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eTable 1. Performance of Algorithms: Accuracy 

  

Accuracy shown in %, along with 95% CI (brackets). Best results are bold-faced. Rows 

compare various algorithms including: (top) a traditional fine-tuned ResNet (denoted as 

RES_FT), which is compared to other-low shot deep learning (LSDL) algorithms, shown 

in the bottom half of the table. These LSDL algorithms include: ResNet encoding fed into 

a random forest or SVM classifier (denoted as RES_RF and RES_SVM). Augmented 

Number 
of 

Samples 

10 20 40 79 160 320 639 1280 2560 5120 

RES_FT 51.47% 

[49.14%, 

53.80%] 

49.21% 

[46.88%, 

51.54%] 

54.93% 

[52.61%, 

57.25%] 

56.85% 

[54.54%, 

59.16%] 

59.85% 

[57.56%, 

62.14%] 

62.74% 

[60.48%, 

65.00%] 

67.44% 

[65.25%, 

69.63%] 

72.65% 

[70.57%, 

74.73%] 

73.33% 

[71.27%, 

75.39%] 

74.29% 

[72.25%, 

76.33%] 

RES_KNN 50.23% 

[47.90%, 

52.56%] 

51.25% 

[48.92%, 

53.58%] 

51.47% 

[49.14%, 

53.80%] 

56.34% 

[54.03%, 

58.65%] 

58.61% 

[56.31%, 

60.91%] 

59.80% 

[57.51%, 

62.09%] 

61.44% 

[59.17%, 

63.71%] 

60.65% 

[58.37%, 

62.93%] 

61.10% 

[58.83%, 

63.37%] 

61.04% 

[58.77%, 

63.31%] 

RES_SVM 50.45% 

[48.12%, 

52.78%] 

53.34% 

[51.01%, 

55.67%] 

55.04% 

[52.72%, 

57.36%] 

54.93% 

[52.61%, 

57.25%] 

63.19% 

[60.94%, 

65.44%] 

65.35% 

[63.13%, 

67.57%] 

68.52% 

[66.35%, 

70.69%] 

69.37% 

[67.22%, 

71.52%] 

71.74% 

[69.64%, 

73.84%] 

73.16% 

[71.09%, 

75.23%] 

RES_RF 50.91% 

[48.58%, 

53.24%] 

54.42% 

[52.10%, 

56.74%] 

57.36% 

[55.05%, 

59.67%] 

58.10% 

[55.80%, 

60.40%] 

63.08% 

[60.83%, 

65.33%] 

62.85% 

[60.60%, 

65.10%] 

66.65% 

[64.45%, 

68.85%] 

68.18% 

[66.01%, 

70.35%] 

68.97% 

[66.81%, 

71.13%] 

69.20% 

[67.05%, 

71.35%] 

DIM 55.95% 

[53.63%, 

58.27%] 

56.12% 

[53.81%, 

58.43%] 

62.74% 

[60.48%, 

65.00%] 

64.04% 

[61.80%, 

66.28%] 

65.23% 

[63.01%, 

67.45%] 

66.99% 

[64.80%, 

69.18%] 

72.14% 

[70.05%, 

74.23%] 

69.31% 

[67.16%, 

71.46%] 

71.69% 

[69.59%, 

73.79%] 

75.71% 

[73.71%, 

77.71%] 

DIM_KNN 52.10% 

[49.77%, 

54.43%] 

52.15% 

[49.82%, 

54.48%] 

54.59% 

[52.27%, 

56.91%] 

57.30% 

[54.99%, 

59.61%] 

59.34% 

[57.05%, 

61.63%] 

60.25% 

[57.97%, 

62.53%] 

63.82% 

[61.58%, 

66.06%] 

61.10% 

[58.83%, 

63.37%] 

63.02% 

[60.77%, 

65.27%] 

64.33% 

[62.10%, 

66.56%] 

DIM_SVM 54.53% 

[52.21%, 

56.85%] 

57.36% 

[55.05%, 

59.67%] 

62.06% 

[59.80%, 

64.32%] 

64.27% 

[62.03%, 

66.51%] 

67.04% 

[64.85%, 

69.23%] 

70.72% 

[68.60%, 

72.84%] 

73.16% 

[71.09%, 

75.23%] 

74.29% 

[72.25%, 

76.33%] 

75.65% 

[73.65%, 

77.65%] 

76.39% 

[74.41%, 

78.37%] 

DIM_RF 55.72% 

[53.40%, 

58.04%] 

57.81% 

[55.51%, 

60.11%] 

59.12% 

[56.83%, 

61.41%] 

62.80% 

[60.55%, 

65.05%] 

63.14% 

[60.89%, 

65.39%] 

68.01% 

[65.83%, 

70.19%] 

69.59% 

[67.44%, 

71.74%] 

69.37% 

[67.22%, 

71.52%] 

70.84% 

[68.72%, 

72.96%] 

71.06% 

[68.94%, 

73.18%] 
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Multiscale Deep InfoMax (AMDIM) encoding [Bachman2019] yielding local and global 

features, fed to a classifier, consisting of either ResNet (using only local features, and 

denoted as DIM), and three other classifiers using the global features of DIM and either K 

Nearest Neighbors (DIM-KNN), Support Vector Machine (DIM_SVM), or Random Forest 

(DIM_RF). We show performance for values of N (numbers of samples per class) ranging 

from a minimum of N=10 to a maximum of N=5120. As seen in the table, the low-shot 

deep learning methods using DIM outperform the traditional fine-tuned ResNet method. 
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eTable 2. Performance of Algorithms: ROC AUC 

Number 
of 

Samples 

10 20 40 79 160 320 639 1280 2560 5120 

RES_FT 0.5178 
[0.4909, 
0.5447] 

0.4799 
[0.4530, 
0.5068] 

0.5671 
[0.5404, 
0.5938] 

0.5859 
[0.5594, 
0.6124] 

0.6585 
[0.6332, 
0.6838] 

0.6624 
[0.6372, 
0.6876] 

0.7441 
[0.7212, 
0.7670] 

0.8028 
[0.7823, 
0.8233] 

0.8089 
[0.7887, 
0.8291] 

0.8330 
[0.8140, 
0.8520] 

RES_KNN 0.5076 
[0.4807, 
0.5345] 

0.5234 
[0.4965, 
0.5503] 

0.5221 
[0.4952, 
0.5490] 

0.5778 
[0.5512, 
0.6044] 

0.6148 
[0.5887, 
0.6409] 

0.6327 
[0.6069, 
0.6585] 

0.6516 
[0.6262, 
0.6770] 

0.6401 
[0.6145, 
0.6657] 

0.6419 
[0.6163, 
0.6675] 

0.6549 
[0.6296, 
0.6802] 

RES_SVM 0.4992 
[0.4722, 
0.5262] 

0.5657 
[0.5390, 
0.5924] 

0.5912 
[0.5648, 
0.6176] 

0.5944 
[0.5680, 
0.6208] 

0.6787 
[0.6539, 
0.7035] 

0.7089 
[0.6849, 
0.7329] 

0.7595 
[0.7372, 
0.7818] 

0.7782 
[0.7566, 
0.7998] 

0.7971 
[0.7763, 
0.8179] 

0.8078 
[0.7875, 
0.8281] 

RES_RF 0.5055 
[0.4786, 
0.5324] 

0.5639 
[0.5372, 
0.5906] 

0.5940 
[0.5676, 
0.6204] 

0.6238 
[0.5979, 
0.6497] 

0.6742 
[0.6493, 
0.6991] 

0.6900 
[0.6655, 
0.7145] 

0.7235 
[0.6999, 
0.7471] 

0.7451 
[0.7223, 
0.7679] 

0.7483 
[0.7256, 
0.7710] 

0.7564 
[0.7340, 
0.7788] 

DIM 0.5778 
[0.5512, 
0.6044] 

0.6427 
[0.6171, 
0.6683] 

0.6760 
[0.6511, 
0.7009] 

0.6746 
[0.6497, 
0.6995] 

0.7467 
[0.7239, 
0.7695] 

0.7351 
[0.7119, 
0.7583] 

0.7794 
[0.7579, 
0.8009] 

0.7559 
[0.7335, 
0.7783] 

0.7846 
[0.7633, 
0.8059] 

0.8348 
[0.8159, 
0.8537] 

DIM_KNN 0.5248 
[0.4979, 
0.5517] 

0.5267 
[0.4998, 
0.5536] 

0.5625 
[0.5358, 
0.5892] 

0.5898 
[0.5634, 
0.6162] 

0.6134 
[0.5873, 
0.6395] 

0.6481 
[0.6226, 
0.6736] 

0.6770 
[0.6522, 
0.7018] 

0.6527 
[0.6273, 
0.6781] 

0.6690 
[0.6440, 
0.6940] 

0.6884 
[0.6638, 
0.7130] 

DIM_SVM 0.5440 
[0.5172, 
0.5708] 

0.6027 
[0.5764, 
0.6290] 

0.6525 
[0.6271, 
0.6779] 

0.7040 
[0.6799, 
0.7281] 

0.7455 
[0.7227, 
0.7683] 

0.7903 
[0.7692, 
0.8114] 

0.8114 
[0.7913, 
0.8315] 

0.8276 
[0.8083, 
0.8469] 

0.8479 
[0.8297, 
0.8661] 

0.8581 
[0.8405, 
0.8757] 

DIM_RF 0.5706 
[0.5440, 
0.5972] 

0.6061 
[0.5799, 
0.6323] 

0.6234 
[0.5975, 
0.6493] 

0.6751 
[0.6502, 
0.7000] 

0.7039 
[0.6798, 
0.7280] 

0.7495 
[0.7268, 
0.7722] 

0.7729 
[0.7511, 
0.7947] 

0.7748 
[0.7531, 
0.7965] 

0.7769 
[0.7553, 
0.7985] 

0.7985 
[0.7778, 
0.8192] 

ROC AUC, along with 95% CI (brackets). Best results are bold-faced. Rows compare 

various algorithms including: (top) a traditional fine-tuned ResNet (denoted as RES_FT), 

which is compared to other low-shot deep learning (LSDL) algorithms, shown in the bottom 

half of the table. These LSDL algorithms include: ResNet encoding fed into a random 

forest or SVM classifier (denoted as RES_RF and RES_SVM). Augmented Multiscale 

Deep InfoMax (AMDIM) encoding [Bachman2019] yielding local and global features, fed 

to a classifier, consisting of either ResNet (using only local features, and denoted as DIM), 

and three other classifiers using the global features of DIM and either K Nearest Neighbors 

(DIM-KNN), Support Vector Machine (DIM_SVM), or Random Forest (DIM_RF). We show 

performance for values of N (numbers of samples per class) ranging from a minimum of 

N=10 to a maximum of N=5120. As seen in the table, the low-shot deep learning methods 

using DIM outperform the traditional fine-tuned ResNet method. 
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eTable 3. Performance of Algorithms: F1 Score 

Number of 
Samples 

10 20 40 79 160 320 639 1280 2560 5120 

RES_FT 0.564
8 

0.5221 0.4865 0.4844 0.4925 0.5760 0.6991 0.7085 0.7201 0.7291 

RES_KNN 0.553
6 

0.5176 0.5263 0.5830 0.5863 0.5984 0.6025 0.5962 0.5803 0.5870 

RES_SVM 0.606
7 

0.5517 0.5340 0.5646 0.5812 0.6136 0.6323 0.6530 0.6799 0.7011 

RES_RF 0.589
3 

0.5725 0.5962 0.5969 0.6414 0.6372 0.6525 0.6698 0.6780 0.6739 

DIM 0.638
1 

0.6599 0.5846 0.5984 0.7022 0.6791 0.7113 0.6095 0.7076 0.7360 

DIM_KNN 0.544
7 

0.5503 0.5674 0.5769 0.5864 0.5970 0.6120 0.5844 0.5926 0.6082 

DIM_SVM 0.651
3 

0.5558 0.6086 0.6363 0.6600 0.6899 0.7145 0.7265 0.7346 0.7446 

DIM_RF 0.566
0 

0.5666 0.6316 0.6319 0.6498 0.6866 0.6951 0.6871 0.7014 0.6985 

F1 score. Best results are bold-faced. Rows compare various algorithms including: (top) 

a traditional fine-tuned ResNet (denoted as RES_FT), which is compared to other low-

shot deep learning (LSDL) algorithms, shown in the bottom half of the table. These LSDL 

algorithms include: ResNet encoding fed into a random forest or SVM classifier (denoted 

as RES_RF and RES_SVM). Augmented Multiscale Deep InfoMax (AMDIM) encoding 

[Bachman2019] yielding local and global features, fed to a classifier, consisting of either 

ResNet (using only local features, and denoted as DIM), and three other classifiers using 

the global features of DIM and either K Nearest Neighbors (DIM-KNN), Support Vector 

Machine (DIM_SVM), or Random Forest (DIM_RF). We show performance for values of 

N (numbers of samples per class) ranging from a minimum of N=10 to a maximum of 

N=5120. As seen in the table, the low-shot deep learning methods using DIM outperform 

the traditional fine-tuned ResNet method. 
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eFigure 1. Accuracy for All Methods and Number of Shots 
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eFigure 2. Accuracy and Confidence Intervals for All Shots 
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eFigure 3. ROC AUC for All Shots 
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eFigure 4. ROC AUC for All Shots 
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eFigure 5. F1 Score for All Shots 
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eFigure 6. N=10 Shots Results: ROCs and Confidence Intervals, (upper left) All, 
(rest) Two-Curve Comparisons of Methods 
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eFigure 7. N=40 Shots Results: ROCs and Confidence Intervals, (upper left) All 
Methods, (rest) Two by Two Comparison of Methods 
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eFigure 8. N=160 Shots Results: ROCs and Confidence Intervals, (upper left) All 
Methods, (rest) Two by Two Comparison of Methods 
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eFigure 9. N=5120 Shots Results: ROCs and Confidence Intervals, (upper left) 
All Methods, (rest) Two by Two Comparison of Methods 
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eFigure 10. N=10 Shots Results: PR Curves and Confidence Intervals, (upper 
left) All Methods, (rest) Two by Two Comparison of Methods 
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eFigure 11. N=40 Shots Results: PR Curves and Confidence Intervals, (upper 
left) All Methods, (rest) Two by Two Comparison of Methods 
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eFigure 12. N=160 Shots Results: PR Curves and Confidence Intervals, (upper 
left) All Methods, (rest) Two by Two Comparison of Methods 
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eFigure 13. N=5120 Shots Results: PR Curves and Confidence Intervals, (upper 
left) All Methods, (rest) Two by Two Comparison of Methods 

 


