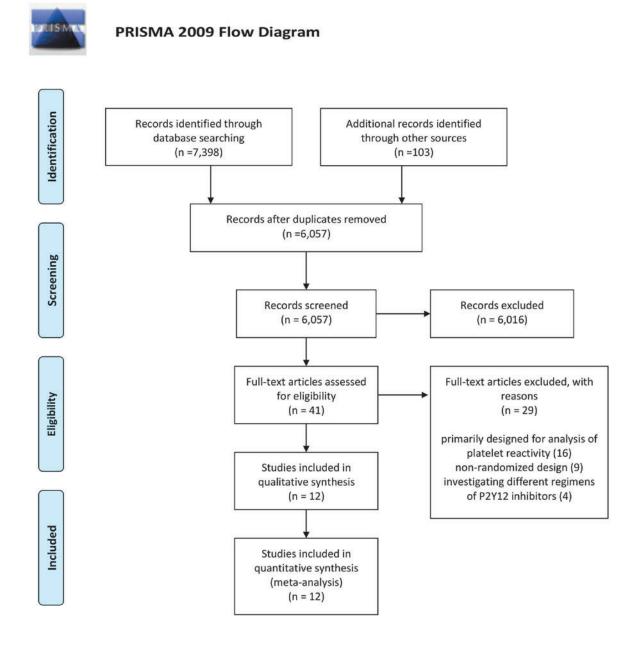
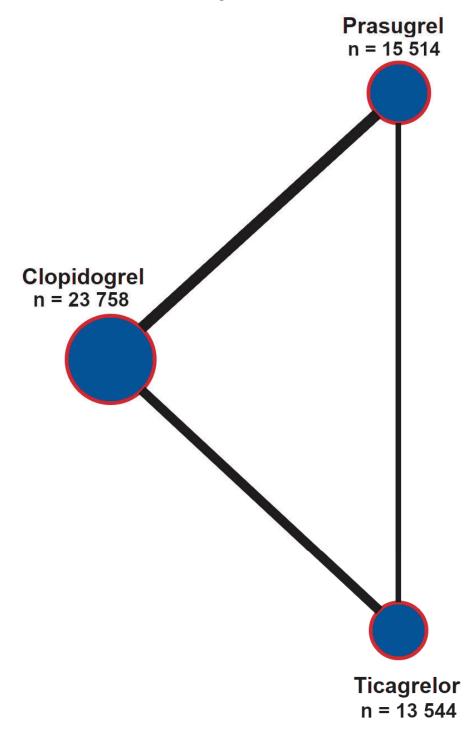
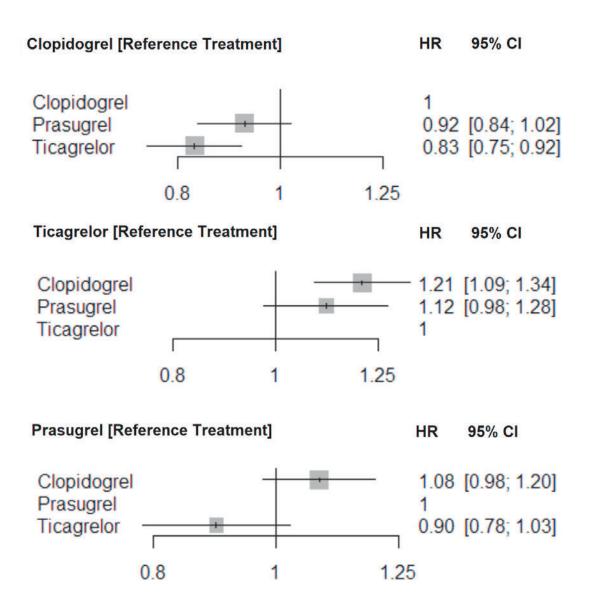
SUPPLEMENTAL MATERIAL

Navarese EP et al. Comparative efficacy and safety of oral P2Y12 inhibitors in acute coronary syndrome: Network meta-analysis of 52,816 patients from 12 randomized trials. Circulation 2020.

Figure IA. PRISMA Flow Diagram	2
Figure IB. Network of treatment comparisons	3
Figure IIA. Network meta-analysis of randomized trials for all-cause mortality.	4
Figure IIB. Pairwise meta-analysis of randomized trials for all-cause mortality	5
Figure IIC. Network meta-analysis of randomized trials for non-cardiovascular mortality	6
Figure IID. Pairwise meta-analysis of randomized trials for non-cardiovascular mortality	7
Figure IIIA. Network meta-analysis of randomized trials for definite stent thrombosis.	8
Figure IIIB. Pairwise meta-analysis of randomized trials for definite stent thrombosis	9
Figure IVA. Network meta-analysis of randomized trials for stroke	10
Figure IVB. Pairwise meta-analysis of randomized trials for stroke	11
Figure VA. Network meta-analysis of randomized trials for hemorrhagic stroke	12
Figure VB. Network meta-analysis for ischemic stroke.	13
Figure VIA. Pairwise meta-analysis of randomized trials for PLATO major bleeding	14
Figure VIB. Pairwise meta-analysis of randomized trials for TIMI major bleeding.	15
Figure VIIA. Trials with planned invasive evaluation - Cardiovascular mortality	16
Figure VIIB. Trials with planned invasive evaluation - All-cause mortality	17
Figure VIIC. Trials with planned invasive evaluation - Myocardial infarction	18
Figure VIID. Trials with planned invasive evaluation - Definite or probable stent thrombosis	19
Figure VIIE. Trials with planned invasive evaluation - Definite stent thrombosis	20
Figure VIIF. Trials with planned invasive evaluation – Stroke.	21
Figure VIIG. Trials with planned invasive evaluation - Major bleeding.	22
Figure VIII. Rankogram of antithrombotics for efficacy and safety	23
Table I. Electronic search using MEDLINE database.	24
Table II. Assessment of Consistency of Network Meta-Analysis Model	25
Table III. Egger's regression test	
Table IV. Patient characteristics.	27
Table V. Bias assessment	29
Table VI. Exclusion of Trials with open-label design	30


Figure IB. Network of treatment comparisons.

Nodes denote P2Y12 inhibitor type; thickness of link indicates number of direct comparisons

Figure IIA. Network meta-analysis of randomized trials for all-cause mortality. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

No. of Trials	12
No. of Pairwise comparison	12
12	21.7%

4

Figure IIB. Pairwise meta-analysis of randomized trials for all-cause mortality.

Individual and summary hazard ratios with 95% confidence intervals(CIs). ISAR-REACT 5 – Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes, PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, PRASFIT-ACS – PRASugrel compared with clopidogrel For Japanese patIenTs with ACS undergoing PCI, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

Group by	Trial, Year	Sta	atistics fo	idy		
Comparison		Hazard ratio	Lower limit	Upper limit	p-Value	
Prasugrel v Clopidogrel	The Elderly ACS II, 2018 ²¹	1.31	0.80	2.14	0.28	+++
	The PRASFIT-ACS, 2013 ¹⁹	0.96	0.42	2.21	0.92	+++
	TRILOGY ACS, 2012 20	0.94	0.82	1.08	0.38	
	TRITON-TIMI 38, 2009 10	0.95	0.78	1.16	0.61	+
		0.96	0.86	1.07	0.45	
Prasugrel v Ticagrelor	ISAR-REACT 5, 201911	0.81	0.60	1.10	0.19	
	PRAGUE-18, 2017 22	1.13	0.66	1.93	0.65	
		0.88	0.68	1.15	0.36	🔶
ficagrelor v Clopidogrel	POPular AGE, 2019 ¹⁴	0.92	0.57	1.47	0.72	
	PHILO, 2015 ¹⁵	1.42	0.54	3.74	0.48	-+++
	PLATO, 20099	0.78	0.69	0.89	0.00	
	Tang et al., 2016 ¹⁷	0.66	0.19	2.37	0.53	↓↓↓
	Wang et al., 2016 ¹⁸	0.53	0.24	1.19	0.12	
	TICAKOREA, 2019 ¹⁶	1.65	0.75	3.63	0.21	││┼╍┼
		0.80	0.71	0.90	0.00	

Favors Treatment 1 Favors Treatment 2

Figure IIC. Network meta-analysis of randomized trials for non-cardiovascular mortality. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

No. of Trials	11
No. of Pairwise comparison	11
<i>I</i> ²	35.5%

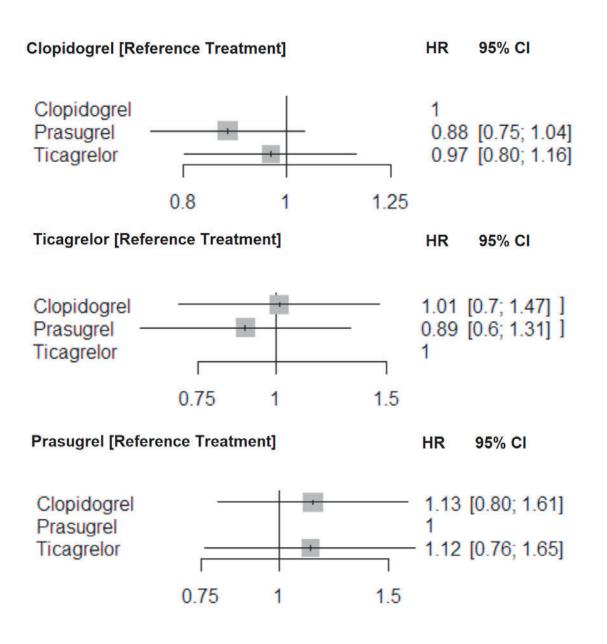


Figure IID. Pairwise meta-analysis of randomized trials for non-cardiovascular mortality. Individual and summary hazard ratios with 95% confidence intervals (CIs).

ISAR-REACT 5 – Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes, PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

Trial, Year	Statistics for each study										
	Hazard ratio	Lower limit	Upper limit	p-Value							
TRILOGY ACS, 2012 20	0.97	0.71	1.33	0.85	1	1			T	Ĩ	
TRITON-TIMI 38, 2009 ¹⁰	1.16	0.79	1.72	0.45				+	-		
	1.04	0.81	1.33	0.75				٠			
ISAR-REACT 5, 2019 ¹¹	0.63	0.46	0.86	0.00							
PRAGUE-18, 2017 22	1.21	0.45	3.22	0.70			+	-	+		
	0.73	0.42	1.28	0.27							
POPular AGE, 2019 ¹⁴	1.00	0.51	1.95	1.00			-	+	-		
PHILO, 2015 ¹⁵	3.00	0.12	73-31	0.50	-	+	-	+	┼╸	+	
PLATO, 2009 9	0.71	0.49	1.03	0.07				ł			
Tang et al., 2016 ¹⁷	1.00	0.06	15.86	1.00	(+	-	+	-	+	
TICAKOREA, 2019 ¹⁶	0.26	0.03	2.28	0.22	K		-	+	+		
	0.77	0.56	1.06	0.10							
					0.1	0.2	0.5	1	2	5	1
	TRILOGY ACS, 2012 ²⁰ TRITON-TIMI 38, 2009 ¹⁰ ISAR-REACT 5, 2019 ¹¹ PRAGUE-18, 2017 ²² POPular AGE, 2019 ¹⁴ PHILO, 2015 ¹⁵ PLATO, 2009 ⁹ Tang et al., 2016 ¹⁷	Hazard ratio TRILOGY ACS, 2012 20 0.97 TRITON-TIMI 38, 2009 10 1.16 1.04 1.04 ISAR-REACT 5, 2019 11 0.63 PRAGUE-18, 2017 22 1.21 0.73 0.73 POPular AGE, 2019 14 1.00 PHILO, 2015 15 3.00 PLATO, 2009 9 0.71 Tang et al., 2016 17 1.00 TICAKOREA, 2019 16 0.26	Hazard ratio Lower limit TRILOGY ACS, 2012 20 0.97 0.71 TRITON-TIMI 38, 2009 10 1.16 0.79 TRITON-TIMI 38, 2009 10 1.04 0.81 ISAR-REACT 5, 2019 11 0.63 0.46 PRAGUE-18, 2017 22 1.21 0.45 0.73 0.42 0.73 0.42 POPular AGE, 2019 14 1.00 0.51 PHILO, 2015 15 3.00 0.12 PLATO, 2009 9 0.71 0.49 Tang et al., 2016 17 1.00 0.06 TICAKOREA, 2019 16 0.26 0.03	Hazard ratio Lower limit Upper limit TRILOGY ACS, 2012 20 0.97 0.71 1.33 TRITON-TIMI 38, 2009 10 1.16 0.79 1.72 1.04 0.81 1.33 ISAR-REACT 5, 2019 11 0.63 0.46 0.86 PRAGUE-18, 2017 22 1.21 0.45 3.22 0.73 0.42 1.28 POPular AGE, 2019 14 1.00 0.51 1.95 PHILO, 2015 15 3.00 0.12 73.31 PLATO, 2009 9 0.71 0.49 1.03 Tang et al., 2016 17 1.00 0.06 15.86 TICAKOREA, 2019 16 0.26 0.03 2.28	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 20 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 10 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 11 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 22 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 14 1.00 0.51 1.95 1.00 PHILO, 2015 15 3.00 0.12 73.31 0.50 PLATO, 2009 9 0.71 0.49 1.03 0.07 Tang et al., 2016 17 1.00 0.06 15.86 1.00 TICAKOREA, 2019 16 0.26 0.03 2.28 0.22	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 1.00 0.51 1.95 1.00 PHILO, 2015 3.00 0.12 73.31 0.50 PLATO, 2009 9 0.71 0.49 1.03 0.07 Tang et al., 2016 1.00 0.06 15.86 1.00 11CAKOREA, 2019 16 0.26 0.03 2.28 0.22 0.77 0.56 1.06 0.10 0.10	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 20 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 ¹¹ 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 ²² 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 ¹⁴ 1.00 0.51 1.95 1.00 PHILO, 2015 ¹⁵ 3.00 0.12 73.31 0.50 PLATO, 2009 ⁹ 0.71 0.49 1.03 0.07 Tang et al., 2016 ¹⁷ 1.00 0.06 15.86 1.00 TICAKOREA, 2019 ¹⁶ 0.26 0.03 2.28 0.22	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 ¹⁰ 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 ¹¹ 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 ²² 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 ¹⁴ 1.00 0.51 1.95 1.00 PHILO, 2015 ¹⁵ 3.00 0.12 73.31 0.50 PLATO, 2009 ⁹ 0.71 0.49 1.03 0.07 Tang et al., 2016 ¹⁷ 1.00 0.06 15.86 1.00 TICAKOREA, 2019 ¹⁶ 0.26 0.03 2.28 0.22 0.77 0.56 1.06 0.10	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 ¹⁰ 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 ¹¹ 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 ²² 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 ¹⁴ 1.00 0.51 1.95 1.00 PHILO, 2015 ¹⁵ 3.00 0.12 73.31 0.50 PLATO, 2009 ⁹ 0.71 0.49 1.03 0.07 Tang et al., 2016 ¹⁷ 1.00 0.06 15.86 1.00 TICAKOREA, 2019 ¹⁶ 0.26 0.03 2.28 0.22 0.77 0.56 1.06 0.10	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 20 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 10 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 11 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 22 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 14 1.00 0.51 1.95 1.00 PHILO, 2015 15 3.00 0.12 73.31 0.50 PLATO, 2009 9 0.71 0.49 1.03 0.07 Tang et al., 2016 17 1.00 0.06 15.86 1.00 TICAKOREA, 2019 16 0.26 0.03 2.28 0.22 0.77 0.56 1.06 0.10 Image: tal. 2010 16	Hazard ratio Lower limit Upper limit p-Value TRILOGY ACS, 2012 20 0.97 0.71 1.33 0.85 TRITON-TIMI 38, 2009 10 1.16 0.79 1.72 0.45 1.04 0.81 1.33 0.75 ISAR-REACT 5, 2019 11 0.63 0.46 0.86 0.00 PRAGUE-18, 2017 22 1.21 0.45 3.22 0.70 0.73 0.42 1.28 0.27 POPular AGE, 2019 14 1.00 0.51 1.95 1.00 PHILO, 2015 15 3.00 0.12 73.31 0.50 PLATO, 2009 9 0.71 0.49 1.03 0.07 Tang et al., 2016 17 1.00 0.06 15.86 1.00 TICAKOREA, 2019 16 0.26 0.03 2.28 0.22 0.77 0.56 1.06 0.10 0.10

Figure IIIA. Network meta-analysis of randomized trials for definite stent thrombosis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

No. of Trials	4
No. of Pairwise comparison	4
<i>I</i> ²	0%

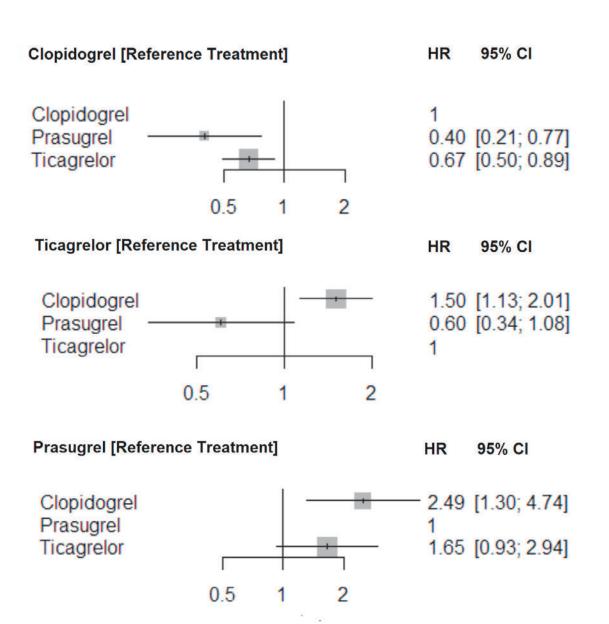
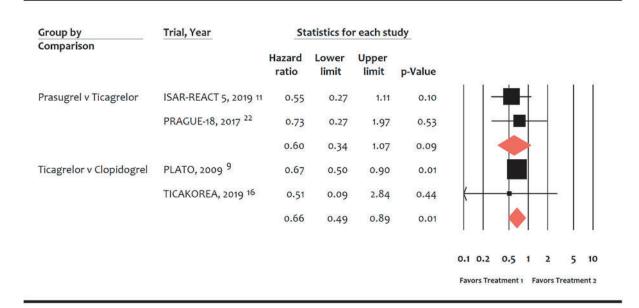
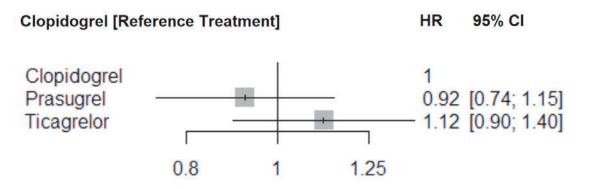
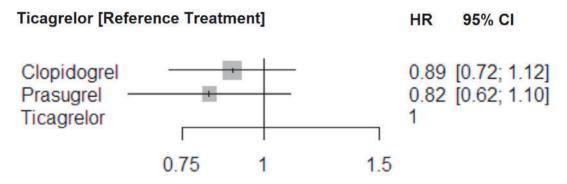
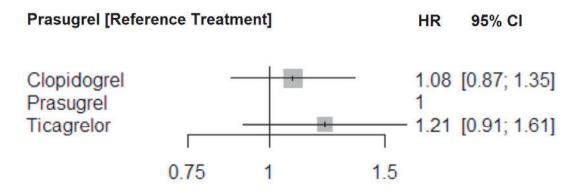


Figure IIIB. Pairwise meta-analysis of randomized trials for definite stent thrombosis. Individual and summary hazard ratios with 95% confidence intervals (CIs). ISAR-REACT 5 – Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes, PLATO – PLATelet inhibition and patient Outcomes, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management.


Figure IVA. Network meta-analysis of randomized trials for stroke.

Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

No. of Trials	11
No. of Pairwise comparison	11
12	0%

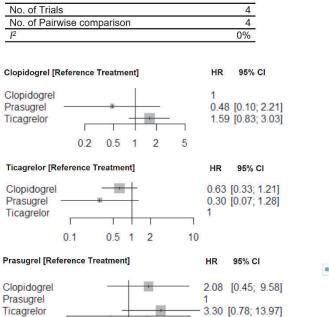


Figure IVB. Pairwise meta-analysis of randomized trials for stroke.

Individual and summary hazard ratios with 95% confidence intervals (CIs). ISAR-REACT 5 – Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes, PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, PRASFIT-ACS – PRASugrel compared with clopidogrel For Japanese patlenTs with ACS undergoing PCI, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

Group by	Trial, Year	Sta	tistics for	r each stu	dy				
Comparison		Hazard ratio	Lower limit	Upper limit	p-Value				
Prasugrel v Clopidogrel	The Elderly ACS II, 2018 ²¹	0.55	0.22	1.37	0.20	-	-	+1	
	The PRASFIT-ACS, 2013 ¹⁹	0.60	0.22	1.64	0.32	-			
	TRILOGY ACS, 2012 ²⁰	0.89	0.63	1.26	0.51			ŧ- I-	
	TRITON-TIMI 38, 200910	1.02	0.71	1.46	0.91		-		
		0.90	0.71	1.13	0.35				
Prasugrel v Ticagrelor	ISAR-REACT 5, 2019 11	0.85	0.46	1.58	0.62		-		
	PRAGUE-18, 2017 22	1.65	0.48	5.66	0.43		-		_
		0.97	0.56	1.69	0.93				
Ticagrelor v Clopidogrel	PHILO, 2015 15	1.50	0.54	4.20	0.44		_	┼╍┼╴	_
	PLATO, 20099	1.17	0.91	1.51	0.23				
	Tang et al., 2016 ¹⁷	0.20	0.02	1.73	0.14	(+		ΞI	
	Wang et al., 2016 ¹⁸	0.62	0.10	3.79	0.60		=	++	-
	TICAKOREA, 2019 ¹⁶	1.25	0.38	4.10	0.71			+	_
		1.15	0.91	1.46	0.25				

Figure VA. Network meta-analysis of randomized trials for hemorrhagic stroke. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

10

Ticagrelor

Г

0.1

0.5 1 2

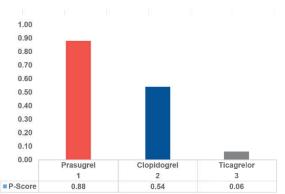


Figure VB. Network meta-analysis for ischemic stroke.

Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

Clopidogrel

3

0.37

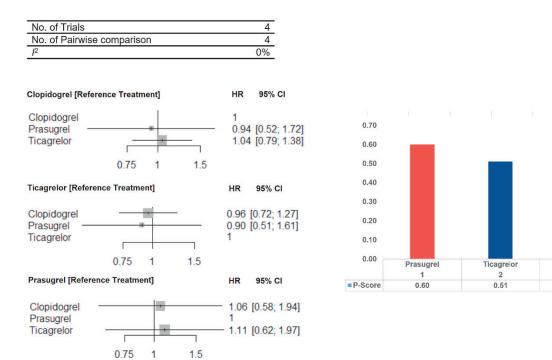


Figure VIA. Pairwise meta-analysis of randomized trials for PLATO major bleeding.

Individual and summary hazard ratios with 95% confidence intervals(CIs). PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management.

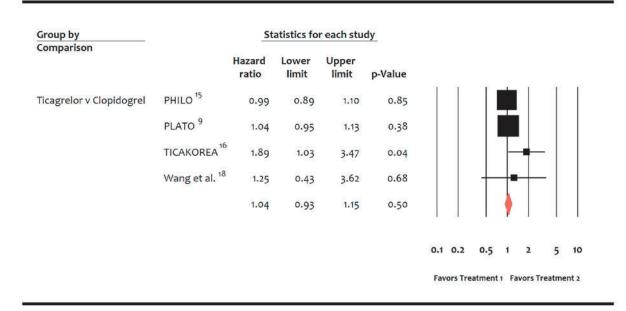


Figure VIB. Pairwise meta-analysis of randomized trials for TIMI major bleeding. Individual and summary hazard ratios with 95% confidence intervals(CIs). TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

Group by	Study name	Sta	atistics fo	r each stu	dy						
Comparison		Hazard ratio	Lower limit	Upper limit	p-Value						
Prasugrel v Clopidogrel	TRITON-TIMI 38, 2009 ¹⁰	1.32	1.03	1.69	0.03						
	TRILOGY ACS, 2012 20	1.23	0.84	1.81	0.29			-	F		
		1.29	1.05	1.59	0.01						
Ticagrelor v Clopidogrel	PLATO, 20099	1.03	0.93	1.15	0.59						
	TICAKOREA, 2019 ¹⁶	2.47	1.08	5.64	0.03			-	-	+	
	POPular AGE, 2019 ¹⁴	0.41	0.17	0.99	0.05	-	-	_			
	Tang et al., 2016 ¹⁷	0.20	0.01	4.17	0.30	←	+	-	+	-	
		0.95	0.47	1.94	0.89			¢			
						0.1 0.2	0.5	1	2	5	10
						Favors Tr	eatment	1 Fav	ors Tre	eatme	nt 2

Figure VIIA. Trials with planned invasive evaluation - Cardiovascular mortality. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

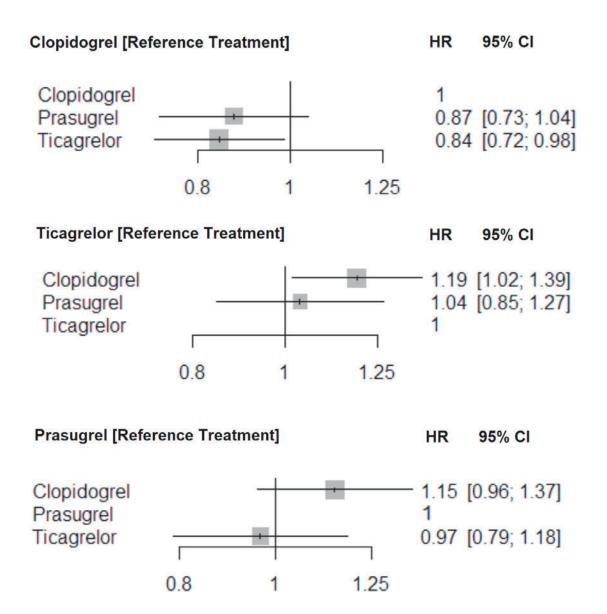


Figure VIIB. Trials with planned invasive evaluation - All-cause mortality. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

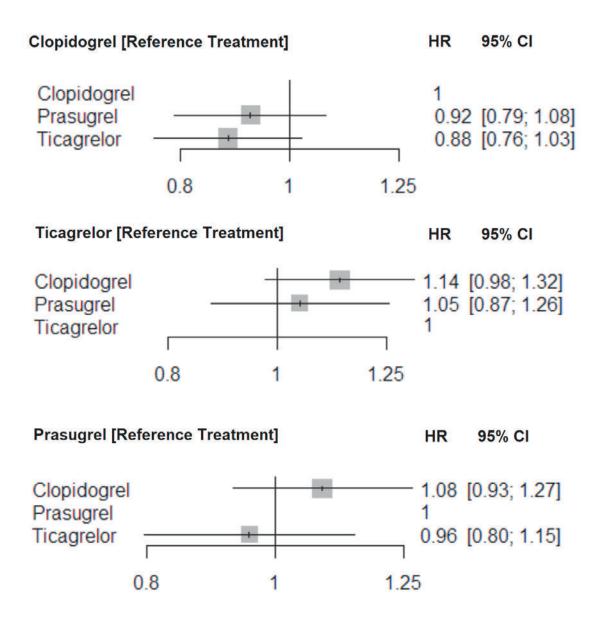


Figure VIIC. Trials with planned invasive evaluation - Myocardial infarction. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

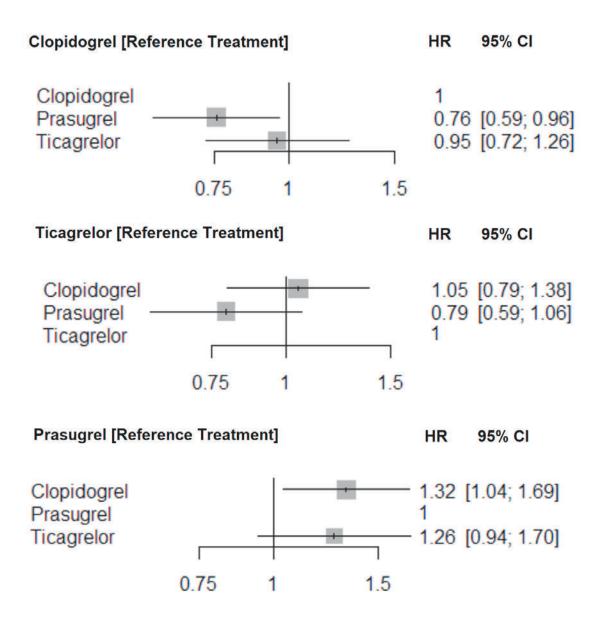


Figure VIID. Trials with planned invasive evaluation - Definite or probable stent thrombosis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

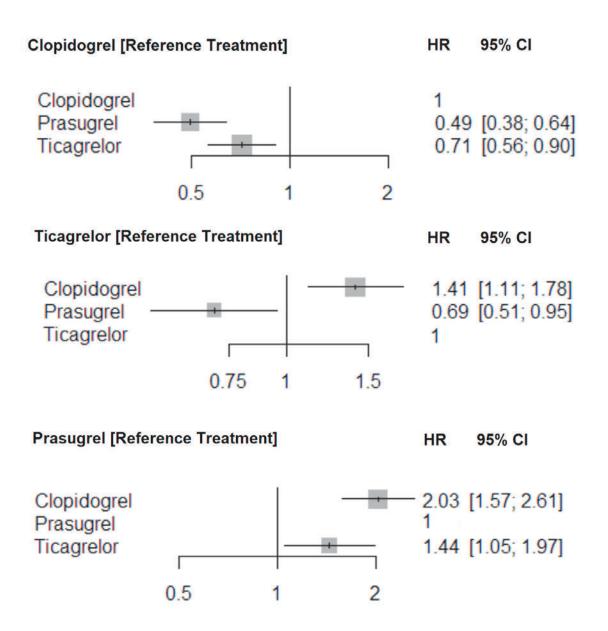


Figure VIIE. Trials with planned invasive evaluation - Definite stent thrombosis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

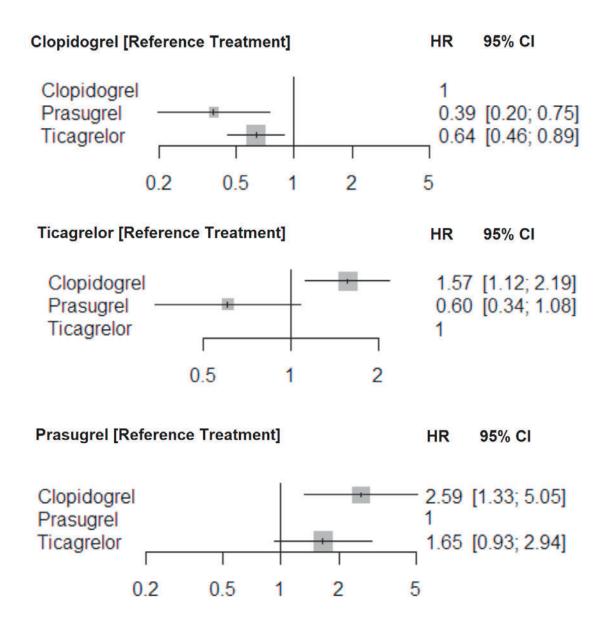


Figure VIIF. Trials with planned invasive evaluation – Stroke. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

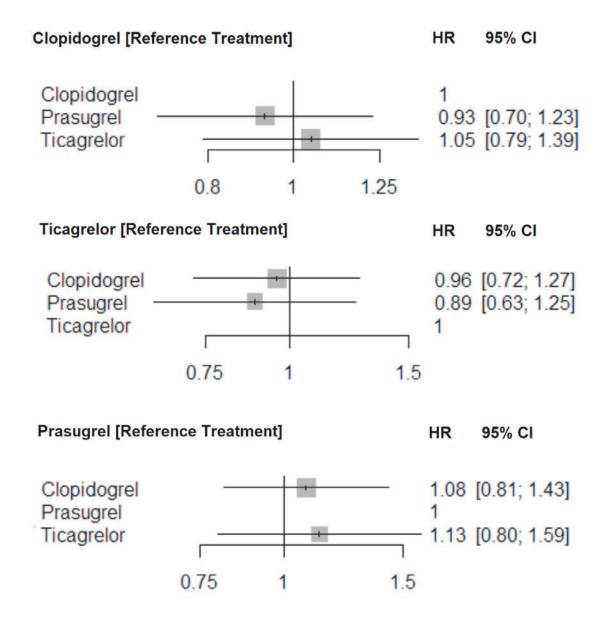


Figure VIIG. Trials with planned invasive evaluation - Major bleeding. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) determined by network meta-analysis.

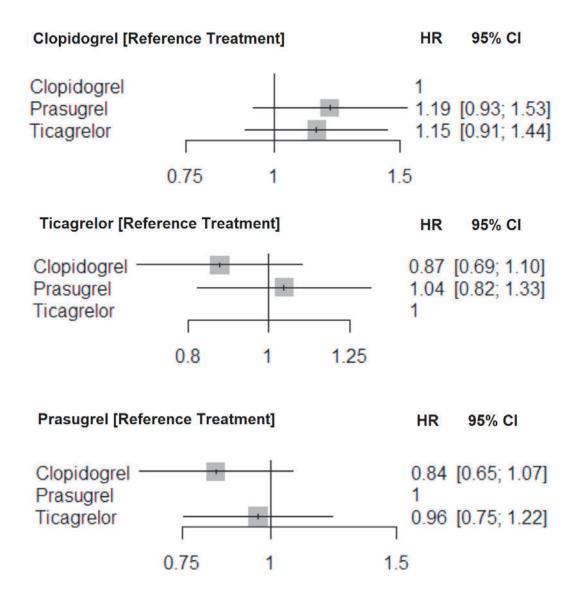
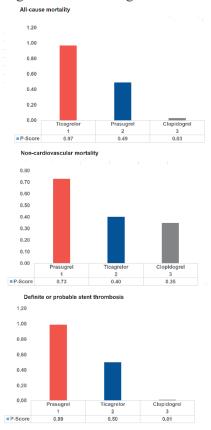
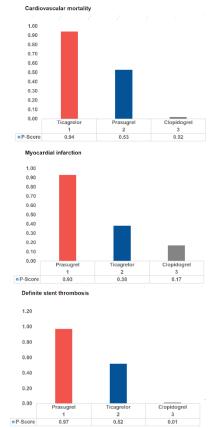




Figure VIII. Rankogram of antithrombotics for efficacy and safety.

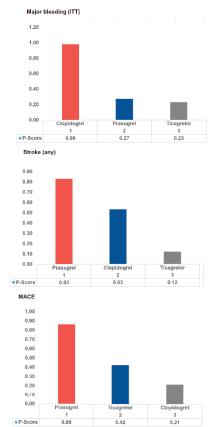


Table I. Electronic search using MEDLINE database.

Search	Query	Items found
#8	Search ((ticagrelor) AND acute coronary syndrome) Filters: Clinical Trial	173
#7	Search ((prasugrel) AND acute coronary syndrome) Filters: Clinical Trial	171
#6	Search ((clopidogrel) AND randomized controlled trial) Filters: Clinical Trial	1586
#5	Search ((prasugrel) AND randomized controlled trial) Filters: Clinical Trial	307
#4	Search ((ticagrelor) AND randomized controlled trial) Filters: Clinical Trial	361
#3	Search ((p2y12 inhibitor) AND randomized controlled trial) Filters: Clinical Trial	109
#2	Search (((ticagrelor) OR prasugrel) OR clopidogrel) Filters: Clinical Trial	2279
#1	Search ((clopidogrel) AND acute coronary syndrome) Filters: Clinical Trial	473

Comparison	k	Prop	nma	Direct	Indirect	ROR	Z	P-value
All-cause mortality								
Clopidogrel: Prasugrel	4	0.83	1.23	1.19	1.47	0.80	-0.81	0.41
Clopidogrel: Ticagrelor	6	0.75	1.02	1.08	0.87	1.23	0.81	0.41
Prasugrel: Ticagrelor	2	0.42	0.83	0.73	0.90	0.80	-0.81	0.41
Cardiovascular mortality								
Clopidogrel: Prasugrel	4	0.85	1.11	1.09	1.25	0.86	-0.69	0.49
Clopidogrel: Ticagrelor	6	0.81	1.19	1.23	1.07	1.15	0.69	0.49
Prasugrel: Ticagrelor	2	0.34	1.07	0.98	1.12	0.86	-0.69	0.91
Myocardial infarction.								
Clopidogrel: Prasugrel	4	0.83	1.23	1.19	1.47	0.80	-0.81	0.41
Clopidogrel: Ticagrelor	6	0.75	1.02	1.08	0.87	1.23	0.81	0.41
Prasugrel: Ticagrelor	2	0.42	0.83	0.73	0.90	0.80	-0.81	0.41
Stroke								
Clopidogrel: Prasugrel	4	0.83	1.07	1.02	1.35	0.75	-1.41	0.15
Clopidogrel: Ticagrelor	6	0.78	1.13	1.21	0.91	1.32	1.41	0.15
Prasugrel: Ticagrelor	2	0.39	1.06	0.89	1.18	0.75	-1.41	0.15
Definite or probable stent thrombosis								
Clopidogrel: Prasugrel	3	0.84	2.01	2.07	1.75	1.17	0.47	0.64
Clopidogrel: Ticagrelor	3	0.88	1.38	1.35	1.59	0.84	-0.47	0.64
Prasugrel: Ticagrelor	1	0.28	0.68	0.77	0.65	1.17	0.47	0.64
Definite stent thrombosis								
Clopidogrel: Prasugrel	0	0.00	2.01	2.48		0.00		
Clopidogrel: Ticagrelor	2	0.88	1.00	1.50	1.50	1.50		
Prasugrel: Ticagrelor	2	0.28	1.00	0.60	0.60	0.60		
Non cardiovascular mortality								
Clopidogrel: Prasugrel	3	0.73	1.13	0.98	1.67	0.58	-1.31	0.18
Clopidogrel: Ticagrelor	6	0.67	1.01	1.20	0.70	1.69	1.31	0.18
Prasugrel: Ticagrelor	2	0.60	0.89	0.71	1.22	0.58	-1.31	0.18
Major bleeding								
Clopidogrel: Prasugrel	4	0.67	0.79	0.78	0.81	0.95	-0.19	0.84
Clopidogrel: Ticagrelor	6	0.74	0.78	0.79	0.76	1.04	0.19	0.84
Prasugrel: Ticagrelor	2	0.60	0.99	0.97	1.01	0.95	-0.19	0.84

Table II. Assessment of Consistency of Network Meta-Analysis Model

Comparison = Treatment comparison; k =Number of studies providing direct evidence; prop= Proportion of direct evidence; nma =Es timated treatment effect (HR) in network meta-analysis; direct=Estimated treatment effect (HR) derived from direct evidence; Indirect =Estimated treatment effect (RR) derived from indirect evidence; RoR=Ratio of Ratios (direct versus indirect); z= z-value of test for d isagreement (direct versus indirect); p-value=p-value of test for consistency

Table III. Egger's regression test

Outcome	P-value (2-tailed)
All-cause mortality	0.46
Major bleeding	0.25
Cardiovascular mortality	0.84
Myocardial infarction	0.99
Stroke	0.13
Definite or probable stent thrombosis	0.33
Definite stent thrombosis	0.80
MACE	0.94
Hemorrhagic stroke	0.32
Ischemic stroke	0.46
Non-cardiovascular mortality	0.34

Table IV. Patient characteristics.

							Patient character	istics					
Study	Arm	Age (years)	Male	Diabetes	Current smoker	Arterial hypertension	Hypercholesterolemia	STEMI	NSTEMI	UA or other	Coronary angiography	PCI	Medical therapy
[The Elderly ACS II trial] ²¹	prasugrel	80	419 (59%)	215 (30%)	62 (9%)	554 (78%)	332 (47%)	298 (42%)	344 (48%)	71 (10%)	713 (100%)	707 (99%)	6 (0.8%)
Savonitto et al. 2018 Circulation [NCT01777503]	clopidogrel	80	448 (62%)	204 (28%)	69 (9%)	566 (78%)	313 (43%)	297 (41%)	350 (47%)	83 (12%)	730 (100%)	726 (99.5%)	4 (0.5%)
[ISAR-REACT 5] ¹¹ Schupke et al. 2019	ticagrelor	64.5	1534 (76.2%)	463/2011 (23.0%)	682/2002 (34.1%)	1432/2008 (71.3%)	1178/2007 (58.7%)	833 (41.4%)	930 (46.2%)	249 (12.4%)	2003 (99.6%)	1676/2009 (83.4%)	285/2009 (14.2%)
NEJM [NCT01944800]	prasugrel	64.6	1528 (76.2%)	429/2005 (21.4%)	667/1999 (33.4%)	1384/2003 (69.1%)	1163/2003 (58.1%)	820 (40.9%)	925 (46.1%)	261 (13.0%)	2001 (99.8%)	1701/2005 (84.8%)	268/2005 (13.4)
[PHILO] ¹⁵ Goto et al. 2015	ticagrelor	67	306 (76.3%)	154 (38.4%)	151 (37.7%)	305 (76.1%)	314 (78.3%)	205 (51.1%)	66 (16.5%)	129 (32.2%)	385 (96.0%)	340 (84.8%)	61 (15.2%)
Circulation Journal [NCT01294462]	clopidogrel	66	307 (76.7%)	124 (31.1%)	157 (39.3%)	290 (72.5%)	289 (72.3%)	210 (52.5%)	74 (18.5%)	116 (29.1%)	378 (95.4%)	338 (84.5%)	62 (15.5%)
[PLATO] ⁹ Wallentin et al. 2009	ticagrelor	62	6678 (71.6%)	2326 (24.9%)	3360 (36.0%)	6139 (65.8%)	4347 (46.6%)	3496 (37.5%)	4005 (42.9%)	1832 (19.6%)	7599 (81.4%)	5687 (60.9%)	3646 (39.1%)
NEJM [NCT00391872]	clopidogrel	62	6658 (71.7%)	2336 (25.1%)	3318 (35.7%)	6044 (65.1%)	4342 (46.7%)	3530 (38.0%)	3950 (42.5%)	1811 (19.5%)	7571 (81.5%)	5676 (61.1%)	3615 (38.9%)
[POPular AGE trial] ¹⁹	clopidogrel	77	314 (62.7%)	146 (29.1%)	NA	NA	NA	0	423 (84.6%)	78 (15.4%)	440 (87.8%)	238 (47.5%)	263 (52.5%)
Marieke 2019 [NCT02317198]	ticagrelor or prasugrel*	77	325 (64.7%)	150 (29.9)	NA	NA	NA	0	421 (83.9%)	81 (16.1%)	452 (90.0%)	245 (48.9%)	256 (51%)
[PRAGUE-18] ²² Motovska et al. 2017	prasugrel	61.8	489 (77.1%)	127 (20.0%)	406 (64.0%)	326 (51.4%)	212 (33.4%)	568 (89.6%)	33 (5.2%)	33 (5.2%)	634 (100%)	629 (99.2%)	5 (0.8%)
JACC [NCT02808767]	ticagrelor	61.8	439 (73.7%)	124 (20.8%)	392 (65.8%)	305 (51.2%)	211 (35.4%)	533 (89.4%)	34 (5.7%)	29 (4.87%)	596 (100%)	591 (99.2%)	5 (0.8%)
[The PRASFIT- ACS] ¹⁹	prasugrel	65.4	536 (78.2%)	250 (36.5%)	273 (39.9%)	495 (72.3%)	516 (75.3%)	340 (49.6%)	187 (27.3%)	156 (22.8)	685 (100%)	NA	NA
Saito et al. 2013 Circulation Journal	clopidogrel	65.1	538 (79.4%)	237 (35.0%)	279 (41.2%)	491 (72.4%)	500 (73.7%)	341 (50.3%)	213 (31.4%)	124 (18.3)	678 (100%)	NA	NA
[TICAKOREA] ¹⁶ Duk-Woo Park et al.	ticagrelor	62.5	297 (74.2%)	116 (29%)	146 (36.5%)	223 (55.8%)	208 (52%)	170 (42.5%)	148 (37%)	82 (20.5%)	400 (100%)	326 (81.5%)	63 (15.8%)
2019 Circulation [NCT02094963]	clopidogrel	62.3	302 (75.5%)	100 (25%)	139 (34.8%)	193 (48.2%)	194 (48.5%)	156 (39%)	155 (38.8%)	89 (22.2%)	400 (100%)	342 (85.5%)	52 (13%)
[TRILOGY ACS] ²⁰ Roe et al. 2012	prasugrel	66	2835 (60.8%)	1758 (37.7%)	919 (19.7%)	3819 (81.9%)	2751 (59.0%)	0	3283 (70.4%)	1380 (29.6%)	1921 (41.2%)	0	4663 (100%)
NEJM [NCT00699998]	clopidogrel	66	2840 (60.9%)	1786 (38.3%)	942 (20.2%)	3824 (82.0%)	2765 (59.3%)	0	3236 (69.5%)	1427 (30.6%)	1930 (41.4%)	0	4663 (100%)

[TRITON-TIMI 38] ¹⁰ Wiviott et al. 2007	prasugrel	61	5101 (75%)	1567 (23%)	2350 (38%)	4360 (64%)	3815 (56%)	1771 (26%)	5042 (74%)	0	6813 (100%)	6745 (99%)	68 (1%)
NEJM [NCT00097591]	clopidogrel	61	4960 (73%)	1563 (23%)	2582 (38%)	4349 (64%)	3805 (56%)	1767 (26%)	5028 (74%)	0	6795 (100%)	6727 (99%)	71 (1%)
Tang et al. ¹⁷ 2016	ticagrelor	64.36	142 (71%)	58 (29%)	116 (58%)	122 (61%)	88 (44%)	200 (100%)	0	0	200 (100%)	200 (100%)	0 (0%)
J Cardiovasc Pharmacol	clopidogrel	64.18	146 (73%)	42 (21%)	124 (62%)	116 (58%)	74 (37%)	200 (100%)	0	0	200 (100%)	200 (100%)	0 (0%)
Wang et al. ¹⁸ 2016	ticagrelor	79	69 (69%)	42 (42%)	37 (37%)	79 (79%)	84 (84%)	37 (37%)	44 (44%)	19 (19%)	86 (86%)	75 (75%)	25 (25%)
TCRM	clopidogrel	80	66 (66%)	39 (39%)	41 (41%)	82 (82%)	79 (79%)	32 (32%)	47 (47%)	21 (21%)	83 (83%)	71 (71%)	29 (29%)

* only 2% of patients received prasugrel

¹ biny 2% of patients received prastigref ISAR-REACT 5 – Ticagrelor or Prasugref in Patients with Acute Coronary Syndromes, PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, PRASFIT-ACS – PRASugref compared with clopidogref For Japanese patients with ACS undergoing PCI, TICAKOREA – Ticagrelor Versus Clopidogref in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugref–Thrombolysis in Myocardial Infarction 38. ACS – acute coronary syndrome, JACC – Journal of the American College of Cardiology, NA – not available, NEJM – The New England Journal of Medicine, NSTEMI – non-ST-elevation myocardial infarction, PCI – percutaneous coronary intervention, STEMI – ST-elevation myocardial infarction, TCRM – Therapeutics and Clinical Risk Management, UA – unstable angina

Table V. Bias assessment.

	Selection	bias	Performance bias	Detection bias	Attrition bias	Reporting bias	
Study	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
[The Elderly ACS II trial] ²¹ Savonitto et al. 2018 Circulation [NCT01777503]	low	low	high	low	low	low	low
[ISAR-REACT 5] ¹¹ Schupke et al. 2019 NEJM [NCT01944800]	low	low	high	low	low	low	unclear
[PHILO] ¹⁵ Goto et al. 2015 Circulation Journal [NCT01294462]	low	low	low	low	low	low	low
[PLATO] ⁹ Wallentin et al. 2009 NEJM [NCT00391872]	low	low	low	low	low	low	low
[POPular AGE trial] ¹⁴ Marieke et al. 2019 [NCT02317198]	low	low	high	low	low	low	low
[PRAGUE-18] ²² Motovska et al. 2017 JACC [NCT02808767]	low	low	high	low	low	low	low
[The PRASFIT-ACS] ¹⁹ Saito et al. 2013 Circulation Journal	low	unclear	low	low	low	low	low
[TICAKOREA] ¹⁶ Duk-Woo Park et al. 2019 Circulation [NCT02094963]	low	low	high	low	low	low	low
[TRILOGY ACS] ²⁰ Roe et al. 2012 NEJM [NCT00699998]	low	low	low	low	low	low	low
[TRITON-TIMI 38] ¹⁰ Wiviott et al. 2007 NEJM [NCT00097591]	low	low	low	low	low	low	low
Tang et al. ¹⁷ 2016 J Cardiovasc Pharmacol	low	unclear	low	unclear	low	low	low
Wang et al. ¹⁸ 2016 TCRM	low	unclear	low	unclear	low	low	low

* only 2% of patients received prasugrel

ISAR-REACT 5 – Ticagrelor or Prasugel in Patients with Acute Coronary Syndromes, PHILO – Phase the International Study of Ticagrelor and Clinical Outcomes in Asian ACS Patients, PLATO – PLATelet inhibition and patient Outcomes, PRASTIT-ACS – PRASugrel compared with clopidogrel For Japanese patients with ACS undergoing PCI, TICAKOREA – Ticagrelor Versus Clopidogrel in Asian/Korean Patients with ACS Intended for Invasive Management, TRILOGY ACS – The Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes, TRITON–TIMI 38 – Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

JACC – Journal of the American College of Cardiology, NEJM – The New England Journal of Medicine, TCRM – Therapeutics and Clinical Risk Management

29

Table VI. Exclusion of Trials with open-label design

All-cause mortality

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	1.06 [0.95, 1.18]	_	1.28 [1.15, 1.44]
Prasugrel	vs Clopidogrel	0.95 [0.85, 1.06]	vs Prasugrel	1.00	vs Ticagrelor	1.21 [1.03, 1.43]
Ticagrelor		0.78 [0.69, 0.87]		0.82 [0.70, 0.97]	—	1.00

Cardiovascular mortality

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	1.08 [0.95, 1.23]		1.28 [1.12, 1.47]
Prasugrel	vs Clopidogrel	0.92 [0.81, 1.05]	vs Prasugrel	1.00	vs Ticagrelor	1.18 [0.98, 1.42]
Ticagrelor		0.78 [0.68, 0.89]		0.85 [0.74, 1.02]	_	1.00

Non-cardiovascular mortality

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	0.97 [0.76, 1.24]	_	1.32 [0.92, 1.90]
Prasugrel	vs Clopidogrel	1.03 [0.81, 1.31]	vs Prasugrel	1.00	vs Ticagrelor	1.36 [0.88, 2.10]
Ticagrelor		0.76 [0.53, 1.09]	_	0.74 [0.48, 1.14]	_	1.00

Myocardial infarction

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	1.18 [0.94, 1.48]	_	1.16 [0.85, 1.57]
Prasugrel	vs Clopidogrel	0.85 [0.68, 1.06]	vs Prasugrel	1.00	vs Ticagrelor	0.98 [0.67, 1.44]
Ticagrelor		0.86 [0.64, 1.17]	_	1.02 [0.70, 1.49]		1.00

Definite or probable stent thrombosis

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	2.03 [1.52, 2.70]	_	1.35 [1.07, 1.71]
Prasugrel	vs Clopidogrel	0.49 [0.37, 0.66]	vs Prasugrel	1.00	vs Ticagrelor	0.67 [0.46, 0.97]
Ticagrelor		0.74 [0.59, 0.94]	-	1.50 [1.04, 2.17]	-	1.00

Stroke

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00	_	1.08 [0.85, 1.38]	_	0.87 [0.68, 1.11]
Prasugrel	vs Clopidogrel	0.93 [0.73, 1.18]	vs Prasugrel	1.00	vs Ticagrelor	0.81 [0.57, 1.14]
Ticagrelor		1.15 [0.90, 1.47]	_	1.24 [0.88, 1.75]	_	1.00

Major bleeding

			HR [95% CI]			
Treatment	Comparator		Comparator		Comparator	
Clopidogrel		1.00		0.79 [0.65, 0.97]		0.96 [0.87, 1.05]
Prasugrel	vs Clopidogrel	1.26 [1.04, 1.53]	vs Prasugrel	1.00	vs Ticagrelor	1.20 [0.97, 1.49]
Ticagrelor		1.05 [0.95, 1.15]	-	0.83 [0.67, 1.03]	—	1.00

*Only PLATO reported definite stent thrombosis; hence definite stent thrombosis was not estimated.