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SUMMARY
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of
patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocom-
patibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the suscepti-
bility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2
peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes
present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while
the second shows strong binding and T cell propensity. Our work offers a useful support to identify the
individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune
response to SARS-CoV-2. A record of this paper’s transparent peer review process is included in the Supple-
mental Information.
INTRODUCTION

SARS-CoV-2, the coronavirus causing the COVID-19 pandemic,

is the seventh coronavirus known to infect humans. SARS-CoV,

MERS-CoV, and SARS-CoV-2 can cause severe disease,

whereas HCoV-HKU1, HCoV-NL63, HCoV-OC43, and HCoV-

229E are associated with mild symptoms (Corman et al.,

2018). For a successful infection, multiple elements of the host

immune response must be overcome, including both innate

and adaptive immunities (Mandl et al., 2015). The human leuko-

cyte antigen (HLA) system or the major histocompatibility

complex (MHC) is a very polymorphic region of the human

genome, which plays an important role in the individual genetic

susceptibility to human diseases (Dendrou et al., 2018). For

example, in infectious diseases, HIV infection was shown to be

highly correlated with HLA-A*29, HLA-B*35, and HLA-B*57

(Hill, 1998; Mallal et al., 2002; Carrington et al., 1999; Goulder

and Watkins, 2008; Mekue et al., 2019; Valenzuela-Ponce

et al., 2018), and H1N1 flu was shown to be associated with

several HLAs (Falfán-Valencia et al., 2018; Luckey et al., 2019).

Association between disease severity and HLA was also re-

ported in SARS-CoV patients (Lin et al., 2003; Ng et al., 2004;

Chen et al., 2006; Keicho et al., 2009; Spı̀nola, 2016).

According to the structure and function of its genes, the hu-

man MHC has been classified into three main regions: class I,
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class II, and class III. The class I regions are located on the

most telomeric part of the human MHC and include three highly

polymorphic HLA genes, known as classical (class Ia: HLA-A,

HLA-B, and HLA-C), and three lowly polymorphic HLA genes,

known as non-classical (class Ib: HLA-E, HLA-F, and HLA-G)

(Shiina et al., 2009). These molecules display small protein

fragments at the cell surface, mostly originated in the cytosol.

Thus, when a cell expresses foreign proteins, due, for example,

to a viral infection, peptides created in the cytosol through

proteasome-dependent processes could bind MHC class I.

This MHC-peptide complex can then be exposed on the cellular

membrane, triggering an immune response if it is recognized

by CD8+ T cells (Maffei et al., 1997; Goldberg and Rizzo, 2015).

Among HLA class I, HLA-B is the most polymorphic classical

class I gene, with 4,077 alleles identified to date in different

human populations, followed by HLA-A (3,285 alleles) and

HLA-C (2,801 alleles) (González-Galarza et al., 2015).

Due to the rapid spread of the SARS-CoV-2 virus, a crucial

question is to understand why there is individual susceptibility

to the virus in the population. Epidemiological studies show

that only a fraction of the infected individuals experience

severe respiratory symptoms due to SARS-CoV-2 (Wu et al.,

2020), with an infection fatality ratio estimated for China at

around 0.6% and increasing with age (Verity et al., 2020).

Another recent work estimated that in France, on an average,
.
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2.6% of the infected individuals were hospitalized, while 0.53%

died, again with dependence on the age of the patient (Salje

et al., 2020). In light of these results, it would be extremely impor-

tant to identify possible susceptible subjects in advance to

protect them with adequate prevention strategies (Lipsitch

et al., 2020).

In this paper, we propose amethod to identify the dependence

on HLA class I polymorphic alleles of the individual immune

response to SARS-CoV-2. We focus on this class of the MHC,

since it is expressed by all nucleated cells, including antigen-pre-

senting cells. In practice, we estimate the aggressiveness of

COVID-19 based on the compatibility between the specific

HLA I polymorphism and SARS-CoV-2 peptides. Because

experimental characterization of neoantigens is costly and time

consuming, there is a growing effort in the development of

computational methods that are able to predict peptide-MHC

binding and the subsequent immune response. Supervised neu-

ral network machine learning approaches are currently showing

an increasing performance and are widely used as in silico

epitope prediction tools (Paul et al., 2020; Jurtz et al., 2017;

O’Donnell et al., 2018). Here, we use two of these epitope predic-

tion algorithms to compute binding affinities between SARS-

CoV-2 peptides and 79 HLA class I. Similar calculations are

performed to identify peptides for vaccine development (Camp-

bell et al., 2020).

We compare our predictions for SARS-CoV-2 with analogous

predictions for SARS-CoV and HCoV-OC43, a coronavirus

responsible for the common cold. We also assess the stability

and T cell propensity of these peptides for a smaller number of

HLA alleles (Trolle and Nielsen, 2014). Using this method, we

identify a set of weakly binding haplotypes and assess their

prevalence in specific human subpopulations, as well as a set

of strongly binding haplotypes for which we also compute pep-

tide stability and T cell propensity (Trolle and Nielsen, 2014). All

together, our strategy paves the way to the development of a

general screening method to assess individual COVID-19 sus-

ceptibility in the population.

RESULTS

To compute the binding affinities of coronavirus peptides, we

combine the predictions of two state-of-the-art methods (Paul

et al., 2020): netMHCpan (Jurtz et al., 2017) and MHCflurry

(O’Donnell et al., 2018), both based on artificial neural networks.

The combination of the two methods allows us to have a more

robust result that is independent of the artificial neural networks

used. We consider 79 common polymorphic HLA class I alleles

supported by both methods and combine their predictions for

the binding affinities for peptides of lengths 8–11. These 79

HLA alleles are present in a considerable fraction of the human

population as illustrated in Figure S1. We scan peptides that

are produced by proteasome degradation (Nielsen et al., 2005)

considering only the structural proteins of SARS-CoV-2, which

are the most abundant proteins in coronaviruses (Bar-On et al.,

2020). We then compared the results obtained from the struc-

tural proteins of SARS-CoV and HCOV-OC43.

As shown in Figures S2–S4 for HLA-A, HLA-B, and HLA-C al-

leles and SARS-CoV-2 peptides, binding affinities are broadly

distributed with a peak at high affinities so that the majority of
peptides display weak binding to the HLA. Furthermore, the dis-

tributions differ between the various alleles (Figures S2–S4), con-

firming the presence of a heterogeneous binding pattern. To

encapsulate the binding affinity distributions into a simple

parameter, we counted all the peptides displaying a strong bind-

ing affinity (IC50<1;000 nM) for each of the 79 alleles. We carried

out the same analysis for all the three coronaviruses. Figure 1A

displays the number of strongly binding peptides for each allele

showing that there is a close similarity between SARS-CoV-2

and SARS-CoV. In particular, alleles with a few strongly binding

peptides in SARS-CoV-2 also display small numbers in SARS-

CoV, while alleles with many strongly binding peptides in

SARS-CoV-2 also show many strong peptides in SARS-CoV

(Figure 1A). We can also observe similarities between SARS-

CoV-2 and HCoV-OC43, but typically, HCoV-OC43 displays

more strongly binding peptides than SARS-CoV-2 or SARS-

CoV (see Figure 1A).

To confirm that our results do not depend on the particular cut-

off chosen, we also repeated the analysis with a smaller cutoff for

strong binding (IC50<500 nM). In Figure S5, we compare the

number of strongly binding peptides in SARS-CoV-2 for the

two different cutoffs. The outcome is very similar, apart from

small quantitative differences. To obtain a cutoff-independent

assessment of the binding of viral peptides to each HLA mole-

cule, we computed a total binding affinity Ktot by weighting the

binding affinity of all the peptides, as described in the STAR

Methods section. The values of Ktot for the binding among

SARS-CoV-2, SARS-CoV, and HCoV-OC43 peptides to all the

considered HLAmolecules are reported in Figure S6. Comparing

the patterns in Figures 1A and S6, we can see that the HLA mol-

ecules with few strongly binding peptides are also those with

higher values of Ktot, confirming the robustness of our results.

A visual representation of howmuch strongly binding peptides

are shared among different HLA alleles is provided in Figure 1B

for the case of SARS-CoV-2. The figure shows that some pep-

tides display strong affinity (in yellow) for a number of HLA

molecules, but in general, peptides only bind strongly to rela-

tively small numbers of HLA molecules, highlighting the hetero-

geneity of MHC-peptide interactions across human haplotypes.

To understand the similarities between SARS-CoV-2 and

SARS-CoV in more depth, we report in Figure S7A peptides

that are common to both viruses and that bind strongly to

more than one HLA molecule. We observe that some peptides

bind strongly to up to 8 HLA molecules. Conversely, for each

HLA molecule, there are strongly binding peptides that are

unique to SARS-CoV-2 or SARS-CoV. The numbers of these

peptides are summarized in Figure S7B for each HLA molecule.

We then analyzed the stability between peptides and HLA

class I as well as T cell propensity. To this end, we used NetTepi

(Trolle and Nielsen, 2014) to find the putative T cell epitopes

for SARS-CoV-2 and SARS-CoV considering all 13 alleles

available for this method. These alleles are widely frequent in

human populations: the HLA-A alleles are present in around

60% of the populations, while the HLA-B alleles are present in

around 30% of the populations. As shown in Figure S8A, the

number of highly ranked peptides are very similar in the case

of SARS-CoV-2 and SARS-CoV. Highly ranked peptides

that are common to the two coronaviruses are reported in

Figure S8B, together with their rank. In Figure S9, we display
Cell Systems 11, 412–417, October 21, 2020 413



Figure 1. Characterization of the Binding Heterogeneity of SARS-CoV-2 and SARS-CoV Peptides Are Similar and Differs for HCoV-OC43

(A) The number of strongly binding peptides (IC50<1; 000 nM) for SARS-Cov-2, SARS-Cov, and HCOV-OC43 estimated for 79 class I HLA alleles by combining

predictions from netMHCpan and MHCflurry.

(B) The binding affinities (IC50) of SARS-Cov-2 peptides are shown in the clustered colormap for 79 class I HLA alleles. Only peptides with at least one binding

affinity smaller than 1,000 nM are included.
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distributions of binding stability, T cell propensity, and T cell

epitope score for the 13 supported HLA alleles and all the

strongly binding peptides previously identified in SARS-CoV-2.

By ranking the HLA molecules as based on the T cell epitope

score, we can identify the list of HLA molecules that are most

likely to bind SARS-CoV-2 peptides that are recognized by

T cells.

Having characterized the binding propensity of each molecule

to SARS-CoV-2 peptides, we thus investigated how individuals

from different human populations are likely to respond to

SARS-CoV-2 infection in terms of peptide presentation by HLA

class I. To this end, we collected haplotype frequencies from

different human populations (i.e., Europeans, Chinese, Japa-

nese, Hispanic, and African Americans) and inspected the prev-

alence of weakly binding molecules, defined as those who

display no strongly binding peptide from SARS-CoV-2 structural

proteins. This list included: HLA-A*25:01, HLA-A*26:03, HLA-

A*66:01, HLA-B*08:02, HLA-B*14:02, HLA-B*15:09, HLA-

B*27:02, HLA-B*27:03, HLA-B*27:04, HLA-B*27:06, HLA-

B*37:01, HLA-B*39:06, HLA-B*46:01, HLA-B*83:01, HLA-

C*04:01, HLA-C*08:02, and HLA-C*12:03. Since HLA is codom-

inant and all the alleles (A, B, and C) were expressed by each in-

dividual, we determined the haplotype that contains three, two,

or one of the alleles contained in the list. We then plotted their

prevalence in the different human populations (see Figure 2B).

The results showed that haplotypes with three weakly binding al-

leles are generally quite rare, amounting to up to two individuals
414 Cell Systems 11, 412–417, October 21, 2020
over 1,000. The frequency of haplotypes with twoweakly binding

alleles is around 1%–4% depending on the populations, with the

exception of Japan, where those haplotypes amount only to

0.16%, and Germans of Chinese origin, where this frequency is

0.59%. Finally, haplotypes with only one weakly binding peptide

were more common, showing frequencies of around 20% with

small variations among different populations.

We finally report the frequency of haplotypes containing either

one or two of the HLA alleles that are most likely to bind SARS-

CoV2 peptides and be recognized by T cells. Figure 2A shows

variations of the frequency in the populations, with Chinese

and Japanese displaying the highest frequency of these

haplotypes.

DISCUSSION

The possibility to screen the population and predict a score

of aggressiveness for each specific individual is a critical issue

to develop personalized therapeutic strategies and to mitigate

the effects of the infection in the shortest time. To reach this

final goal, we focused on HLA class I, which is involved in pre-

senting viral peptides to CD8+ T cells, mounting the immune

response. A more complete picture of the immune response

could be obtained by studying HLA class II molecules, but

the performance of peptide-HLA class II binding prediction

algorithms is still inferior to that of HLA class I predictors

(Andreatta et al., 2018).



A

B

Figure 2. Response to SARS-CoV-2 across Human Populations

(A) Frequencies of haplotypes containing one or two strong alleles, defined as those with highly ranked T cell epitopes.

(B) Frequencies of haplotypes containing one, two, and three weakly binding alleles for SARS-CoV-2. Error bars are estimated 95% confidence intervals.
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SARS-CoV-2 and SARS-CoV share 80% of the genome,

while the similarity between SARS-CoV-2 and HCOV-OC43

is only 50% (Bar-On et al., 2020). We have thus compared

the variations in binding affinities between coronavirus-

derived peptides and a large number of HLA class I molecules

for SARS-CoV-2, SARS-CoV, and HCoV-OC43. Our results

show that the binding patterns are similar for SARS-CoV-2

and SARS-CoV, while they differ more for HCoV-OC43. We

then identified a list of HLA class I alleles, where the binding

with SARS-CoV-2 peptides is particularly weak. This means

that these HLA alleles have a smaller probability to immedi-

ately start an adaptive immune response. In contrast, we

also identified the list of HLA alleles whose binding with

SARS-CoV-2 peptides is particularly strong and are most

likely to activate a T cell response.
Our results clearly show the heterogeneity of the human

population in responding to SARS-CoV-2 infection. To quan-

tify this heterogeneity, we computed the frequency of

haplotypes that are predicted to display a weak SARS-

CoV-2 peptide-HLA class I binding in different human popu-

lations. In particular, we measured the prevalence of haplo-

types that contain one, two, or three weakly binding alleles.

Individuals with these haplotypes are likely to display a

weaker immune response to SARS-Cov-2 infection. In this

way, we developed a clear parameter that can be useful to

screen the population.

Earlier studies in SARS-CoV revealed association between

the presence of HLA-B*46:01, one of the weakly binding

alleles in our list, and the observation of severe symptoms

in a cohort of Taiwanese patients (Lin et al., 2003). Similar
Cell Systems 11, 412–417, October 21, 2020 415
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associations were found with HLA-B*07:01 (Keicho et al., 2009)

and HLA-C*08-01 (Chen et al., 2006) that are, however, not

among the alleles we were able to study with our method.

Since SARS-CoV-2 and SARS-CoV share most of the genome

and we show that they display similar HLA binding profiles,

it is expected that the weakly binding HLA molecules are

similar for both viruses. While these early studies confirm the

relevance of our approach, in light of our results it would be

more appropriate to investigate the correlations between dis-

ease severity and the complete haplotype, instead of focusing

on individual alleles.

Furthermore, we also identified the HLA haplotypes associ-

ated with a strong combined peptide affinity, stability, and

T cell propensity and measured their prevalence in different

human populations. We found that these haplotypes are

more present in Asian populations. This might be a relevant

parameter to study the diffusion of the disease across the

world. Simulations of diffusion of the virus might take this ef-

fect into account. Altogether, our strategy could be the basis

to develop individualized tests to assess the immune suscep-

tibility to COVID-19 in the population. To reach this goal, it

would be important to extend our analysis also to HLA class

II molecules.
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Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Caterina A. M. La Porta

(caterina.laporta@unimi.it).

Materials Availability
This study did not generate new unique reagents or materials.

Data and Code Availability
The source codes generated to obtain the results presented in this paper are available at https://github.com/ComplexityBiosystems/

hla-covid. Binding affinities for SARS-CoV-2, SARS-CoV and HCoV-OC43 are reported in Data S1. The protein sequences used

in this paper are also available at https://github.com/ComplexityBiosystems/hla-covid/. Haplotype frequencies for different

population are retrieved from the Allele Frequency Net Database (http://www.allelefrequencies.net/) (González-Galarza et al.,

2015) and available at https://github.com/ComplexityBiosystems/hla-covid/.

METHOD DETAILS

Calculation of Binding Affinities for Individual Peptides
We downloaded the fasta sequences for SARS-CoV-2 (GenBank: MN908947.3), SARS-CoV (NCBI Reference Sequence:

NC_004718.3) and HCoV-OC43 (NCBI Reference Sequence: NC_006213.1). We restrict our analysis to the most abundant

structural proteins (Bar-On et al., 2020): S,N,E,M for SARS-Cov and SARS-Cov-2 and S,N,E,M,HE for HCOV-OC43. In order to

estimate binding affinities for peptides, we combine two recent algorithms based on artificial neural networks (ANN): netMHCpan

4.0 (Jurtz et al., 2017) and MHCflurry (O’Donnell et al., 2018). NetMHCpan uses a pan-allele approach to provide predictions

for binding affinities of peptides to any MHCmolecule by an ANN trained on a combination of more than 180000 quantitative binding

data (Jurtz et al., 2017). MHCflurry uses instead an allele specific algorithm where each MHC allele is associated with 8-16 neural

networks trained on affinity measurements (O’Donnell et al., 2018). Here, we run netMHCpan 4.0 and MHCflurry on a set of 79

HLA-A, HLA-B and HLA-C alleles supported by both algorithm. We run netMHCpan 4.0 predictions on the DTU server (https://

services.healthtech.dtu.dk/service.php?NetMHCpan-4.0) while MHCflurry predictions are obtained using the epitopepredict

python code (https://github.com/dmnfarrell/epitopepredict). In both cases, we scan all the peptides of lengths 8-11 for the proteins

of interest.We only consider peptides that are likely to be produced by proteasome degradation. To this end, we employ NetChop 3.1

(Nielsen et al., 2005) a neural network based algorithm that scans proteins for probable cleavage sites of the human proteasome.

We next compare the predictions for the binding affinities obtained by netMHCpan 4.0 and MHCflurry for each peptide and MHC
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allele. As shown in Figure S10, there is a strong correlation between the two predictions but in some cases the two predictions

sometimes display large differences. We discard these values considering only peptides for which jp1�p2j=jp1+p2j<0:25, where p1

and p2 are the predictions for binding affinity (IC50) obtained by the two algorithms. The binding affinity is then taken to be the average

of p1 and p2. Finally, peptides for which both p1 and p2 are smaller than 1000 nM are defined as strongly binding. We thus count the

number of strongly binding peptides for each allele.

Calculation of the Total Binding Affinity to HLA Molecules
Consider a set of n peptides with concentrations ½Pi�with i = 1;.;n that can bind with HLA molecules with dissociation constants Ki.

We denote by ½H� the concentration of free HLA molecules and by ½HPi� the concentration of HLA molecules bound to a peptide i.

According to the law of mass action, we have that

Ki =
½Pi�½H�
½HPi� : (Equation 1)

The probability for a HLA molecule to be bound by any peptide i can be written as

pb =

P
i½HPi�

½H�+P
i½HPi�=

P
i½Pi�

�
Ki

1+
P

i½Pi�
�
Ki

: (Equation 2)

For peptides with uniform concentration ½Pi� = P0, we can write

pb =
P0=Ktot

1+P0=Ktot

; (Equation 3)

where Ktot = 1=ðPn
i = 11 =KiÞ is a measure of the total binding affinity of all the peptides to a given HLA molecule. To estimate Ktot,

we use the predicted binding affinities as a proxy for the dissociation constants Ki. The binding affinity is strictly equal to the

dissociation constant only for non-competitive binding, while the two quantities are just proportional in competitive binding

assays (Cheng and Prusoff, 1973; Lazareno and Birdsall, 1993).

Identification of T Cell Epitopes
To identify potential T cell epitopes, we use NetTepi 1.0 server (https://services.healthtech.dtu.dk/service.php?NetTepi-1.0)

which combines estimates for peptide-MHC binding affinity, peptide-MHC stability and T cell propensity (Trolle and Nielsen,

2014). Peptides are then ranked against a set of 200000 natural peptides to obtain a global rank score. Here we scan all SAR-

S-Cov-2 and SARS-Cov peptides with lengths 8–11 from the 4 structural viral proteins and retain the peptides with rank score

lower than 2%. We perform the calculations for all the available class I MHC allele using the default values for the relative weight

on stability prediction and the relative weight on T cell propensity prediction. The alleles suppored by NetTepi are well represented

in human populations. In particular, the supported HLA-A alleles are present in around 60% of the populations, while the HLA-B

are present in around 30% of the populations.

QUANTIFICATION OF HAPLOTYPE FREQUENCIES AND STATISTICAL ANALYSIS

We consider populations with a sample size larger than 1000 individuals and containing data for all the three classical polymorphic

HLA genes. We include data from the German Bone Marrow Donor File (Deutsche KnochenMarkSpenderdate, DKMS) which

provides thousands of haplotypes for Germans with different origins. We also include a large dataset from Japan, sample over

more than 18000 individuals, and two large datasets from the United States of America (African-Americans and Hispanics).

Confidence intervals for haplotype frequencies f are estimated assuming binomial statistics (i.e. CI = f ± z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1� fÞ=Np

, with z=

1:96 for a 95% confidence interval, where N is the sample size). When f = 0 we use instead the rule of three: CI = 3=N. Statistical

analysis is implemented in python and available within the released code https://github.com/ComplexityBiosystems/hla-covid.
Cell Systems 11, 412–417.e1–e2, October 21, 2020 e2
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HLA-A alleles HLA-B alleles HLA-C alleles

Figure S1: Representation across human populations of the 79 HLA alleles
studied in the present work. Related to Fig. 1 Percentage of the population that
has one of the 79 a) HLA-A, b) HLA-B or c) HLA-C alleles.



Figure S2: Distribution of binding affinities for SARS-Cov-2 peptides and HLA-
A molecules. Related to Fig. 1 The probability distributions are estimated using using
a Gaussian kernel.



Figure S3: Distribution of binding affinities for SARS-Cov-2 peptides and HLA-
B molecules. Related to Fig. 1 The probability distributions are estimated using using
a Gaussian kernel.



Figure S4: Distribution of binding affinities for SARS-Cov-2 peptides and HLA-
C molecules. Related to Fig. 1 The probability distributions are estimated using using
a Gaussian kernel.



a) b)

c)

Figure S5: Role of the cutoff in the number of strongly binding peptides. Re-
lated to Fig. 1 The number of strongly binding peptides for SARS-Cov-2 estimated for
79 Class I HLA alleles by combining predictions from netMHCpan and MHCflurry. The
results are obtained using two different cutoff values (IC50 < 1000nM and IC50 < 500nM)
for a) HLA-A, b) HLA-B and c) HLA-C molecules.



a) b)

c)

Figure S6: Total binding affinity for each HLA molecule. Related to Fig. 1 The
total binding affinity for SARS-Cov-2, SARS-Cov and HCOV-OC43 peptides estimated
for 79 Class I HLA alleles by combining predictions from netMHCpan and MHCflurry.
Results for a) HLA-A, b) HLA-B and c) HLA-C molecules.



a) b)

Figure S7: Strongly binding peptides in SARS-CoV-2 and SARS-CoV. Related
to Fig. 1 a) The list of peptides that bind strongly to multiple HLA molecules for both
SARS-CoV-2 and SARS-CoV (affinity less than 1000 nM). Peptides are ranked according
to the number of common HLA molecules to which they bind strongly. b) The number of
peptides that bind strongly only for either one between SARS-CoV-2 and SARS-CoV are
reported for each of 79 alleles studied.



a) b)

Figure S8: Potential T-cell epitopes are shared between SARS-CoV-2 and
SARS-CoV. Related to Fig. 1 a) The number of potential T-cell epitopes for SARS-
CoV-2 and SARS-CoV peptides estimated with netTepi (see Methods). b) Highly ranked
peptides for different HLA alleles that are in common for SARS-CoV-2 and SARS-CoV.



a) b)

c)

Figure S9: T-cell epitopes for SARS-CoV-2. Related to Fig. 1 The distribution of
a) peptide stability, b) T cell propensity and c) combined T-cell epitope score computed
by netTepi (see Methods) for different HLA alleles and all the peptides from SARS-CoV-2
structural proteins.



Figure S10: Comparison of binding affinity predictions. Related to Fig. 1 Joint
density estimates for the binding affinity predictions of netMHCpan and MHCflurry.
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