145.5, 144.0, 142.3, 137.4, 132.8, 128.6, 127.6, 127.4, 120.7, 118.9, 109.1, 68.8, 60.5, 51.7, 41.5, 25.7, 13.5; HRMS (ESI): *m/z* Calcd. for C₂₀H₁₆N₃O₈ClNa [M + Na]⁺: 484.0524, Found 484.0523. HPLC analysis: MeOH/H₂O (60:40), 14.07 min, HPLC purity 99.4%.

10.4.6.

(1'R,3R,3'S)-4-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4f**)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-4-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-s piro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4f**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4f** as a white solid in 89% yield (33.2 mg, 0.07 mmol) after flash chromatography, $[\alpha]_{D}^{25} = +42.31$ (*c* 0.10 in CH₂Cl₂),

m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.65 (s, 1H, NH), 8.66 (s, 1H, ArH), 8.54 (s, 1H, ArH), 7.20–7.15 (m, 2H, ArH), 6.81 (t, *J* = 6.6 Hz, 2H, ArH, CHOH), 5.61 (d, *J* = 6.6 Hz, 1H, CHOH), 4.13 (dd, *J* = 11.4, 6.0 Hz, 1H, COCH), 3.87–3.76 (m, 3H, CH₃CH₂, H of CH₂), 3.31 (dd, *J* = 18.0, 6.0 Hz, 1H, H of CH₂), 0.83 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 174.9, 170.4, 147.6, 145.8, 145.5, 143.4, 137.2, 130.6, 127.0, 125.3, 124.9, 118.0, 117.9, 108.5, 67.9, 60.3, 54.3, 41.6, 25.3, 13.2; HRMS (ESI): *m*/*z* Calcd. for C₂₀H₁₆N₃O₈BrNa [M + Na]⁺: 528.0018, Found 528.0020. HPLC analysis: MeOH/H₂O (60:40), 16.87 min, HPLC purity 98.6%.

10.4.7.

Ethyl

(1'R,3R,3'S)-5-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4g**)

Prepared according to the general procedure using 1-(tert-butyl) 3'-ethyl (1'R,3R,3'S)-5-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'H-s piro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (int-4g, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained 4g as a white solid in 88% yield (32.8 mg, 0.06 mmol) after flash chromatography, the ee was determined to be 95% by HPLC on Chiralpak IE column (20% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{\text{minor}} = 32.86 \text{ min}$, $t_{\text{major}} = 35.72 \text{ min}$, $[\alpha]_{D}^{25} = -99.97$ (c 0.10 in CH₂Cl₂), ent-4g: +109.98, m.p. >220 °C. ¹H-NMR (400 MHz, DMSO- d_6): δ 10.48 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.52 (s, 1H, ArH), 7.72 (d, *J* = 2.0 Hz, 1H, ArH), 7.39 (dd, *J* = 8.4, 2.0 Hz, 1H, ArH), 6.75 (d, J = 8.4 Hz, 1H, ArH), 6.63 (d, J = 6.8 Hz, 1H, CHOH), 5.25 (d, J = 6.8 Hz, 1H, CHOH), 3.90–3.71 (m, 4H, CH₃CH₂, COCH, H of CH₂), 3.32 (dd, J =16.0, 3.2 Hz, 1H, H of CH₂), 0.83 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (100 MHz, DMSO-*d*₆): δ 176.2, 171.1, 148.3, 146.2, 144.3, 143.2, 137.4, 133.5, 131.4, 126.9, 125.4, 118.5, 113.3, 111.2, 72.1, 60.8, 52.8, 44.6, 26.2, 13.9; HRMS (ESI): m/z Calcd. for $C_{20}H_{16}N_3O_8BrNa$ [M + Na]⁺: 528.0018, Found 528.0019. HPLC analysis: MeOH/H₂O (60:40), 10.73 min, HPLC purity 98.5%. (ent-4g, 10.73, HPLC purity 98.4%).

(1'R,3R,3'S)-6-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (4**h**)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-6-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'*H*-sp iro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4h**, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained **4h** as a white solid in 86% yield (32.1 mg, 0.06 mmol) after flash chromatography, $[\alpha]_{D}^{25} = -50.22$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.87 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.38 (s, 1H, ArH), 8.20 (s, 1H, CHOH), 6.98 (d, *J* = 1.8 Hz, 1H, ArH), 6.84–6.82 (m, 2H, ArH), 6.34 (d, *J* = 7.8 Hz, 1H, CHOH), 5.33 (d, *J* = 7.2 Hz, 1H, COCH), 4.16–4.09 (m, 2H, CH₃CH₂), 3.41–3.31 (m, 2H, CH₂), 1.17 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 178.8, 163.8, 147.5, 146.8, 144.7, 143.0, 136.7, 130.3, 129.8, 124.9, 123.4, 121.6, 119.5, 112.3, 71.8, 61.5, 55.6, 30.9, 22.0, 13.6; HRMS (ESI): *m/z* Calcd. for C₂₀H₁₆N₃O₈BrNa [M + Na]⁺: 528.0018, Found 528.0020. HPLC analysis: MeOH/H₂O (60:40), 32.13 min, HPLC purity 98.9%.

10.4.9.

Ethyl

(1'R,3R,3'S)-1'-hydroxy-5,5',7'-trinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-na phthalene]-3'-carboxylate (**4i**)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-5-nitro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-spir o[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4i**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4i** as a white solid in 84% yield (30.8 mg, 0.06 mmol) after flash chromatography, $[\alpha]_D^{25} = -24.57$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 11.15 (s, 1H, NH), 8.69 (s, 1H, ArH), 8.55 (d, *J* = 2.4 Hz, 1H, ArH), 8.53 (s, 1H, ArH), 8.24 (dd, *J* = 8.4, 2.4 Hz, 1H, ArH), 7.00 (d, *J* = 8.4 Hz, 1H, ArH), 6.72 (d, *J* = 6.6 Hz, 1H, CHOH), 5.40 (d, *J* = 6.6 Hz, 1H, CHOH), 4.03 (dd, *J* = 12.0, 6.0 Hz, 1H, COCH), 3.87–3.82 (m, 2H, CH₃CH₂), 3.74 (dd, *J* = 18.0, 12.0 Hz, 1H, H of CH₂), 3.42 (dd, *J* = 18.6, 6.0 Hz, 1H, H of CH₂), 0.82 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 176.5, 170.5, 150.0, 147.6, 145.6, 143.1, 141.7, 136.5, 131.6, 125.8, 124.7, 119.3, 118.1, 108.8,

71.3, 60.4, 52.1, 43.5, 25.5, 13.2; HRMS (ESI): m/z Calcd. for C₂₀H₁₆N₄O₁₀Na [M + Na]⁺: 495.0764, Found 495.0763. HPLC analysis: MeOH/H₂O (60:40), 6.80 min, HPLC purity 97.9%.

10.4.10. Ethyl (1'R,3R,3'S)-1'-hvdroxy-5-methyl-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-

3,2'-naphthalene]-3'-carboxylate (4j)

Prepared according to the general procedure using 1-(*tert*-butyl) 3'-ethyl (1'*R*,3*R*,3'*S*)-5-methyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dihydro-1'*H*-s piro[indoline-3,2'-naphthalene]-1,3'-dicarboxylate (**int-4j**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4j** as a white solid in 83% yield (29.8 mg, 0.07 mmol) after flash chromatography, $[a]_{D}^{25} = -62.96$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.25 (s, 1H, NH), 8.66 (s, 1H, ArH), 8.52 (s, 1H, ArH), 7.24 (s, 1H, ArH), 7.01 (d, *J* = 7.8 Hz, 1H, ArH), 6.67 (d, *J* = 7.8 Hz, 1H, ArH), 6.53 (d, *J* = 7.2 Hz, 1H, CHOH), 5.18 (d, *J* = 7.2 Hz, 1H, CHOH), 3.82–3.75 (m, 3H, CH₃CH₂, COCH), 3.70 (dd, *J* = 11.4, 4.8 Hz, 1H, H of CH₂), 3.27 (dd, *J* = 17.4, 4.8 Hz, 1H, H of CH₂), 2.28 (s, 3H, CH₃), 0.78 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 179.1, 164.0, 147.5, 146.7, 143.5, 140.6, 137.7, 130.0, 129.9, 129.7, 129.3, 125.7, 123.7, 123.5, 119.6, 109.4, 72.0, 61.4, 56.0, 20.5, 13.6; HRMS (ESI): *m/z* Calcd. for C₂₁H₁₉N₃O₈Na [M + Na]⁺: 464.1070, Found 464.1071. HPLC analysis: MeOH/H₂O (60:40), 8.73 min, HPLC purity 98.1%.

10.4.11.

(1'R,3R,3'S)-3'-Benzoyl-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indoline-3,2'naphthalen]-2-one (**4**k)

Prepared according to the general procedure using *tert*-butyl (1'*R*,3*R*,3'*S*)-3'-benzoyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'*H*-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4k**, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained **4k** as a white solid in 87% yield (31.2 mg, 0.07 mmol) after flash chromatography, $[\alpha]_{D}^{25} = +35.53$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.52 (s, 1H, NH), 8.72 (s, 1H, ArH), 8.48 (s, 1H, ArH), 7.86 (d, *J* = 7.2 Hz, 2H, ArH), 7.63 (t, *J* = 7.2 Hz, 1H, ArH), 7.49 (t, *J* = 7.2 Hz, 2H, ArH), 7.14–7.11 (m, 1H, ArH), 7.09 (d, *J* = 7.2 Hz, 1H, ArH),

6.79 (d, J = 7.8 Hz, 1H, ArH), 6.76 (t, J = 7.2 Hz, 1H, ArH), 6.49 (s, 1H, CHOH), 4.90 (dd, J = 11.4, 6.0 Hz, 1H, COCH), 4.71 (s, 1H, CHOH), 3.55 (dd, J = 18.0, 12.0 Hz, 1H, H of CH₂), 3.48 (dd, J = 18.0, 5.4 Hz, 1H, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 199.7, 177.1, 147.9, 145.4, 142.5, 142.4, 137.8, 135.6, 133.7, 129.7, 128.8 (2C), 128.2 (2C), 128.0, 125.5, 120.6, 118.6, 108.9, 69.2, 51.3, 41.8, 26.7; HRMS (ESI): m/z Calcd. for C₂₄H₁₇N₃O₇Na [M + Na]⁺: 482.0964, Found 482.0966. HPLC analysis: MeOH/H₂O (60:40), 13.53 min, HPLC purity 98.7%.

10.4.12.

(1'R,3R,3'S)-3'-(2-Fluorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[ind oline-3,2'-naphthalen]-2-one (41)

Prepared according to the general procedure using *tert*-butyl (1'R,3R,3'S)-3'-(2-fluorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dih vdro-1'*H*-spiro[indoline-3,2'-naphthalene]-1-carboxylate (int-4l, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained 4l as a white solid in 83% yield (30.5 mg, 0.06 mmol) after flash chromatography, $\left[\alpha\right]_{D}^{25} = +40.28$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.39 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.57 (s, 1H, ArH), 7.61–7.57 (m, 1H, ArH), 7.53 (td, J = 7.8, 1.2 Hz, 1H, ArH), 7.29–7.21 (m, 3H, ArH), 7.10 (td, J = 7.8, 1.2 Hz, 1H, ArH), 6.78–6.73 (m, 2H, ArH), 6.54 (d, J = 7.2 Hz, 1H, CHOH), 5.33 (d, J = 7.2 Hz, 1H, CHOH), 4.78 (dd, *J* = 12.0, 5.4 Hz, 1H, COCH), 3.77 (dd, *J* = 18.6, 12.2 Hz, 1H, H of CH₂), 3.36 (dd, *J* = 18.0, 5.4 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 197.8, 176.5, 160.1 (d, $J_{CF} = 253.1$ Hz), 147.9, 145.7, 144.5, 143.5, 137.3, 135.1 (d, $J_{CF} = 8.7$ Hz), 130.4, 130.2, 128.1, 125.7 (d, *J*_{CF} = 11.1 Hz), 125.1, 124.7, 122.6, 120.8, 118.0, 116.7 (d, $J_{CF} = 21.9$ Hz), 108.8, 72.1, 51.9, 48.9, 26.0; HRMS (ESI): m/z Calcd. for $C_{24}H_{16}N_3O_7FNa [M + Na]^+$: 500.0870, Found 500.0868. HPLC analysis: MeOH/H₂O (60:40), 10.07 min, HPLC purity 99.7%.

10.4.13.

(1'R,3R,3'S)-3'-(4-Fluorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[ind oline-3,2'-naphthalen]-2-one (4m)

Prepared according to the general procedure using *tert*-butyl (1'R,3R,3'S)-3'-(4-fluorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-dih

ydro-1'*H*-spiro[indoline-3,2'-naphthalene]-1-carboxylate (int-4m, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained 4m as a white solid in 85% yield (31.4 mg, 0.07 mmol) after flash chromatography, $\left[\alpha\right]_{D}^{25} = +29.87$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.36 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.60 (s, 1H, ArH), 8.04–8.01 (m, 2H, ArH), 7.37 (d, J = 7.2 Hz, 1H, ArH), 7.31 (t, J = 8.4 Hz, 2H, ArH), 7.07 (t, J = 7.8 Hz, 1H, ArH), 6.78 (t, J = 7.8 Hz, 1H, ArH), 6.73 (d, J = 7.2 Hz, 1H, ArH), 5.34 (s, 1H, CHOH), 5.09 (dd, J = 12.0, 4.8 Hz, 1H, COCH), 3.69 (dd, J = 17.4, 12.6 Hz, 1H, H of CH₂), 3.51 (s, 1H, CHOH), 3.33 (dd, J = 18.0, 4.8 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 197.6, 176.9, 165.4 (d, $J_{CF} = 251.4 \text{ Hz}$), 147.8, 145.7, 144.6, 143.7, 137.7, 132.3, 131.7 (d, $J_{CF} = 9.3$ Hz, 2C), 131.0, 128.0, 125.2, 122.4, 120.8, 118.0, 115.9 (d, $J_{CF} = 21.6$ Hz, 2C), 108.8, 72.3, 51.6, 45.0, 26.9; HRMS (ESI): m/z Calcd. for C₂₄H₁₆N₃O₇FNa [M + Na]+: 500.0870, Found 500.0869. HPLC analysis: MeOH/H₂O (60:40), 8.40 min, HPLC purity 99.2%.

10.4.14.

(1'R,3R,3'S)-3'-(3,4-Dichlorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**4n**)

Prepared according procedure *tert*-butyl to the general using (1'R,3R,3'S)-3'-(3,4-dichlorobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethyl-silyl)oxy)-3',4 '-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (int-4n, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained 4n as a white solid in 87% yield (32.8 mg, 0.06 mmol) after flash chromatography, $[\alpha]_{D}^{25} = +21.42$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.39 (s, 1H, NH), 8.67 (s, 1H, , ArH), 8.59 (s, 1H, ArH), 8.15 (d, J = 1.8 Hz, 1H, ArH), 7.79 (dd, J = 8.4, 1.8 Hz, 1H, ArH), 7.74 (d, J = 8.4 Hz, 1H, ArH), 7.38 (d, J = 7.2 Hz, 1H, ArH), 7.08 (t, J = 7.2 Hz, 1H, ArH), 6.79 (t, J = 7.8 Hz, 1H, ArH), 6.73 (d, J = 7.8 Hz, 1H, ArH), 6.55 (d, J = 6.6 Hz, 1H, CHOH), 5.34 (d, J = 7.2 Hz, 1H, CHOH), 5.07 (dd, J = 12.0, 4.8 Hz, 1H, COCH), 3.70 (dd, J = 18.0, 12.0 Hz, 1H, H of CH₂), 3.38 (dd, J = 18.0, 6.0 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 197.4, 176.6, 147.8, 145.7, 144.5, 143.5, 137.6, 136.7, 135.9, 132.0, 131.1, 130.6, 130.5, 128.3, 128.2, 125.1, 122.6, 120.9, 118.0, 108.8, 72.1, 51.7, 45.2, 26.5; HRMS (ESI): m/z Calcd. for $C_{24}H_{15}N_{3}O_{7}Cl_{2}Na$ [M + Na]⁺: 550.0185, Found 550.0186. HPLC analysis: MeOH/H₂O (60:40), 26.93 min, HPLC purity 99.1%.

10.4.15.

(1'R,3R,3'S)-3'-(4-Bromobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[ind oline-3,2'-naphthalen]-2-one (40)

Prepared according procedure to the general using *tert*-butyl (1'R,3R,3'S)-3'-(4-bromobenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)-oxy)-3',4'-di hydro-1'H-spiro[indoline-3,2'-naphthalene]-1-carboxylate (int-40, 50 mg) and HCl/EtOAc (5-10 mL). Purification of the crude product obtained 40 as a white solid in 88% yield (33.2 mg, 0.06 mmol) after flash chromatography, $\left[\alpha\right]_{D}^{25} = +27.73$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.37 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.59 (s, 1H, ArH), 7.85 (d, J = 8.4 Hz, 2H, ArH), 7.69 (d, J = 8.4 Hz, 2H, ArH), 7.36 (d, J = 7.2 Hz, 1H, ArH), 7.08 (t, J = 7.8 Hz, 1H, ArH), 6.78 (t, J = 7.8 Hz, 1H, ArH), 6.73 (d, J = 7.2 Hz, 1H, ArH), 6.54 (d, J = 7.2 Hz, 1H, CHOH), 5.33 (d, *J* = 7.2 Hz, 1H, CHOH), 5.07 (dd, *J* = 12.0, 4.8 Hz, 1H, COCH), 3.69 (dd, *J* = 18.0, 12.0 Hz, 1H, H of CH₂), 3.34 (dd, J = 18.0, 5.4 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 198.2, 176.6, 147.6, 145.3, 144.4, 143.5, 137.5, 134.4, 131.8, 130.7, 130.4, 128.0, 127.9, 125.0, 122.2, 120.7, 117.8, 108.6, 72.1, 51.4, 44.9, 26.6; HRMS (ESI): m/z Calcd. for C₂₄H₁₆N₃O₇BrNa [M + Na]⁺: 560.0069, Found 560.0067. HPLC analysis: MeOH/H₂O (60:40), 15.60 min, HPLC purity 99.9%.

10.4.16.

(1'R,3R,3'S)-1'-Hydroxy-3'-(4-methoxybenzoyl)-5',7'-dinitro-3',4'-dihydro-1'H-spiro[in doline-3,2'-naphthalen]-2-one (**4p**)

Prepared according to the general procedure using *tert*-butyl (1'R,3R,3'S)-3'-(4-methoxybenzoyl)-5',7'-dinitro-2-oxo-1'-((trimethyl-silyl)oxy)-3',4'dihydro-1'*H*-spiro[indoline-3,2'-naphthalene]-1-carboxylate (**int-4p**, 50 mg) and HCl/EtOAc (5–10 mL). Purification of the crude product obtained **4p** as a white solid in 86% yield (31.8 mg, 0.06 mmol) after flash chromatography, $[\alpha]_{D}^{25} = +30.99$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.32 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.59 (s, 1H, ArH), 7.94 (d, *J* = 9.0 Hz, 2H, ArH), 7.34 (d, *J* = 7.2 Hz, 1H, ArH), 7.07 (t, *J* = 7.8 Hz, 1H, ArH), 6.99 (d, *J* = 9.0 Hz, 2H, ArH), 6.79 (t, *J* = 7.8 Hz, 1H, ArH), 6.72 (d, J = 7.8 Hz, 1H, ArH), 6.51 (d, J = 6.6 Hz, 1H, CHOH), 5.32 (d, J = 7.2 Hz, 1H, CHOH), 5.03 (dd, J = 12.0, 5.4 Hz, 1H, COCH), 3.82 (s, 3H, OCH₃), 3.67 (dd, J = 18.0, 12.6 Hz, 1H, H of CH₂), 3.28 (dd, J = 18.0, 5.4 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 197.1, 177.1, 163.7, 147.8, 145.7, 144.7, 143.8, 137.9, 131.3, 131.1 (2C), 128.3, 127.9, 125.1, 122.2, 120.7, 118.0, 114.1 (2C), 108.7, 72.4, 55.7, 51.5, 44.7, 27.3; HR-MS (ESI): m/z Calcd. for C₂₅H₁₉N₃O₈Na [M + Na]⁺: 512.1070, Found 512.1068. HPLC analysis: MeOH/H₂O (60:40), 7.67 min, HPLC purity 99.0%.

10.5. General procedure for the synthesis of 4' (Scheme S3)

Scheme S3 General procedure for the synthesis of 4'.

To a solution of **int-4'** (50 mg) in CH_2Cl_2 was added CF_3COOH (5 eq.) at room temperature until the reaction was completed based on TLC. The reaction was quenched by EtOAc and water. The organic layer was dry by Na_2SO_4 and concentrated, which was purified by chromatography on silica gel to give the deprotection TMS intermediate product.

Further, potassium *tert*-butoxide (1.03 mL of a 1 mol/L solution in THF) was added to an aerated solution of the Bn-protecting THN-fused spirooxindole derivatives intermediate product, in DMSO (3.0 mL) at room temperature. After 20 min, 1 mol/L HCl was added and further followed by sodium hydrogen carbonate solution to give a pH neutral solution. The solution was then diluted with brine, extracted with ethyl acetate (4×20 mL) and evaporated under reduced pressure². The residue was purified by flash chromatography to give the deprotected spiro-oxindole derivative **4'** which was further analyzed by ¹H-NMR, ¹³C-NMR, HPLC and HR-MS.

10.5.1.

Ethyl

(1'S,3S,3'S)-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-napht halene]-3'-carboxylate (4a')

Prepared according the procedure using ethyl to general (1'S,3S,3'S)-1-benzyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spi ro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4a', 50 mg), CF₃COOH (5 eq.) and KO'Bu. Purification of the crude product obtained 4a' as a white solid in 76% yield (27.7 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25} = +70.25$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.60 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.44 (s, 1H, ArH), 7.11 (t, *J* = 8.4 Hz, 1H, ArH), 6.81 (d, *J* = 7.8 Hz, 1H, ArH), 6.65–6.62 (m, 2H, ArH), 6.06 (d, J = 7.2 Hz, 1H, CHOH), 5.06 (d, J = 6.6 Hz, 1H, CHOH), 3.77 (q, J = 7.2 Hz, 2H, CH₃CH₂), 3.70–3.62 (m, 2H, COCH, H of CH₂), 3.55 (dd, J = 18.8, 7.2 Hz, 1H, H of CH₂), 0.85 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.6, 170.3, 148.2, 145.8, 144.5, 143.9, 136.6, 128.2, 126.7, 124.2, 124.0, 120.8, 118.6, 109.2, 71.3, 60.5, 53.9, 43.1, 25.3, 13.4; HR-MS (ESI): m/z Calcd. for C₂₀H₁₇N₃O₈Na [M + Na]⁺: 450.0913, Found 450.0914. HPLC analysis: MeOH/H₂O (60:40), 11.80 min, HPLC purity 99.0%.

10.5.2.

Ethyl

(1'S,3S,3'S)-5-fluoro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3 ,2'-naphthalene]-3'-carboxylate (**4b'**)

Prepared according to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-5-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4b', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4b' as a white solid in 74% yield (27.2 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25}$ = +104.87 (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.38 (s, 1H, NH), 8.67 (s, 1H, ArH), 8.53 (s, 1H, ArH), 7.42 (dd, *J* = 9.0, 3.0 Hz, 1H, ArH), 7.06–7.01 (m, 1H, ArH), 6.76 (dd, J = 8.4, 4.8 Hz, 1H, ArH), 6.60 (d, J = 6.6 Hz, 1H, CHOH), 5.24 (d, J = 7.2 Hz, 1H, CHOH), 3.86–3.81 (m, 2H, CH₃CH₂), 3.79–3.74 (m, 2H, COCH, H of CH₂), 3.33-3.30 (m, 1H, H of CH₂), 0.82 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 176.0, 170.6, 157.9 (d, J_{CF} = 234.3 Hz), 147.8, 145.7, 143.9, 139.7, 137.0, 132.4 (d, *J*_{CF} = 8.4 Hz), 124.9, 118.1, 114.4 (d, *J*_{CF} = 23.0 Hz), 111.4 (d, J_{CF} = 24.6 Hz), 109.5 (d, J_{CF} = 7.8 Hz), 71.7, 60.3, 52.5, 44.2, 25.8, 13.4; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈FNa [M + Na]⁺: 468.0819, Found 468.0822. HPLC analysis: MeOH/H2O (60:40), 8.40 min, HPLC purity 99.8%.

(1'S,3S,3'S)-7-fluoro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3 ,2'-naphthalene]-3'-carboxylate (4c')

Prepared according the general procedure using to ethyl (1'S,3S,3'S)-1-benzyl-7-fluoro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4c', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4c' as a white solid in 72% yield (26.4 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25}$ = +68.26 (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 11.14 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.44 (s, 1H, ArH), 7.06 (t, J = 9.6 Hz, 1H, ArH), 6.75 (d, *J* = 6.6 Hz, 1H, ArH), 6.69–6.66 (m, 1H, ArH), 5.97 (d, *J* = 7.8 Hz, 1H, CHOH), 5.08 (d, J = 6.6 Hz, 1H, CHOH), 3.86-3.78 (m, 2H, CH₃CH₂), 3.73 (t, J = 8.4 Hz, 1H, COCH), 3.62 (d, J = 8.4 Hz, 2H, CH₂), 0.88 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.4, 170.0, 148.1, 146.3 (d, $J_{CF} = 240.0$ Hz), 145.7, 144.1, 136.3, 130.9 (d, $J_{CF} = 12.3 \text{ Hz}$), 129.8 (d, $J_{CF} = 3.5 \text{ Hz}$), 124.2, 121.6 (d, $J_{CF} = 5.6 \text{ Hz}$), 120.0, 118.6, 115.3 (d, $J_{CF} = 16.8$ Hz), 71.3, 60.5, 54.2, 42.9, 25.2, 13.3; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈FNa [M + Na]⁺: 468.0819, Found 468.0820. HPLC analysis: MeOH/H₂O (60:40), 10.27 min, HPLC purity 98.8%.

10.5.4.

Ethvl

(1'S,3S,3'S)-5-chloro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3 ,2'-naphthalene]-3'-carboxylate (4d')

Prepared according the procedure to general using ethyl (1'S,3S,3'S)-1-benzyl-5-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4d', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4d' as a white solid in 76% yield (28.1 mg, 0.06 mmol) for two steps after flash chromatography, the ee was determined to be 95% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, $t_{major} = 9.74$ min, $t_{minor} = 17.08$ min, $\left[\alpha\right]_{D}^{25} = +48.72$ (c 0.10 in CH₂Cl₂), *ent*-4d': -37.99, m.p. > 220 °C. ¹H-NMR (400 MHz, CDCl₃): δ 9.05 (s, 1H, NH), 8.82 (s, 1H, ArH), 8.67 (s, 1H, ArH), 7.15 (dd, *J* = 8.4, 2.0 Hz, 1H, ArH), 6.84 (d, J = 8.4 Hz, 1H, ArH), 6.33 (d, J = 2.0 Hz, 1H, ArH), 5.14 (d, J = 7.6 Hz, 1H,

Ethyl

CHOH), 4.79 (d, J = 7.6 Hz, 1H, CHOH), 4.09–3.97 (m, 2H, CH₃CH₂), 3.79–3.77 (m, 2H, COCH, H of CH₂), 3.61 (dd, J = 10.4, 8.0 Hz, 1H, H of CH₂), 1.12 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (100 MHz, DMSO- d_6): δ 178.4, 170.1, 148.3, 145.9, 143.9, 143.0, 136.2, 128.9, 128.3, 124.8, 124.5, 123.9, 118.8, 110.6, 71.3, 60.7, 54.1, 42.9, 25.3, 13.5; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈ClNa [M + Na]⁺: 484.0524, Found 484.0523. HPLC analysis: MeOH/H₂O (60:40), 16.33 min, HPLC purity 98.8%. (*ent*-4d', 16.27 min, HPLC purity 99.2%).

10.5.5.

Ethyl

(1'S,3S,3'S)-6-chloro-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4e'**)

Prepared according to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-6-chloro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4e', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4e' as a white solid in 75% yield (27.9 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25}$ = +71.44 (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.78 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.44 (s, 1H, ArH), 6.83 (d, J = 1.8 Hz, 1H, ArH), 6.71–6.69 (m, 2H, ArH), 6.11 (d, J = 7.8 Hz, 1H, CHOH), 5.06 (d, J = 6.6 Hz, 1H, CHOH), 3.85-3.80 (m, 2H, CH₃CH₂), 3.71 (dd, J = 9.6, 7.8 Hz, 1H, COCH), 3.64-3.58 (m, 2H, CH₂), 0.91 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.7, 170.2, 148.2, 145.9, 145.6, 144.1, 136.5, 132.7, 125.8, 125.4, 124.4, 120.5, 118.8, 109.3, 71.3, 60.7, 53.7, 42.9, 25.4, 13.5; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈ClNa [M + Na]⁺: 484.0524, Found 484.0522. HPLC analysis: MeOH/H₂O (60:40), 18.53 min, HPLC purity 99.9%.

10.5.6.

Ethyl

(1'S,3S,3'S)-4-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3 ,2'-naphthalene]-3'-carboxylate (4f')

Prepared according to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-4-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'*H*-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**int-4f**', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained **4f**' as a white solid in 79%

yield (30.0 mg, 0.06 mmol) for two steps after flash chromatography, $[\alpha]_{D}^{25} = -69.97$ (*c* 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.65 (s, 1H, NH), 8.66 (s, 1H, ArH), 8.54 (s, 1H, ArH), 7.20–7.16 (m, 2H, ArH), 6.82–6.80 (m, 2H, ArH, CHOH), 5.61 (d, *J* = 6.6 Hz, 1H, CHOH), 4.13 (q, *J* = 5.4 Hz, 1H, COCH), 3.87–3.76 (m, 3H, CH₃CH₂, H of CH₂), 3.31 (dd, *J* = 18.0, 5.4 Hz, 1H, H of CH₂), 0.83 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 174.9, 170.4, 147.6, 145.8, 145.5, 143.3, 137.2, 130.6, 127.0, 125.3, 124.9, 118.0, 117.9, 108.5, 67.9, 60.3, 54.2, 41.6, 25.3, 13.2; HR-MS (ESI): *m*/*z* Calcd. for C₂₀H₁₆N₃O₈BrNa [M + Na]⁺: 528.0018, Found 528.0020. HPLC analysis: MeOH/H₂O (60:40), 16.40 min, HPLC purity 99.1%.

10.5.7.

Ethyl

(1'S,3S,3'S)-5-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3 ,2'-naphthalene]-3'-carboxylate (**4g'**)

Prepared according to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-5-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4g', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4g' as a white solid in 78% yield (29.5 mg, 0.06 mmol) for two steps after flash chromatography, the ee 95% was determined to be 85% by HPLC on Chiralpak AD column (30% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 10.67 min, t_{minor} = 16.83 min, $[\alpha]_{D}^{25} = +38.53 \ (c \ 0.10 \ \text{in CH}_2\text{Cl}_2), ent-4g': -31.00, \text{m.p.} > 220 \ ^\circ\text{C}. \ ^1\text{H-NMR} \ (600 \ \text{MHz},$ DMSO- d_6): δ 10.78 (s, 1H, NH), 8.78 (s, 1H, ArH), 8.46 (s, 1H, ArH), 7.33 (dd, J =8.4, 1.8 Hz, 1H, ArH), 6.79 (d, J = 8.4 Hz, 1H, ArH), 6.74 (d, J = 7.2 Hz, 1H, CHOH), 6.21 (d, J = 1.8 Hz, 1H, ArH), 5.06 (d, J = 6.6 Hz, 1H, CHOH), 3.87–3.81 (m, 2H, CH₃CH₂), 3.69 (dd, *J* = 9.6, 7.8 Hz, 1H, COCH), 3.61–3.59 (m, 2H, CH₂), 0.91 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.2, 170.1, 148.3, 145.9, 143.9, 143.4, 136.1, 131.2, 129.4, 126.5, 124.5, 118.8, 112.5, 111.2, 71.3, 60.7, 54.2, 42.9, 25.2, 13.5; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈BrNa [M + Na]⁺: 528.0018, Found 528.0019. HPLC analysis: MeOH/H₂O (60:40), 18.03 min, HPLC purity 99.7%. (ent-4g', 18.07 min, HPLC purity 98.1%).

(1'S,3S,3'S)-6-bromo-1'-hydroxy-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4h'**)

Prepared according to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-6-bromo-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydr o-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4h', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4h' as a white solid in 77% yield (29.1 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25}$ = +50.85 (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.77 (s, 1H, NH), 8.78 (s, 1H, ArH), 8.44 (s, 1H, ArH), 6.95 (d, J = 1.8 Hz, 1H, ArH), 6.83 (dd, J = 8.4, 1.8 Hz, 1H, ArH), 6.70 (d, J = 6.6 Hz, 1H, CHOH), 6.06 (d, J = 7.8 Hz, 1H, ArH), 5.05 (d, J = 6.6 Hz, 1H, CHOH), 3.86–3.80 (m, 2H, CH₃CH₂), 3.71 (dd, J = 9.6, 7.8 Hz, 1H, COCH), 3.61–3.59 (m, 2H, CH₂), 0.91 (t, J = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.6, 170.2, 148.2, 145.9, 145.7, 144.1, 136.5, 126.2, 125.8, 124.3, 123.5, 121.1, 118.8, 112.0, 71.2, 60.7, 53.7, 42.9, 25.4, 13.5; HR-MS (ESI): m/z Calcd. for C₂₀H₁₆N₃O₈BrNa [M + Na]⁺: 528.0018, Found 528.0016. HPLC analysis: MeOH/H2O (60:40), 21.53 min, HPLC purity 99.8%.

10.5.9.

Ethyl

(1'S,3S,3'S)-1'-hydroxy-5,5',7'-trinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-nap hthalene]-3'-carboxylate (**4i**')

Prepared according the general procedure using ethyl to (1'S,3S,3'S)-1-benzyl-5-nitro-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4i', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4i' as a white solid in 73% yield (27.2 mg, 0.06 mmol) for two steps after flash chromatography, $[\alpha]_{D}^{25} = -35.26$ (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 11.43 (s, 1H, NH), 8.83 (s, 1H, ArH), 8.46 (s, 1H, ArH), 8.14 (dd, J = 9.0, 2.4 Hz, 1H, ArH), 7.05 (d, J = 9.0 Hz, 1H, ArH), 6.86–6.85 (m, 2H, ArH, CHOH), 5.14 (d, J = 6.6 Hz, 1H, CHOH), 3.87–3.81 (m, 2H, CH₃CH₂), 3.80 (d, J = 9.0 Hz, 1H, COCH), 3.64 (d, J = 8.4 Hz, 2H, CH₂), 0.91 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 179.3, 170.0, 150.8, 148.5, 146.1, 143.7, 141.4, 135.7, 127.9, 126.1, 124.5, 119.2, 118.8, 109.4, 71.4, 61.0, 54.1, 43.0, 25.2, 13.5; HR-MS (ESI): m/z Calcd. for

C₂₀H₁₆N₄O₁₀Na [M + Na]⁺: 495.0764, Found 495.0766. HPLC analysis: MeOH/H₂O (60:40), 9.33 min, HPLC purity 99.2%.

10.5.10.

Ethyl

(1'S,3S,3'S)-1'-hydroxy-5-methyl-5',7'-dinitro-2-oxo-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (**4j**')

according Prepared to the general procedure using ethyl (1'S,3S,3'S)-1-benzyl-5-methyl-5',7'-dinitro-2-oxo-1'-((trimethylsilyl)oxy)-3',4'-dihyd ro-1'H-spiro[indoline-3,2'-naphthalene]-3'-carboxylate (int-4j', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4j' as a white solid in 70% yield (25.7 mg, 0.06 mmol) for two steps after flash chromatography, $[\alpha]_{D}^{25} = +68.52$ (c 0.10 in CH₂Cl₂), m.p. >220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.47 (s, 1H, NH), 8.77 (s, 1H, ArH), 8.46 (s, 1H, ArH), 6.92 (d, *J* = 7.8 Hz, 1H, ArH), 6.70 (d, *J* = 7.8 Hz, 1H, ArH), 6.58 (d, J = 6.6 Hz, 1H, CHOH), 5.90 (s, 1H, ArH), 5.04 (d, J = 6.6 Hz, 1H, CHOH), 3.81–3.76 (m, 2H, CH₃CH₂), 3.66–3.61 (m, 2H, COCH, H of CH₂), 3.57–3.52 (m, 1H, H of CH₂), 1.98 (s, 3H, CH₃), 0.87 (t, *J* = 7.2 Hz, 3H, CH₃CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 178.5, 170.2, 148.2, 145.8, 144.5, 141.5, 136.5, 129.3, 128.5, 126.8, 124.7, 124.3, 118.5, 108.9, 71.3, 60.4, 53.9, 43.0, 25.3, 20.7, 13.4; HR-MS (ESI): m/z Calcd. for C₂₁H₁₉N₃O₈Na [M + Na]⁺: 464.1070, Found 464.1071. HPLC analysis: MeOH/H₂O (60:40), 12.67 min, HPLC purity 98.5%.

10.5.11.

(1'S,3S,3'S)-3'-Benzoyl-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indoline-3,2'-n aphthalen]-2-one (**4k'**)

1H, CHOH), 5.21 (d, J = 6.6 Hz, 1H, CHOH), 4.77 (dd, J = 9.0, 7.2 Hz, 1H, COCH), 3.60–3.52 (m, 2H, CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 198.6, 178.8, 148.2, 145.9, 145.1, 143.7, 137.5, 135.8, 133.5, 128.7 (2C), 128.4 (2C), 127.8, 127.5, 124.6, 124.2, 121.0, 118.7, 109.3, 71.8, 54.1, 45.8, 27.0; HR-MS (ESI): m/z Calcd. for C₂₄H₁₇N₃O₇Na [M + Na]⁺: 482.0964, Found 482.0967. HPLC analysis: MeOH/H₂O (60:40), 18.00 min, HPLC purity 99.8%.

10.5.12.

(1'S,3S,3'S)-3'-(2-Fluorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indo line-3,2'-naphthalen]-2-one (4l')

Prepared according the general procedure to using (1'S,3S,3'S)-1-benzyl-3'-(2-fluorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-d ihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (int-4l', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 41' as a white solid in 71% yield (26.5 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25} = +87.99$ (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.57 (s, 1H, NH), 8.73 (s, 1H, ArH), 8.47 (s, 1H, ArH), 7.61 (dd, *J* = 13.8, 7.2 Hz, 1H, ArH), 7.50 (t, J = 7.8 Hz, 1H, ArH), 7.28 (dd, J = 11.4, 8.4 Hz, 1H, ArH), 7.23 (t, J = 7.8 Hz, 1H, ArH), 7.14 (t, *J* = 7.8 Hz, 1H, ArH), 7.05 (d, *J* = 7.8 Hz, 1H, ArH), 6.80 (d, *J* = 7.8 Hz, 1H, ArH), 6.75 (t, J = 7.8 Hz, 1H, ArH), 6.55 (d, J = 6.0 Hz, 1H, CHOH), 4.75 (d, J =6.6 Hz, 1H, CHOH), 4.69 (dd, J = 10.8, 6.0 Hz, 1H, COCH), 3.60 (dd, J = 18.6, 11.4 Hz, 1H, H of CH₂), 3.47 (dd, J = 18.6, 5.4 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 198.7, 176.8, 160.4 (d, *J* = 252.6 Hz), 148.2, 145.5, 142.7, 142.5, 137.7, 135.3 (d, $J_{CF} = 9.3$ Hz), 130.3, 129.3, 128.3, 128.1, 125.8, 125.7 (d, $J_{CF} = 11.3$ Hz), 124.8 (d, *J*_{CF} = 2.0 Hz), 120.8, 118.8, 116.8 (d, *J*_{CF} = 22.5 Hz), 109.2, 69.1, 51.8, 45.9, 25.9; HR-MS (ESI): m/z Calcd. for C₂₄H₁₆N₃O₇FNa [M + Na]⁺: 500.0870, Found 500.0872. HPLC analysis: MeOH/H₂O (60:40), 13.80 min, HPLC purity 99.3%.

10.5.13.

(1'S,3S,3'S)-3'-(4-Fluorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indo line-3,2'-naphthalen]-2-one (4m')

Prepared according to the general procedure using (1'S,3S,3'S)-1-benzyl-3'-(4-fluorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-d

ihydro-1'*H*-spiro[indoline-3,2'-naphthalen]-2-one (**int-4m'**, 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained **4m'** as a white solid in 75% yield (27.8 mg, 0.06 mmol) for two steps after flash chromatography, $[\alpha]_{p}^{25} = -129.98$ (*c* 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.53 (s, 1H, NH), 8.72 (s, 1H, ArH), 8.48 (s, 1H, ArH), 7.94 (dd, *J* = 9.0, 6.0 Hz, 2H, ArH), 7. 31 (t, *J* = 9.0 Hz, 2H, ArH), 7.13 (t, *J* = 7.8 Hz, 1H, ArH), 7.08 (d, *J* = 7.2 Hz, 1H, ArH), 6.79 (d, *J* = 7.2 Hz, 1H, ArH), 6.76 (t, *J* = 7.8 Hz, 1H, ArH), 6.50 (d, *J* = 6.6 Hz, 1H, CHOH), 4.87 (dd, *J* = 12.0, 6.0 Hz, 1H, COCH), 4.72 (d, *J* = 6.6 Hz, 1H, CHOH), 3.55 (dd, *J* = 18.0, 11.4 Hz, 1H, H of CH₂), 3.47 (dd, *J* = 18.0, 6.0 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO-*d*₆): δ 198.2, 176.9, 165.1 (d, *J*_{CF} = 251.3 Hz), 147.9, 145.3, 142.4, 142.3, 137.7, 132.4, 131.2 (d, *J*_{CF} = 9.5 Hz, 2C), 129.5, 128.1, 128.0, 125.4, 120.5, 118.5, 115.7 (d, *J*_{CF} = 21.8 Hz, 2C), 108.8, 69.0, 51.3, 41.8, 26.5; HR-MS (ESI): *m*/*z* Calcd. for C₂₄H₁₆N₃O₇FNa [M + Na]⁺: 500.0870, Found 500.0868. HPLC analysis: MeOH/H₂O (60:40), 12.60 min, HPLC purity 99.3%.

10.5.14.

(1'S,3S,3'S)-3'-(3,4-Dichlorobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (**4n'**)

Prepared according to the general procedure using (1'S,3S,3'S)-1-benzyl-3'-(3,4-dichlorobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3', 4'-dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (int-4n', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4n' as a white solid in 77% yield (29.3 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25}$ = -157.34 (*c* 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO-*d*₆): δ 10.55 (s, 1H, NH), 8.74 (s, 1H, ArH), 8.48 (s, 1H, ArH), 7.96 (s, 1H, ArH), 7.74 (br s, 2H, ArH), 7.14 (t, *J* = 7.8 Hz, 1H, ArH), 7.00 (d, *J* = 7.2 Hz, 1H, ArH), 6.77 (dd, *J* = 13.8, 7.8 Hz, 2H, ArH), 6.52 (d, J = 7.2 Hz, 1H, CHOH), 4.80-4.76 (m, 2H, CHOH, COCH), 3.54–3.49 (m, 2H, CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 198.0, 176.8, 147.9, 145.3, 142.6, 142.3, 137.6, 136.4, 136.0, 131.7, 131.0, 129.9, 129.3, 128.1, 128.0, 127.6, 125.4, 120.7, 118.5, 108.9, 69.0, 51.8, 42.6, 26.1; HR-MS (ESI): m/z Calcd. for $C_{24}H_{15}N_{3}O_{7}Cl_{2}Na \ [M + Na]^{+}$: 550.0185, Found 550.0187. HPLC analysis: MeOH/H₂O (60:40), 14.87 min, HPLC purity 99.8%.

10.5.15.

(1'S,3S,3'S)-3'-(4-Bromobenzoyl)-1'-hydroxy-5',7'-dinitro-3',4'-dihydro-1'H-spiro[indo line-3,2'-naphthalen]-2-one (40')

Prepared according the procedure using to general (1'S,3S,3'S)-1-benzyl-3'-(4-bromobenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4'-d ihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (int-4o', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 40' as a white solid in 78% yield (29.9 mg, 0.06 mmol) for two steps after flash chromatography, $[\alpha]_{D}^{25}$ = -139.98 (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO-d₆): δ 10.53 (s, 1H, NH), 8.78 (s, 1H, ArH), 8.47 (s, 1H, ArH), 7.66 (br s, 4H, ArH), 7.06 (t, J = 7.8 Hz, 1H, ArH), 6.69 (d, J = 7.8 Hz, 1H, ArH), 6.64 (t, J = 7.8 Hz, 2H, ArH), 6.02 (d, J = 7.8 Hz, 1H, CHOH), 5.21 (d, J = 6.6 Hz, 1H, CHOH), 4.76 (dd, J = 9.0, 6.6 Hz, 1H, COCH), 3.59 (dd, J = 18.6, 9.0 Hz, 1H, H of CH₂), 3.53 (dd, J = 18.6, 6.6 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz, DMSO- d_6): δ 197.6, 178.3, 148.0, 145.6, 144.7, 143.3, 137.1, 134.6, 131.4 (2C), 130.1 (2C), 127.6, 127.4, 127.0, 124.2, 124.0, 120.7, 118.4, 109.0, 71.4, 53.9, 45.5, 26.3; HR-MS (ESI): m/z Calcd. for C24H16N3O7BrNa [M + Na]⁺: 560.0069, Found 560.0070. HPLC analysis: MeOH/H₂O (60:40), 30.73 min, HPLC purity 99.5%.

10.5.16.

(1'S,3S,3'S)-1'-Hydroxy-3'-(4-methoxybenzoyl)-5',7'-dinitro-3',4'-dihydro-1'H-spiro[in doline-3,2'-naphthalen]-2-one (**4p'**)

Prepared according to the general procedure using (1'S,3S,3'S)-1-benzyl-3'-(4-methoxybenzoyl)-5',7'-dinitro-1'-((trimethylsilyl)oxy)-3',4 '-dihydro-1'H-spiro[indoline-3,2'-naphthalen]-2-one (int-4p', 50 mg), CF₃COOH (5 equiv) and KO'Bu. Purification of the crude product obtained 4p' as a white solid in 75% yield (28.2 mg, 0.06 mmol) for two steps after flash chromatography, $\left[\alpha\right]_{D}^{25} = -$ 108.68 (c 0.10 in CH₂Cl₂), m.p. > 220 °C. ¹H-NMR (600 MHz, DMSO- d_6): δ 10.55 (s, 1H, NH), 8.78 (s, 1H, ArH), 8.54 (s, 1H, ArH), 7.93 (d, J = 9.0 Hz, 2H, ArH), 7.17 (dd, J = 7.8, 3.6 Hz, 2H, ArH), 7.05 (d, J = 9.0 Hz, 2H, ArH), 6.83 (dd, J = 18.0, 7.8 Hz, 2H, ArH), 6.53 (d, J = 7.2 Hz, 1H, CHOH), 4.92 (dd, J = 12.0, 6.0 Hz, 1H, COCH), 4.73 (d, J = 7.2 Hz, 1H, CHOH), 3.88 (s, 3H, OCH₃), 3.59 (dd, J = 18.0, 12.0 Hz, 1H, H of CH₂), 3.48 (dd, J = 18.6, 6.0 Hz, 1H, H of CH₂); ¹³C-NMR (150 MHz,

DMSO- d_6): δ 197.6, 177.1, 163.4, 147.8, 145.2, 142.4, 142.4, 137.9, 130.6 (2C), 129.8, 128.3, 128.3, 127.8, 125.3, 120.4, 118.5, 113.9 (2C), 108.8, 69.1, 55.4, 51.1, 41.2, 26.9; HR-MS (ESI): m/z Calcd. for C₂₅H₁₉N₃O₈Na [M + Na]⁺: 512.1070, Found 512.1069. HPLC analysis: MeOH/H₂O (60:40), 14.20 min, HPLC purity 97.9%.

11. Plausible mechanism of the protecting group-controlled the stereoselectivity

We hypothesized a plausible mechanism for this cyclization (Scheme S4). These transition states and the associated catalytic modes are consistent with the mechanistic models proposed by Takemoto and others^{3–5}. In our proposal, as exemplified by the reaction of the Boc-protected 3-ylideneoxindole (1a) with 2-methyl-3,5-dinitrobenzaldehyde (3a), two hydrogen bonds form between the nitro group of the substrate 3a and the two N–H groups of the thiourea catalyst and generating the transition state (TS)-A.

Next, the protonated tertiary amine group may form another two hydrogen-bonding interactions with the two carbonyls of **1a** and generating the **TS-B**. Finally, this affords the major isomer **int-4a** with a (1'R, 3R, 3'S)-configuration undergoing the process of Michael-aldol tandem reaction.

Scheme S4 Proposed mechanism for the synthesis of chiral THN-fused spirooxindole derivatives.

While with the presence of Bn-protected 3-ylideneoxindole (2a) as substrate, the protonated tertiary amine group may form the hydrogen-bonds with the C2 carbonyl

and ethyl ester groups on the substrate 2a and generating the TS-C. This furnishes the major isomer int-4a' with a (1'S,3S,3'S)-configuration undergoing the process of Michael-aldol tandem reaction.

References

- 1. Onufriev A, Bashford D, Case DA. Modification of the generalized born model suitable for macromolecules. J Phys Chem B 2000;104:3712–20.
- 2. Arnott G, Brice H, Clayden J, Blaney E. Electrophile-induced dearomatizing spirocyclization of N-arylisonicotinamides: a route to spirocyclic piperidines. Org *Lett* 2008;**10**:3089–92.
- 3. Tian X, Jiang K, Peng J, Du W, Chen YC. Organocatalytic stereoselective Mannich reaction of 3-substituted oxindoles. Org Lett 2008;10:3583-6.
- 4. Okino T, Nakamura S, Furukawa T, Takemoto Y. Enantioselective Aza-Henry reaction catalyzed by a bifunctional organocatalyst. Org Lett 2004;6:625-7.
- 5. Xu X. Furukawa T. Okino T. Miyabe H. Takemoto Y. Bifunctional-thiourea-catalyzed diastereo- and enantioselective Aza-Henry reaction. Chem Eur J 2006;12:466-76.

12. Crystal data

Space group

a/Å

b/Å

Int-4d
$C_{60}H_{72}Cl_2N_6O_{22}Si_2$
1356.31
296.15
Orthorhombic
$P2_{1}2_{1}2_{1}$
13.8238(10)

16.1894(12)

c/Å	31.377(2)
$a/^{\circ}$	90
$eta/^{\circ}$	90
γ/°	90
Volume/Å ³	7022.2(9)
Ζ	4
$ ho_{ m calc} g/cm^3$	1.283
µ/mm	0.202
F(000)	2848.0
Crystal size/mm ³	$0.298 \times 0.217 \times 0.2$
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2Θ range for data collection/°	5.976 to 55.17
Index ranges	$-18 \le h \le 17, -19 \le k \le 21, -40 \le l \le 40$
Reflections collected	109326
Independent reflections	16190 [$R_{\text{int}} = 0.0982, R_{\text{sigma}} = 0.1084$]
Data/restraints/parameters	16190/618/896
Goodness-of-fit on F ²	0.886
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0456, wR_2 = 0.0985$
Final R indexes [all data]	$R_1 = 0.1613, wR_2 = 0.1229$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.17
Flack parameter	0.02(2)

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system

The TMS protecting group of **int-4d'** was removed C₂₇H₂₂ClN₃O₈ 551.92 150 Triclinic

Space group	P1
a/Å	7.5537(7)
b/Å	12.8817(11)
c/Å	13.5102(13)
$\alpha / ^{\circ}$	107.124(8)
$eta/^{\circ}$	94.728(8)
γ∕°	90.025(7)
Volume/Å ³	1251.6(2)
Ζ	2
$ ho_{ m calc} g/cm^3$	1.464
µ/mm ⁻¹	0.211
F(000)	572.0
Crystal size/mm ³	0.4 imes 0.3 imes 0.3
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	6.032 to 58.466
Index ranges	$-10 \le h \le 10, -15 \le k \le 16, -18 \le l \le 18$
Reflections collected	7683
Independent reflections	7683 [$R_{\text{int}} = ?, R_{\text{sigma}} = 0.0594$]
Data/restraints/parameters	7683/3/708
Goodness-of-fit on F ²	0.913
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0465, wR_2 = 0.1021$
Final R indexes [all data]	$R_1 = 0.0745, wR_2 = 0.1093$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.21
Flack parameter	0.26(5)

13. NMR spectra and HPLC of THN-fused spirooindole derivatives int-4 and int-4'

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
			min	mAU*min	%	mAU	
	1	n.a.	7.93	188.920	49.62	396.118	n.a.
1	2	na	10.38	191.835	50 38	359 560	na

Ι	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
Ι			min	mAU*min	%	mAU	
Ι	1	n.a.	7.75	0.079	0.02	0.063	n.a.
Ι	2	n.a.	10.31	470.025	99.98	894.892	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	7.11	212.380	99.90	1054.584	n.a.
2	n.a.	8.08	0.217	0.10	1.098	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
	1	n.a.	5.89	72.554	49.99	282.716	n.a.
1	2	na	10.88	72 588	50.01	99 644	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.92	12.338	4.47	49.097	n.a.
2	n.a.	10.80	263.450	95.53	365.673	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount					
		min	mAU*min	%	mĂU						
1	n.a.	7.33	197.871	100.00	933.311	n.a.	1				
1,000	A11										MM/L (254 mm)
m/	AU					~					WVL:254 nm
						Λ					
800-						11					
1											
	02N	1				11					
600-	2	>-NO				11					
1	r-	~ [
	EtOOC	Y				11					
400-C		OTMS									
) =0									
-	~~ N										
200-	E Int 4	Boc									
	111-40	u									
-					V						
-100											
0.0	1.3	2.5 3.	8 5	0.0	6.3	7.5	8.8	10.0	11.3	12.5	13.8 15.0

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	7.13	47.295	100.00	148.462	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.70	49.297	49.80	218.184	n.a.
2	n.a.	7.42	49.689	50.20	141.507	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.70	103.613	68.22	449.998	n.a.
2	n.a.	7.39	48.270	31.78	136.178	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
	1	n.a.	7.62	87.854	49.96	406.161	n.a.
1	2	na	8.52	87 996	50.04	341 379	na

1	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
			min	mAU*min	%	mAU	
	1	n.a.	7.65	100.783	97.69	465.416	n.a.
1	2	n.a.	8.58	2.381	2.31	9.810	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
			min	mAU*min	%	mAU	
	1	n.a.	7.20	99.219	50.78	303.877	n.a.
1	2	na	15.23	96 181	49.22	94 637	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	7.23	37.412	100.00	114.890	n.a.

I	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
I			min	mAU*min	%	mAU	
Ι	1	n.a.	8.49	66.112	50.31	120.740	n.a.
I	2		10.76	RE 204	40.60	02 562	

I	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
I			min	mAU*min	%	mAU	
I	1	n.a.	8.33	267.685	100.00	714.265	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
l			min	mAU*min	%	mAU	
1	1	n.a.	4.93	269.403	49.99	1441.705	n.a.
1	2		10.22	260 402	E0.01	E2E 220	D O

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
1	1	n.a.	4.99	0.188	0.03	1.408	n.a.
1	2	n.a.	10.46	688.656	99.97	1325.707	n.a.

Detector A	<u>Channel 2 254nn</u>	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	17.039	1019082	34697796	100.000
Total		1019082	34697796	100.000

Detector A	Detector A Channel 2 254nm									
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)						
1	11.895	139832	7598902	94.529						
2	16.560	6187	439798	5.471						
Total		146019	8038700	100.000						

No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	14.226	474763	14010859	98.060
2	16.575	6722	277218	1.940
Total		481485	14288078	100.000

Peak Analysis Report

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	8.334	359550	10005451	100.000
Total		359550	10005451	100.000

m∨

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
	1	n.a.	9.93	71.709	50.13	112.288	n.a.
1	2	n 0	16.21	71 246	40.97	70.022	0.0

_							
Γ	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
Γ			min	mAU*min	%	mAU	
Γ	1	n.a.	10.40	4.239	5.27	7.395	n.a.
Γ	2	n.a.	16.35	76.213	94.73	84.419	n.a.

l	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
l			min	mAU*min	%	mAU	
1	1	n.a.	9.71	147.472	50.75	217.009	n.a.
1	2	no	16.66	142 140	40.25	140 912	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	10.23	9.480	5.32	16.820	n.a.
2	n.a.	16.64	168.716	94.68	172.212	n.a.

I	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
			min	mAU*min	%	mAU	
l	1	n.a.	6.95	112.837	50.20	385.652	n.a.
1	2	na	14.20	111.053	40.80	10/1 208	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	7.00	13.267	13.68	48.223	n.a.
2	n.a.	14.37	83.684	86.32	77.751	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	14.73	135.935	50.17	130.774	n.a.
2		40.72	125.020	40.02	112.060	

I	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
I			min	mAU*min	%	mAU	
I	1	n.a.	15.31	21.742	7.01	25.349	n.a.
I	2	n.a.	18.68	288.539	92.99	231.043	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	9.18	32.522	12.50	83.814	n.a.
2	n.a.	11.66	227.741	87.50	279.610	n.a.

1	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
l	1	n.a.	5.14	62.289	50.84	314.515	n.a.
	2	na	23.29	60 219	49.16	53 532	na

No. Peak Name		Ret.Time (detected) Area		Rel.Area	Height	Amount	
	min		mAU*min	%	mAU		
1	n.a.	5.15	110.372	92.71	550.155	n.a.	
2	n.a.	23.35	8.673	7.29	8.323	n.a.	

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
			min	mAU*min	%	mAU	
l	1	n.a.	14.35	118.081	49.52	135.665	n.a.
1	2	na	18.94	120.357	50.48	98,320	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	14.65	37.105	7.53	60.395	n.a.
2	n.a.	19.58	455.613	92.47	279.910	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
1	1	n.a.	10.69	53,150	49.98	103.387	n.a.
1	2	no	12.21	52 195	50.02	56,626	n 0

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	10.69	3.756	10.02	8.601	n.a.
2	n.a.	13.53	33.729	89.98	34.889	n.a.

1.5							
	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
l	1	n.a.	7.68	46.426	50.05	159.466	n.a.
1	2		11.00	46.207	40.05	05 700	

Ι	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
Ι			min	mAU*min	%	mAU	
Ι	1	n.a.	7.75	107.969	96.03	375.042	n.a.
Ι	2	n.a.	12.00	4.463	3.97	10.586	n.a.

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	12.81	94.046	11.36	110.640	n.a.
2	n.a.	16.61	733.488	88.64	635.379	n.a.

	No.	Peak Name	eak Name Ret.Time (detected)		Rel.Area	Height	Amount
1			min	mAU*min	%	mAU	
1	1	n.a.	11.38	130.421	50.66	211.025	n.a.
1	2		10.02	107.000	40.24	02 424	

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	11.24	11.767	2.37	20.102	n.a.
2	n.a.	18.78	485.023	97.63	353.469	n.a.

Detector A	Detector A Channel 2 254nm										
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)							
1	7.975	3812	87104	0.720							
2	19.941	115633	12017766	99.280							
Total		119445	12104870	100.000							

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	6.492	2399	61124	0.754
2	18.859	99689	8045397	99.246
Total		102088	8106521	100.000

Detector A Channel 2 254nm						
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)		
1	6.521	5769	209495	1.665		
2	21.280	121527	12376296	98.335		
Total		127295	12585791	100.000		

Detector A Channel 2 254nm					
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)	
1	6.869	9363	245796	3.556	
2	23.905	58838	6666310	96.444	
Total		68201	6912105	100.000	

Detector A Channel 2 254nm					
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)	
1	7.774	3008	92784	2.218	
2	16.343	41874	4089772	97.782	
Total		44882	4182557	100.000	

14. NMR spectra of compounds 4 and 4'

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

4m'

-0.005

-0.004 -0.003 -0.002

-0. 001 -0. 000 --0. 001

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	31.83	131.471	50.08	108.328	n.a.
2	na	36.54	131 033	40.02	06 527	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Heiaht	Amount]	
		min	mAU*min	%	mAU]	
1	n.a.	33.30	0.960	0.21	1.060	n.a.]	
2	n.a.	36.78	463.785	99.79	330.087	n.a.]	
500 mAU	U						1	UV_VIS_3 VVL:254 nm
400-	O ₂ N	N _					~	
300- -							\bigwedge	
200-	N N H							
100-	4d						_ / /	
-50	^							min
0.0	5.0	10.0	15.0	20.0)	25.0	30.0 35.0 40.0 45.0	50.0

Detector A	Detector A Channel 2 254nm								
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)					
1	27.228	277235	16584890	97.929					
2	31.880	7484	350763	2.071					
Total		284719	16935653	100.000					

Ι	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
Ι			min	mAU*min	%	mAU	
Ι	1	n.a.	32.29	154.639	50.25	133.538	n.a.
T	2	na	36.08	153 115	49.75	120.956	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	32.86	9.572	2.39	8.736	n.a.
2	n.a.	35.72	390.992	97.61	293.834	n.a.

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	27.753	123680	7327410	97.634
2	31.135	5510	177536	2.366
Total		129191	7504946	100.000

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	9.74	49.780	92.87	128.314	n.a.
2	n.a.	17.08	3.821	7.13	8.338	n.a.

	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
ĺ			min	mAU*min	%	mAU	
j	1	n.a.	9.74	30.152	50.74	77.696	n.a.
ľ	2	na	17.08	20.260	40.26	41.460	na

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	10.09	12.327	7.32	49.346	n.a.
2	n.a.	17.66	156.161	92.68	239.785	n.a.

Detector A	Detector A Channel 2 254nm								
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)					
1	10.665	414312	10601279	92.324					
2	16.832	21835	881457	7.676					
Total		436146	11482737	100.000					

Detector A	Detector A Channel 2 254nm								
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)					
1	10.642	93359	2275633	7.309					
2	16.703	649527	28858011	92.691					
Total		742886	31133644	100.000					

15. The purity of compounds 4 and 4'.

Compound 4a

Peak Analysis Report

Compound 4b

Peak Analysis Report

Compound 4c

Compound 4d

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	4.93	0.778	0.19	2.441	n.a.
2	n.a.	9.80	398.513	99.66	959.378	n.a.
3	n.a.	11.07	0.598	0.15	1.617	n.a.

Compound *Ent*-4d

Compound 4e

Peak Analysis Report

Compound 4f

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	12.13	6.457	0.74	16.961	n.a.
2	n.a.	15.47	2.219	0.25	4.888	n.a.
3	n.a.	16.87	857.948	98.60	1665.501	n.a.
4	n.a.	21.87	3.528	0.41	6.062	n.a.

Compound 4g

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.00	1.526	0.29	4.542	n.a.
2	n.a.	9.00	5.385	1.03	15.794	n.a.
3	n.a.	10.73	514.079	98.50	1233.653	n.a.
4	n.a.	12.27	0.894	0.17	2.314	n.a.

Compound *Ent*-4g

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.00	1.308	0.57	3.003	n.a.
2	n.a.	10.73	226.680	98.41	545.607	n.a.
3	n.a.	12.27	1.136	0.49	2.928	n.a.
4	n.a.	16.53	1.215	0.53	2.510	n.a.

Compound 4h

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	13.33	2.235	0.61	4.758	n.a.
2	n.a.	16.07	0.962	0.26	1.506	n.a.
3	n.a.	27.67	0.753	0.21	1.023	n.a.
4	n.a.	32.13	360.776	98.92	437.936	n.a.

Compound 4i

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	6.80	280.067	97.89	893.790	n.a.
2	n.a.	8.73	3.589	1.25	11.083	n.a.
3	n.a.	9.33	1.705	0.60	5.181	n.a.
4	n.a.	13.93	0.751	0.26	1.666	n.a.

Compound 4j

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	4.80	1.609	0.61	5.959	n.a.
2	n.a.	5.33	1.169	0.44	3.725	n.a.
3	n.a.	8.73	258.795	98.11	717.706	n.a.
4	n.a.	11.80	1.723	0.65	3.056	n.a.
5	n.a.	13.13	0.475	0.18	1.161	n.a.

Compound 4k

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	8.80	1.541	0.28	4.121	n.a.
2	n.a.	11.67	1.160	0.21	2.620	n.a.
3	n.a.	13.53	551.810	98.69	1177.635	n.a.
4	n.a.	17.20	2.573	0.46	5.111	n.a.
5	n.a.	22.27	2.048	0.37	3.314	n.a.

Compound 41

Peak Analysis Report

Compound 4m

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	4.47	0.560	0.44	2.339	n.a.
2	n.a.	5.20	0.328	0.26	1.206	n.a.
3	n.a.	6.40	0.121	0.09	0.526	n.a.
4	n.a.	8.40	127.345	99.21	263.982	n.a.

Compound 4n

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	9.40	3.561	0.49	6.522	n.a.
2	n.a.	11.00	2.539	0.35	4.502	n.a.
3	n.a.	15.40	0.344	0.05	0.513	n.a.
4	n.a.	26.93	721.801	99.12	725.824	n.a.

Compound 40

Compound 4p

Peak Analysis Report

Compound 4a'

Compound 4b'

Peak Analysis Report

Compound 4c'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	4.33	1.064	0.28	4.036	n.a.
2	n.a.	9.00	1.150	0.30	3.390	n.a.
3	n.a.	10.27	381.633	98.80	1020.051	n.a.
4	n.a.	14.13	2.430	0.63	5.183	n.a.

Compound 4d'

Peak Analysis Report

Compound *Ent*-4d'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.20	1.147	0.48	4.652	n.a.
2	n.a.	16.27	234.876	99.17	475.899	n.a.
3	n.a.	18.73	0.486	0.21	0.959	n.a.
4	n.a.	21.53	0.343	0.14	0.592	n.a.

Compound 4e'

Peak Analysis Report

Compound 4f'

Γ	No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
E			min	mAU*min	%	mAU	
Γ	1	n.a.	11.87	2.570	0.29	6.107	n.a.
Γ	2	n.a.	16.40	882.871	99.08	1769.665	n.a.
Г	3	n.a.	21.27	5.590	0.63	8.011	n.a.

Compound 4g'

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.40	0.515	0.10	3.151	n.a.
2	n.a.	12.60	0.261	0.05	0.798	n.a.
3	n.a.	16.47	0.614	0.11	0.994	n.a.
4	n.a.	18.13	533.332	99.74	1292.093	n.a.

Compound *Ent*-4g'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	9.47	5.397	1.25	15.791	n.a.
2	n.a.	16.07	2.839	0.66	4.602	n.a.
3	n.a.	18.07	421.854	98.09	800.512	n.a.

Compound 4h'

Peak Analysis Report

Compound 4i'

Compound 4j'

Peak Analysis Report

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	4.73	3.458	1.01	13.090	n.a.
2	n.a.	5.73	0.683	0.20	2.897	n.a.
3	n.a.	12.67	337.282	98.52	799.806	n.a.
4	n.a.	18.47	0.936	0.27	1.860	n.a.

Compound 4k'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	5.93	0.126	0.02	0.458	n.a.
2	n.a.	7.87	0.095	0.01	0.313	n.a.
3	n.a.	11.87	0.930	0.11	2.387	n.a.
4	n.a.	18.00	815.623	99.81	1513.856	n.a.
5	n.a.	22.27	0.428	0.05	0.710	n.a.

Compound 4l'

Peak Analysis Report

Compound 4m'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	8.40	5.173	0.43	11.932	n.a.
2	n.a.	12.60	1194.181	99.25	1822.572	n.a.
3	n.a.	17.87	1.892	0.16	2.628	n.a.
4	n.a.	24.47	1.508	0.13	1.569	n.a.
5	n.a.	26.93	0.512	0.04	0.420	n.a.

Compound 4n'

Peak Analysis Report

Compound 40'

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area	Height	Amount
		min	mAU*min	%	mAU	
1	n.a.	14.80	1.152	0.09	1.655	n.a.
2	n.a.	28.07	5.437	0.41	6.550	n.a.
3	n.a.	30.73	1333.325	99.51	1193.340	n.a.

Compound 4p'

Peak Analysis Report

No Peak Name Ret.Time (detected) Area Rel.Area Height Amount min mAU*mir % mAU 0.955 0.467 0.173 116.739 3.20 7.47 9.73 14.20 n.a 0.80 2.965 n.a 0.39 0.15 97.85 0.990 0.314 166.089 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 19.80 0.443 0.37 0.275 n.a. n.a 30.33 0.531 0.45 0.46 n.a 180 mAU WVL:254 nm 150-100-50-2 ഹ ശ min 35.0 -20-2.5 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 5.0

16. The HR-MS chromatography of the THN-fused spirooxindole derivatives

Compound int-4a

Compound int-4b

Compound int-4c

Compound int-4d

Compound int-4e

Compound int-4f

Compound int-4g

Compound int-4h

Compound int-4i

Compound int-4j

Compound int-4k

Compound int-4l

Compound int-4m

Compound int-40

Compound int-4p

Compound int-4a'

Compound int-4b'

Compound int-4c'

Compound int-4d'

Compound int-4e'

Compound int-4f'

Compound int-4g'

Compound int-4h'

Compound int-4i'

Compound int-4j'

Compound int-4k'

Compound int-4l'

Compound int-4m'

Compound int-4n'

Compound int-4o'

Compound int-4p'

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound **4e**

Compound 4f

Compound 4h

Compound 4j

Compound 4k

Compound 41

Compound 4m

Compound 4n

Compound 40

Compound 4a'

Compound 4b'

Compound 4c'

Compound 4f'

Compound 4g'

Compound 4h'

Compound 4i'

Compound 4j'

Compound 4k'

Compound 4l'

Compound 4m'

Compound 4n'

Compound **40'**

