## **Supplementary Online Content**

Burlina P, Paul W, Mathew P, Joshi N, Pacheco KD, Bressler NM. Low-shot deep learning of diabetic retinopathy with potential applications to address artificial intelligence bias in retinal diagnostics and rare ophthalmic diseases. *JAMA Ophthalmol.* Published online September 3, 2020. doi:10.1001/jamaophthalmol.2020.3269

**eTable 1.** Performance of Algorithms: Accuracy eTable 2. Performance of Algorithms: ROC AUC eTable 3. Performance of Algorithms: F1 Score eFigure 1. Accuracy for All Methods and Number of Shots eFigure 2. Accuracy and Confidence Intervals for All Shots eFigure 3. ROC AUC for All Shots eFigure 4. ROC AUC for All Shots with 95% Confidence Intervals eFigure 5. F1 Score for All Shots eFigure 6. N=10 Shots Results: ROCs and Confidence Intervals, All, Two-Curve Comparisons of Methods eFigure 7. N=40 Shots Results: ROCs and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 8. N=160 Shots Results: ROCs and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 9. N=5120 Shots Results: ROCs and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 10. N=10 Shots Results: PR Curves and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 11. N=40 Shots Results: PR Curves and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 12. N=160 Shots Results: PR Curves and Confidence Intervals, All Methods, Two by Two Comparison of Methods eFigure 13. N=5120 Shots Results: PR Curves and Confidence Intervals, All Methods, Two by Two Comparison of Methods

This supplementary material has been provided by the authors to give readers additional information about their work.

## eTable 1. Performance of Algorithms: Accuracy

| Number        | 10       | 20       | 40       | 79       | 160      | 320      | 639      | 1280     | 2560     | 5120     |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Of<br>Samples |          |          |          |          |          |          |          |          |          |          |
| RES_FT        | 51.47%   | 49.21%   | 54.93%   | 56.85%   | 59.85%   | 62.74%   | 67.44%   | 72.65%   | 73.33%   | 74.29%   |
|               | [49.14%, | [46.88%, | [52.61%, | [54.54%, | [57.56%, | [60.48%, | [65.25%, | [70.57%, | [71.27%, | [72.25%, |
|               | 53.80%]  | 51.54%]  | 57.25%]  | 59.16%]  | 62.14%]  | 65.00%]  | 69.63%]  | 74.73%]  | 75.39%]  | 76.33%]  |
| RES_KNN       | 50.23%   | 51.25%   | 51.47%   | 56.34%   | 58.61%   | 59.80%   | 61.44%   | 60.65%   | 61.10%   | 61.04%   |
|               | [47.90%, | [48.92%, | [49.14%, | [54.03%, | [56.31%, | [57.51%, | [59.17%, | [58.37%, | [58.83%, | [58.77%, |
|               | 52.56%]  | 53.58%]  | 53.80%]  | 58.65%]  | 60.91%]  | 62.09%]  | 63.71%]  | 62.93%]  | 63.37%]  | 63.31%]  |
| RES_SVM       | 50.45%   | 53.34%   | 55.04%   | 54.93%   | 63.19%   | 65.35%   | 68.52%   | 69.37%   | 71.74%   | 73.16%   |
|               | [48.12%, | [51.01%, | [52.72%, | [52.61%, | [60.94%, | [63.13%, | [66.35%, | [67.22%, | [69.64%, | [71.09%, |
|               | 52.78%]  | 55.67%]  | 57.36%]  | 57.25%]  | 65.44%]  | 67.57%]  | 70.69%]  | 71.52%]  | 73.84%]  | 75.23%]  |
| RES_RF        | 50.91%   | 54.42%   | 57.36%   | 58.10%   | 63.08%   | 62.85%   | 66.65%   | 68.18%   | 68.97%   | 69.20%   |
|               | [48.58%, | [52.10%, | [55.05%, | [55.80%, | [60.83%, | [60.60%, | [64.45%, | [66.01%, | [66.81%, | [67.05%, |
|               | 53.24%]  | 56.74%]  | 59.67%]  | 60.40%]  | 65.33%]  | 65.10%]  | 68.85%]  | 70.35%]  | 71.13%]  | 71.35%]  |
| DIM           | 55.95%   | 56.12%   | 62.74%   | 64.04%   | 65.23%   | 66.99%   | 72.14%   | 69.31%   | 71.69%   | 75.71%   |
|               | [53.63%, | [53.81%, | [60.48%, | [61.80%, | [63.01%, | [64.80%, | [70.05%, | [67.16%, | [69.59%, | [73.71%, |
|               | 58.27%]  | 58.43%]  | 65.00%]  | 66.28%]  | 67.45%]  | 69.18%]  | 74.23%]  | 71.46%]  | 73.79%]  | 77.71%]  |
| DIM_KNN       | 52.10%   | 52.15%   | 54.59%   | 57.30%   | 59.34%   | 60.25%   | 63.82%   | 61.10%   | 63.02%   | 64.33%   |
|               | [49.77%, | [49.82%, | [52.27%, | [54.99%, | [57.05%, | [57.97%, | [61.58%, | [58.83%, | [60.77%, | [62.10%, |
|               | 54.43%]  | 54.48%]  | 56.91%]  | 59.61%]  | 61.63%]  | 62.53%]  | 66.06%]  | 63.37%]  | 65.27%]  | 66.56%]  |
| DIM_SVM       | 54.53%   | 57.36%   | 62.06%   | 64.27%   | 67.04%   | 70.72%   | 73.16%   | 74.29%   | 75.65%   | 76.39%   |
|               | [52.21%, | [55.05%, | [59.80%, | [62.03%, | [64.85%, | [68.60%, | [71.09%, | [72.25%, | [73.65%, | [74.41%, |
|               | 56.85%]  | 59.67%]  | 64.32%]  | 66.51%]  | 69.23%]  | 72.84%]  | 75.23%]  | 76.33%]  | 77.65%]  | 78.37%]  |
| DIM_RF        | 55.72%   | 57.81%   | 59.12%   | 62.80%   | 63.14%   | 68.01%   | 69.59%   | 69.37%   | 70.84%   | 71.06%   |
|               | [53.40%, | [55.51%, | [56.83%, | [60.55%, | [60.89%, | [65.83%, | [67.44%, | [67.22%, | [68.72%, | [68.94%, |
|               | 58.04%]  | 60.11%]  | 61.41%]  | 65.05%]  | 65.39%]  | 70.19%]  | 71.74%]  | 71.52%]  | 72.96%]  | 73.18%]  |

Accuracy shown in %, along with 95% CI (brackets). Best results are bold-faced. Rows compare various algorithms including: (top) a traditional fine-tuned ResNet (denoted as RES\_FT), which is compared to other-low shot deep learning (LSDL) algorithms, shown in the bottom half of the table. These LSDL algorithms include: ResNet encoding fed into a random forest or SVM classifier (denoted as RES\_RF and RES\_SVM). Augmented

Multiscale Deep InfoMax (AMDIM) encoding [Bachman2019] yielding local and global features, fed to a classifier, consisting of either ResNet (using only local features, and denoted as DIM), and three other classifiers using the global features of DIM and either K Nearest Neighbors (DIM-KNN), Support Vector Machine (DIM\_SVM), or Random Forest (DIM\_RF). We show performance for values of N (numbers of samples per class) ranging from a minimum of N=10 to a maximum of N=5120. As seen in the table, the low-shot deep learning methods using DIM outperform the traditional fine-tuned ResNet method.

| Number                                                                           | 10       | 20       | 40       | 79       | 160      | 320      | 639      | 1280     | 2560     | 5120     |
|----------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| of                                                                               |          |          |          |          |          |          |          |          |          |          |
| Samples                                                                          |          |          |          |          |          |          |          |          |          |          |
| RES_FT                                                                           | 0.5178   | 0.4799   | 0.5671   | 0.5859   | 0.6585   | 0.6624   | 0.7441   | 0.8028   | 0.8089   | 0.8330   |
|                                                                                  | [0.4909, | [0.4530, | [0.5404, | [0.5594, | [0.6332, | [0.6372, | [0.7212, | [0.7823, | [0.7887, | [0.8140, |
|                                                                                  | 0.5447]  | 0.5068]  | 0.5938]  | 0.6124]  | 0.6838]  | 0.6876]  | 0.7670]  | 0.8233]  | 0.8291]  | 0.8520]  |
| RES_KNN                                                                          | 0.5076   | 0.5234   | 0.5221   | 0.5778   | 0.6148   | 0.6327   | 0.6516   | 0.6401   | 0.6419   | 0.6549   |
|                                                                                  | [0.4807, | [0.4965, | [0.4952, | [0.5512, | [0.5887, | [0.6069, | [0.6262, | [0.6145, | [0.6163, | [0.6296, |
|                                                                                  | 0.5345]  | 0.5503]  | 0.5490]  | 0.6044]  | 0.6409]  | 0.6585]  | 0.6770]  | 0.6657]  | 0.6675]  | 0.6802]  |
| RES_SVM                                                                          | 0.4992   | 0.5657   | 0.5912   | 0.5944   | 0.6787   | 0.7089   | 0.7595   | 0.7782   | 0.7971   | 0.8078   |
|                                                                                  | [0.4722, | [0.5390, | [0.5648, | [0.5680, | [0.6539, | [0.6849, | [0.7372, | [0.7566, | [0.7763, | [0.7875, |
|                                                                                  | 0.5262]  | 0.5924]  | 0.6176]  | 0.6208]  | 0.7035]  | 0.7329]  | 0.7818]  | 0.7998]  | 0.8179]  | 0.8281]  |
| RES_RF                                                                           | 0.5055   | 0.5639   | 0.5940   | 0.6238   | 0.6742   | 0.6900   | 0.7235   | 0.7451   | 0.7483   | 0.7564   |
|                                                                                  | [0.4786, | [0.5372, | [0.5676, | [0.5979, | [0.6493, | [0.6655, | [0.6999, | [0.7223, | [0.7256, | [0.7340, |
|                                                                                  | 0.5324]  | 0.5906]  | 0.6204]  | 0.6497]  | 0.6991]  | 0.7145]  | 0.7471]  | 0.7679]  | 0.7710]  | 0.7788]  |
| DIM                                                                              | 0.5778   | 0.6427   | 0.6760   | 0.6746   | 0.7467   | 0.7351   | 0.7794   | 0.7559   | 0.7846   | 0.8348   |
|                                                                                  | [0.5512, | [0.6171, | [0.6511, | [0.6497, | [0.7239, | [0.7119, | [0.7579, | [0.7335, | [0.7633, | [0.8159, |
|                                                                                  | 0.6044]  | 0.6683]  | 0.7009]  | 0.6995]  | 0.7695]  | 0.7583]  | 0.8009]  | 0.7783]  | 0.8059]  | 0.8537]  |
| DIM_KNN                                                                          | 0.5248   | 0.5267   | 0.5625   | 0.5898   | 0.6134   | 0.6481   | 0.6770   | 0.6527   | 0.6690   | 0.6884   |
|                                                                                  | [0.4979, | [0.4998, | [0.5358, | [0.5634, | [0.5873, | [0.6226, | [0.6522, | [0.6273, | [0.6440, | [0.6638, |
|                                                                                  | 0.5517]  | 0.5536]  | 0.5892]  | 0.6162]  | 0.6395]  | 0.6736]  | 0.7018]  | 0.6781]  | 0.6940]  | 0.7130]  |
| DIM_SVM                                                                          | 0.5440   | 0.6027   | 0.6525   | 0.7040   | 0.7455   | 0.7903   | 0.8114   | 0.8276   | 0.8479   | 0.8581   |
|                                                                                  | [0.5172, | [0.5764, | [0.6271, | [0.6799, | [0.7227, | [0.7692, | [0.7913, | [0.8083, | [0.8297, | [0.8405, |
|                                                                                  | 0.5708]  | 0.6290]  | 0.6779]  | 0.7281]  | 0.7683]  | 0.8114]  | 0.8315]  | 0.8469]  | 0.8661]  | 0.8757]  |
| DIM_RF                                                                           | 0.5706   | 0.6061   | 0.6234   | 0.6751   | 0.7039   | 0.7495   | 0.7729   | 0.7748   | 0.7769   | 0.7985   |
|                                                                                  | [0.5440, | [0.5799, | [0.5975, | [0.6502, | [0.6798, | [0.7268, | [0.7511, | [0.7531, | [0.7553, | [0.7778, |
|                                                                                  | 0.5972]  | 0.6323]  | 0.6493]  | 0.7000]  | 0.7280]  | 0.7722]  | 0.7947]  | 0.7965]  | 0.7985]  | 0.8192]  |
| ROC AUC, along with 95% CI (brackets). Best results are bold-faced. Rows compare |          |          |          |          |          |          |          |          |          |          |

eTable 2. Performance of Algorithms: ROC AUC

various algorithms including: (top) a traditional fine-tuned ResNet (denoted as RES\_FT), which is compared to other low-shot deep learning (LSDL) algorithms, shown in the bottom half of the table. These LSDL algorithms include: ResNet encoding fed into a random forest or SVM classifier (denoted as RES\_RF and RES\_SVM). Augmented Multiscale Deep InfoMax (AMDIM) encoding [Bachman2019] yielding local and global features, fed to a classifier, consisting of either ResNet (using only local features, and denoted as DIM), and three other classifiers using the global features of DIM and either K Nearest Neighbors (DIM-KNN), Support Vector Machine (DIM\_SVM), or Random Forest (DIM\_RF). We show performance for values of N (numbers of samples per class) ranging from a minimum of N=10 to a maximum of N=5120. As seen in the table, the low-shot deep learning methods using DIM outperform the traditional fine-tuned ResNet method.

| Number of | 10         | 20     | 40     | 79     | 160    | 320    | 639    | 1280   | 2560   | 5120   |
|-----------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Samples   |            | 20     | 40     | 10     | 100    | 020    | 000    | 1200   | 2000   | 0120   |
| RES_FT    | 0.564<br>8 | 0.5221 | 0.4865 | 0.4844 | 0.4925 | 0.5760 | 0.6991 | 0.7085 | 0.7201 | 0.7291 |
| RES_KNN   | 0.553<br>6 | 0.5176 | 0.5263 | 0.5830 | 0.5863 | 0.5984 | 0.6025 | 0.5962 | 0.5803 | 0.5870 |
| RES_SVM   | 0.606<br>7 | 0.5517 | 0.5340 | 0.5646 | 0.5812 | 0.6136 | 0.6323 | 0.6530 | 0.6799 | 0.7011 |
| RES_RF    | 0.589<br>3 | 0.5725 | 0.5962 | 0.5969 | 0.6414 | 0.6372 | 0.6525 | 0.6698 | 0.6780 | 0.6739 |
| DIM       | 0.638<br>1 | 0.6599 | 0.5846 | 0.5984 | 0.7022 | 0.6791 | 0.7113 | 0.6095 | 0.7076 | 0.7360 |
| DIM_KNN   | 0.544<br>7 | 0.5503 | 0.5674 | 0.5769 | 0.5864 | 0.5970 | 0.6120 | 0.5844 | 0.5926 | 0.6082 |
| DIM_SVM   | 0.651<br>3 | 0.5558 | 0.6086 | 0.6363 | 0.6600 | 0.6899 | 0.7145 | 0.7265 | 0.7346 | 0.7446 |
| DIM_RF    | 0.566      | 0.5666 | 0.6316 | 0.6319 | 0.6498 | 0.6866 | 0.6951 | 0.6871 | 0.7014 | 0.6985 |

eTable 3. Performance of Algorithms: F1 Score

F1 score. Best results are bold-faced. Rows compare various algorithms including: (top) a traditional fine-tuned ResNet (denoted as RES\_FT), which is compared to other lowshot deep learning (LSDL) algorithms, shown in the bottom half of the table. These LSDL algorithms include: ResNet encoding fed into a random forest or SVM classifier (denoted as RES\_RF and RES\_SVM). Augmented Multiscale Deep InfoMax (AMDIM) encoding [Bachman2019] yielding local and global features, fed to a classifier, consisting of either ResNet (using only local features, and denoted as DIM), and three other classifiers using the global features of DIM and either K Nearest Neighbors (DIM-KNN), Support Vector Machine (DIM\_SVM), or Random Forest (DIM\_RF). We show performance for values of N (numbers of samples per class) ranging from a minimum of N=10 to a maximum of N=5120. As seen in the table, the low-shot deep learning methods using DIM outperform the traditional fine-tuned ResNet method.



eFigure 1. Accuracy for All Methods and Number of Shots



eFigure 2. Accuracy and Confidence Intervals for All Shots



eFigure 3. ROC AUC for All Shots



eFigure 4. ROC AUC for All Shots

© 2020 American Medical Association. All rights reserved.



eFigure 5. F1 Score for All Shots



Receiver Operating Characteristic Curve for all Methods-10 Shots

eFigure 6. N=10 Shots Results: ROCs and Confidence Intervals, (upper left) All, (rest) Two-Curve Comparisons of Methods



Receiver Operating Characteristic Curve for all Methods-40 Shots

eFigure 7. N=40 Shots Results: ROCs and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Receiver Operating Characteristic Curve for all Methods-160 Shots

eFigure 8. N=160 Shots Results: ROCs and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Receiver Operating Characteristic Curve for all Methods-5120 Shots

eFigure 9. N=5120 Shots Results: ROCs and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Precision Recall Curve for all Methods-10 Shots

eFigure 10. N=10 Shots Results: PR Curves and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Precision Recall Curve for all Methods-40 Shots

eFigure 11. N=40 Shots Results: PR Curves and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Precision Recall Curve for all Methods-160 Shots

eFigure 12. N=160 Shots Results: PR Curves and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods



Precision Recall Curve for all Methods-5120 Shots

eFigure 13. N=5120 Shots Results: PR Curves and Confidence Intervals, (upper left) All Methods, (rest) Two by Two Comparison of Methods