SUPPORTING INFORMATION

Structural and functional studies of *Arabidopsis thaliana* legumain beta reveal isoform specific mechanisms of activation and substrate recognition

Authors:

Elfriede Dall^{†*#}, Florian B. Zauner^{†*}, Wai Tuck Soh[†], Fatih Demir[§], Sven O. Dahms[†], Chiara Cabrele[†], Pitter F. Huesgen^{§I}, Hans Brandstetter^{†#}.

Affiliation:

[†]Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria.
[§]Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52428 Jülich, Germany.
[†]CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
[⊥]Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, 50674 Cologne, Germany

*These authors contributed equally to this work.

[#]Corresponding authors: Elfriede Dall: elfriede.dall@sbg.ac.at Hans Brandstetter: hans.brandstetter@sbg.ac.at

Supporting Figure S1. Sequence alignment of *Arabidopsis thaliana* (AtLEG α : P49047, AtLEG β : Q39044, AtLEG γ : 5nij, AtLEG δ : Q9LJX8) and human legumain (4fgu). Arrows indicate autocatalytic cleavage sites, red stars: catalytic residues, green triangle: glycosylation site, blue diamonds: residues forming the S1-specificity pocket. Secondary structure elements are based on the crystal structure of proAtLEG β . The numbering on top of the alignment is based on the AtLEG β sequence, and the numbering below the alignment on the AtLEG γ sequence. The alignment was created with Clustal W (1) and modified with Aline (2).

Supporting Figure S2. Superposition of 4-helix bundles observed in proAtLEG β (pdb entry 6ysa) and 2chain AtLEG γ (pdb entry 5nij).

Supporting Figure S3. AtLEG β forms a 2-chain state upon activation at pH 5.0. **A.** Two-chain AtLEG β migrates at the expected size of a monomer. Co-migration of AEP and LSAM domains in 2-chain AtLEG β was evidenced by SDS-PAGE. **B.** A calibration curve of the S200 SEC column used in the experiment described in panel A was prepared using 4 different standard proteins, following the manufacturer's instructions (3). K_{av} was calculated using the equation K_{av} = (v_e-v₀)/(v_c-v₀) where v_e is the elution volume of the standard protein, v₀ is the void volume and v_c is the column volume (MBP: maltose binding protein; GFP: green fluorescent protein). Linear fitting resulted in a K_{av} of 1.87 of the proAtLEG β peak, corresponding to a theoretical molecular weight of 72 – 66 kDa, which is in rough agreement with the monomer state of proAtLEG β .

Supporting Figure S4. A. Superposition of plant legumain structures. AtLEG β (pdb entry 6ysa), AtLEG γ (pdb entry 5obt), *V.canadensis* (pdb entry 5zbi), *H. annuus* (pdb entry 6azt), *C. ternatea* (pdb entry 6dhi), *O. affinis* (pdb entry 5h0i). The view in **B.** is rotated by 90° along the y-axis and 90° along the z-axis.

Supporting Figure S5. The active site of proAtLEG β most closely resembles the active state of AtLEG γ . Superposition of the crystal structures of proAtLEG β (blue), AtLEG γ (5obt, green) and zymogenic twochain AtLEG γ (5nij, grey). The covalent YVAD-cmk inhibitor that labeling the active site of AtLEG γ (5obt) is shown in orange sticks.

Supporting Figure S6. AtLEG β shows decreasing activity near neutral pH. Activity was measured using the Z-AAN-AMC fluorogenic substrate at indicated pH values. Activity was normalized to the highest activity, which was measured at pH 5.5.

Supporting Figure S7. AtLEG γ has a pH and time dependent substrate specificity. Cleavage site specificity was determined by the PICS assay, using peptides generated by tryptic digest of an *E.coli* proteome as substrate library. iceLogos visualize the substrate preference surrounding the cleavage sites (p = 0.05). Digestion was performed at indicated pH values and times. Number of non-redundant cleavage sites used to generate the iceLogos are indicated.

Supporting Figure S8. Cyclisation of SFTI-derived peptides by AtLEG β is pH-dependent. Reactions were carried out at indicated pH values. An asterisk labels an unidentified species.

References

- 1. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* **22**, 4673-4680
- 2. Bond, C. S., and Schuttelkopf, A. W. (2009) ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. *Acta Crystallogr D Biol Crystallogr* **65**, 510-512
- 3. GE Healthcare (2009) Gel Filtration Clibration Kits. Product booklet