
Supplemental Methods 

Whole-exome sequencing analysis 

Libraries were made with the SureSelect XT Human All Exon V5+UTR kits (Agilent) and 

sequenced on HiSeqX (Illumina). We used FastQC v0.11.51 and multiQC v1.22 to check the 

quality of the raw FASTQ files and cutadapter v1.5 to remove adapter sequences.3 The bwa-

mem v0.7.154 with default parameters was used to align to the hg19 reference genome.5 PCR-

duplicated reads were removed using Picard tools v2.9.0,6 then alignments were recalibrated 

using GenomeAnalysisToolkit (GATK) v3.77 with known variant databases.8-10 

We used MuTect v1.1.711 and Strelka2 v2.8.212 to detect somatic variants for tumor and 

matched normal samples. For MuTect, alignment files were realigned using GATK, then were 

inputted into MuTect with the dbSNP8 and COSMIC databases.13 Strelka2 was executed in 

somatic configuration with default parameters. We selected somatic variants that were detected 

by either MuTect or Strelka2 and annotated by ANNOVAR.14 We further filtered variants that 

were not present within the exome capture kit. The variants present in the intronic or intergenic 

regions were also excluded. In addition, the variants with low variant allele frequency (VAF) with 

low quality supporting reads were filtered out. Specifically, variants with VAF ≤ 0.2 were 

excluded if they had less than 3 high quality supporting reads. We defined high quality 

supporting read as a read containing the mutated nucleotide with a base quality score of 30 or 

higher at the mutation as well as alignment quality score of 50 or higher given by the aligner for 

the entire read. 

We used MutsigCV 1.4.115 to identify statistically significant recurrent somatic variations. 

Full exome coverage data from MutsigCV website was used for this test. We used p value ≤ 

0.05 as a cutoff for determining the significance of the recurrent mutations. We used GenVisR to 

generate a waterfall plot to visualize a pattern of recurrent variations in our cohort.16 

Germline variations were identified with GATK Haplotypecaller and Strelka2. For GATK 

Haplotypecaller, we used recommended parameters and a variant recalibration stage with 



known variant databases.8-10,17 Because we focused on few specific cancer related genes, we 

used the union of the two germline mutation profiles to increase the sensitivity, then we 

manually inspected potential germline variations using IGV.18 We also annotated the germline 

mutations using ANNOVAR, then selected a subset of mutations as potentially pathogenic by 

the following two criteria: 1) predicted as deleterious by SIFT19 and PolyPhen220 and 2) having a 

lower population frequency than 0.01 in gnomAD v2.1.1 (https://gnomad.broadinstitute.org). 

 

RNA sequencing and analysis 

Libraries were made with TruSeq RNA Access Library kit (Illumina) and sequenced on 

HiSeq2500 (Illumina). We used FastQC, multiQC, and cutadapt for quality control and 

preprocessing. STAR v2.4.2a21 was used to align to a GRCh38_P01 reference with Genecode 

v22 gene annotation, then HTSeq 0.6.022 was used to generate counts for gene expression 

quantification. The same parameters used in the TCGA STAD project23 were used. DESeq224 

was used to detect differentially expressed genes (DEG).  

Consensus clustering using gene expression data was performed with 

ConsensusClusterPlus.25 The raw read counts were normalized using voom function in the 

limma package. Various k (number of clusters) from 2 to 20 were tested and k = 5 was selected 

based on Cophenetic correlation coefficient. We performed DEG analysis between the identified 

cluster 1 and clusters 2+3+4+5 and cluster 4 and clusters 1+2+3+5 using the DESeq2 and used 

GSEA for gene set enrichment analysis.26 

FusionCatcher27 and STAR-Fusion28 were used with default parameters to detect gene 

fusion events. Fusion events identified by both algorithms were used for further analysis. Non-

clipped raw FASTQ data and Ensembl v89 database29 were used as input and database, 

respectively. We visualized and manually inspected fused transcripts using supporting reads 

provided by the FusionCatcher and UCSC genome browser.30 

 



Ancestry analysis 

To identify each sample’s inherited genetic characteristics, we performed an ancestry 

inference using Locating Ancestry from SEquence Reads (LASER) to analyze whole-exome 

sequencing data31 with default parameters. LASER constructs a reference principal component 

(PC) space with a set of reference individuals and places test samples into the PC space. 

Ancestry of each sample can be inferred using distances in the PC space between the sample 

and the reference individuals. We downloaded and used a reference PC space data from the 

LASER website. The reference PC space was constructed with Human Genome Diversity 

Project32 data that contained 938 reference individuals from various ethnic groups. Then we 

calculated the first 4 PCs for each normal Hispanic/Latino sample and mapped it to the PC 

space. 

 

Metagenomics for Epstein-Barr virus and Helicobacter pylori  

We used PathoScope 2.033 with parameters (-b very-sensitive-local -m hi -k 100 -t 50 -L 

101 -s 0.95 --adjreflen --reuse) to identify EBV infections using whole-exome and RNA 

sequencing data. We used the target microbial database (PathoDB) available from PathoScope 

2.0 release, which was built from NCBI nr (non-redundant) nucleotide database as of 2014.34 To 

increase sensitivity, we performed the metagenomics analysis on both WES data and RNA-seq 

data. 

 

Determining microsatellite instability 

We used MSISensor35 with default parameters to predict the MSI status by calculating 

and comparing length distributions of microsatellites between tumor and normal sample. The 

MSISensor calculated a score for each sample to determine the MSI status (e.g., higher scores 

indicate the sample is more likely to have MSI). If we have both of normal and blood samples for 



a patient, we did two tests and averaged the scores. Then we chose a cutoff 10 based on a 

pan-cancer MSI assessment study using the MSISensor.36 

 

Determining somatic copy number alterations 

We used CNVkit37 to perform copy number alteration (CNA) analysis for whole-exome 

sequencing data. Because our cohort was sequenced by two different vendors (DNA Link, Inc 

(San Diego) and Admera Health (New Jersey)) we divided the cohort into two batches based on 

the vendors and ran the CNVkit separately. For each batch, a pooled reference panel was built 

using normal samples, then somatic CNAs were called for each tumor sample. The CNA calling 

results were merged then GISTIC238 was used to identify recurrent CNA regions. CNA regions 

with |CNA value| < 0.1 were filtered out. We adopted a method from Ichikawa et al.39 and 

(number of CNA regions > 41) was defined as a cutoff to stratify between genomically stable 

(GS) and chromosomal instability (CIN) subtypes. 
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