# Human versus bovine milk derived fortifiers in preterm infants - a systematic review and meta-analysis

# Dr Anitha Ananthan et al

# **Online Supplementary Material**

#### Supplemental Table 1: The characteristics of the included studies<sup>1</sup>

| Study number | Study<br>authors, year<br>(References) | Participants                                                           | Intervention and Control                                                                                                                                                                                                  | Primary Outcomes <sup>2</sup>                                                                                                                                                                                                                                                      | Secondary Outcomes <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusions                                                                                                                       | Comments                                                                                |
|--------------|----------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1            | Hagelberg et al<br>1990 (26)           | preterm infats≤32<br>weeks or birth<br>weight≤1500g ( <i>n</i> =20)    | mother's milk supplemented<br>with human milk protein<br>(HMP) (n=10) vs adapted<br>cow's milk protein (CMP)<br>(n=10) and introduced when<br>the infant is on 150ml/Kg/day<br>of milk feeds and continued for<br>3 weeks | weight gain (g/kg/day): 11.2±5.1 vs<br>13.1±4.58* <sup>¥</sup><br>Gain in length(cm/week): 0.57±0.26 vs<br>0.71±0.42* <sup>¥</sup><br>Gain in head circumference(cm/week):<br>0.78±0.18 vs 0.67±0.26* <sup>¥</sup>                                                                 | calcium (mmol/l) at 3 weeks: $2.3(0.5-5)$ vs<br>2 (1-4) <sup><math>\wedge</math>¥</sup><br>Phosphorus (mmol/l) at 3 weeks: 8.3 (3-<br>13.2) vs 2.7 (0.6-7.4) <sup><math>\wedge</math>¥</sup><br>Urea at 3 weeks (mmol/l): 3.2(1.9-7.4) vs<br>5.3 (1.4-12.8) <sup><math>\wedge</math>¥</sup><br>Sepsis: 6/10 vs 3/10 <sup><math>¥</math></sup><br>NEC: 0/10 vs 0/10 <sup><math>¥</math></sup><br>Mortality during the study: 0/10 vs 1/10 <sup><math>¥</math></sup> | No significant alterations<br>in the aminoacid profiles<br>of peripheral blood by the<br>type of fortifier                        | The overall<br>advantages of<br>human milk<br>protein needs<br>to be studied<br>further |
| 2            | Boehm et al<br>1993(27)                | very low birth weight<br>infants with birth<br>weight <1500g<br>(n=24) | human milk supplemented with<br>human milk protein (n=11) vs<br>bovine milk protein (n=13) for<br>14 days when the infant<br>reached total feed volume of<br>150ml/Kg/day and continued<br>for 14 days                    | alpha amino nitrogen (mmol/L): $1.63\pm0.23$ vs $1.70\pm0.19^{*`}$<br>Urea (mmol/L): $2.06\pm0.32$ vs $1.94\pm0.28^{*`}$<br>Prealbumin (mg/l): $94.2\pm16.8$ vs $101.8\pm18.6^{*`}$<br>Weight gain (g/day): $32.1$ vs $31.3^{*}$<br>Gain in length (cm/week): $1.19$ vs $1.13^{*}$ | (EPO vs. placebo): NEC: 0/7 vs. 0/8 <sup>¥</sup> ;<br>BPD: 5/7 vs. 8/8 <sup>¥</sup> ; ROP: 1/7 vs. 2/8 <sup>¥</sup> ;<br>PDA: 4/7 vs. 3/8 <sup>¥</sup> ; IVH: 0/7 vs1/8 <sup>¥</sup> ;<br>mortality: 0/7 vs. 1/9                                                                                                                                                                                                                                                   | Human milk enriched<br>with a well balanced<br>fortifier, even when based<br>on non human cources<br>can fulfil nutritional needs | Small sample<br>size, short<br>duration of<br>treatment                                 |

|   | Polberger et<br>al 1999 (25) | preterm infants with<br>birth weight 920g-<br>1750g ( <i>n</i> =32)   | human milk fortified when the<br>fed volume was 150ml/Kg/day<br>with a bovine whey protein<br>fortifier (n=16) vs ultrafiltered<br>human milk protein fortifier<br>(n=16) for 24 days.                                                                          | gain in weight (g/Kg/day): $15.6\pm2.9$ vs<br>$14.7\pm3.2^{**}$<br>Gain in length 9cm/wk),mean±SD:<br>$0.97\pm0.34$ vs $1.02\pm0.23^{**}$<br>Gain in head circumference<br>(cm/wk),mean±SD: $1.06\pm0.21$ vs<br>$1.02\pm0.23^{**}$                                                                                                                     | urea (mmol/l):1.3±0.7 vs 1.8±0.7* <sup>¥</sup><br>Albumin (g/l): 31±4 vs 33±4* <sup>¥</sup><br>Amino acid content F vs HMP: serine:<br>161±40 vs 192±95* <sup>#</sup><br>Proline: 220±53 vs 340±95* <sup>#</sup><br>Ornithins: 93±24 vs 141±53* <sup>#</sup> | Routine analysis of<br>human milk protein and<br>energy content to<br>optimise the use of huma<br>milk for feeding in<br>preterm infants        | Small sample<br>size, short<br>duration of<br>treatment                                      |
|---|------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|   | Cristofalo et<br>al (29)     | preterm infants with<br>birth weight 500g-<br>1250g( <i>n</i> =53)    | mother's milk supplemented<br>with human milk protein<br>(HMP) (n=29) vs adapted<br>cow's milk protein (CMP)<br>(n=24) and introduced when<br>the infant is on 100ml/Kg/day<br>of milk feeds and continued for<br>91 days                                       | gain in weight (g/day): 15±5.8 vs 17±7.1* <sup>#</sup><br>Gain in length (cm/week): 0.84±0.21 vs<br>1.12±0.28* <sup>#</sup><br>Gain in head circumference (cm/week):<br>0.78±0.26 vs 0.88±0.18* <sup>¥</sup>                                                                                                                                           | Mortality: 0/29 (0%) vs 2/24 (8%)<br>NEC: 1/29 (3%) vs 5/24 (21%) <sup>¥</sup><br>Surgical NEC: 0/29 (1%) vs 4/24 (17%) <sup>#</sup><br>Sepsis: 16/29 (55%) vs 19/24 (79%) <sup>¥</sup>                                                                      | Recommends the use of<br>exclusive human milk<br>based diet for extremely<br>preterm infants.                                                   | Small sample<br>size                                                                         |
| 5 | Sullivan 2010 et al<br>(24)  | preterm infants with<br>birth weight 500 to<br>1250g ( <i>n</i> =136) | mother's milk supplemented<br>with human milk fortifier<br>(HMF 100) (n=67) vs bovine<br>milk based HMF (n=69) when<br>the enteral intake was<br>100ml/Kg/day and continued<br>for 91 days of age/discharge<br>from hospital/attainment of<br>50% oral feedings | <ul> <li>gain in weight (g/Kg/day): HM100 vs<br/>BOV: 14.2 (11.9, 15.8) vs vs15.1 (12.8,17)<br/><sup>@ ¥</sup></li> <li>Gain in length (cm/wk): HM100 vs BOV:<br/>0.86 (0.72,1.08) vs 0.94 (0.72,1.16) <sup>@ ¥</sup></li> <li>Gain in head circumference (cm/wk)<br/>HM100 vs BOV: 0.76 (0.62,0.85 )vs 0.75<br/>(0.62,0.86) <sup>@ ¥</sup></li> </ul> | NEC: 3/67 vs 11/69 <sup>#</sup><br>NEC requiring surgery: 1/67 vs 7/69 <sup>#</sup><br>Mortality: 1/67 vs 5/69 <sup>#</sup>                                                                                                                                  | The use of exclusive<br>human milk based diet in<br>extremely preterm infants<br>is associated with reduced<br>rates of NEC and surgical<br>NEC | Advocates the<br>use of newer<br>technology to<br>use exclusive<br>human milk<br>based diet. |

| O'Connor<br>2018(28) | preterm infants with<br>birth weight <1250g<br>(n=125) | human milk with added<br>fortifier; human milk based<br>fortifier (HMBF) (n=64) vs<br>bovine milk based fortifier<br>(BBF) (n=61) when<br>100ml/Kg/day feed was<br>reached and continued until<br>infants were 84 days of<br>age/discharge/when they<br>consumed $\geq 2$ complete oral<br>feeds daily over 3 days which<br>ever was first | feeding interruption[n,(%)]:20/61 (32.8%)<br>17/64(26.6%) ,RD:-6.2 (-22.2,9.8) <sup>¥</sup><br>Weight(g) adjusted effect: 1124 (960,1065)<br>vs 1303(1150,1456) <sup>@¥</sup><br>length: 7.3 (6.3,8.3) vs 8.1 (7.1,9.2) <sup>@¥</sup><br>head circumference(cm): 6.2 (5.5,6.8) vs<br>6.8 (6.1,7.4) <sup>@¥</sup> | mortality and morbidity index: $31/64$<br>(48.4%) vs $30/61$ (49.2%), RD: -0.7 (-<br>18.3,16.8) <sup>¥</sup><br>Death: $3/64$ (4.7%) vs $4/61$ (6.6%), RD=-<br>1.9 (-10.0,6.2) <sup>¥</sup><br>Late onset sepsis: $8/64$ (12.5%) vs $14/61$<br>(23%), RD=-10.5 (-23.8, 2.9) <sup>¥</sup><br>NEC all stages : $3/64$ (4.7%) vs $6/61$<br>(9.8%), RD=-5.2 (-14.2,3.9) <sup>¥</sup><br>NEC $\geq$ stage 2: $3/64$ (4.7%) vs $3/61$<br>(4.9%),RD=-0.2 (-7.7,7.3) <sup>¥</sup><br>Severe ROP: $1/62$ (1.6%) vs<br>6/59(10.2%),RD=-8.6 (-16.9,-0.02) <sup>#</sup><br>Severe brain injury: $111/64(17.2\%)$ vs<br>8/61 (13.1%), RD=4.1(-8.5,16.6)<br>BPD: $16/64(25\%)$ vs $18/61$ (29.5%),RD =-<br>4.5(-20.1,11.1)¥ | The use of human milk<br>based fortifier did not<br>improve feeding tolerance<br>or reduce mortality and<br>morbidity compared to<br>bovine milk based<br>fortifier. | Routine use of<br>human milk<br>based fortifier<br>over bovine<br>milk based<br>fortifier not<br>recommended |
|----------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|----------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|

<sup>1</sup> Bov: bovine; BPD: bronchopulmonary dysplasia; CLD: Chronic lung disease; CI: Confidence interval; ELBW: Extremely low birth weight;HM: human milk; LOS: Late onset sepsis; NEC: Necrotizing enterocolitis; PDA: patent ductus artereosus; RD: risk difference; rhEPO: recombinant erythropoietin; ROP: Retinopathy of prematurity;

<sup>2, 3</sup> for these columns,\* mean±SD; ^mean (range); <sup>@</sup> median (25<sup>th</sup> centile, 75<sup>th</sup> centile)) <sup>#</sup> P<0.01; <sup>¥</sup>P=NS (not significant)

6

# Supplemental Table 2^: Sensitivity analysis

| Item                                  | No: of studies                                      | Sample size | RR (95% CI REM)   | I <sup>2</sup> statistic (%) |
|---------------------------------------|-----------------------------------------------------|-------------|-------------------|------------------------------|
|                                       |                                                     |             |                   |                              |
| Definite NEC                          |                                                     |             |                   |                              |
| low ROB on random sequence generation | 2( O' Connor 2018, Sullivan 2010)                   | 261         | 0.47 (0.14,1.54)  | 31                           |
| low ROB on allocation concealment     | 1(O' Connor 2018)                                   | 125         | 0.95 (0.20,4.54)  | NA                           |
| low ROB on blinding                   | 2 (O' Connor 2018, Cristofalo 2013)                 | 178         | 0.46 (0.08,2.52)  | 44                           |
| HMF supplementation till discharge    | 3 ( O' Connor 2018, Cristofalo 2013, Sullivan 2010) | 314         | 0·38 (0·15,0.95)  | 9                            |
| Minimal or no industry bias           | 2 ( O'Connor 2018, Hagelberg 1990)                  | 145         | 0.95 (0.20,4.54)  | NA                           |
| Surgical NEC                          |                                                     |             |                   |                              |
| low ROB on random sequence generation | 1 (Sullivan 2010)                                   | 136         | 0.15 (0.02, 1.16) | NA                           |
| low ROB on allocation concealment     | 0                                                   | 0           | NA                | NA                           |
| low ROB on blinding                   | 1 (Cristofalo 2013)                                 | 53          | 0.09 (0.01, 1.64) | NA                           |
| HMF supplementation till discharge    | 2 ( Cristofalo 2013, Sullivan 2010)                 | 189         | 0.13 (0.02, 0.67) | 0                            |
| Minimal or no industry bias           | 1 (Hagelberg 1990)                                  | 20          | Not estimable     | NA                           |
| mortality                             |                                                     |             |                   |                              |
| low ROB on random sequence generation | 2 (O'Connor 2018, Sullivan 2010)                    | 261         | 0.48 (0.14,1.59)  | 0                            |
| low ROB on allocation concealment     | 1 (O'Connor 2018)                                   | 125         | 0.71(0.17, 3.06)  | NA                           |
| low ROB on blinding                   | 2 ( O'Connor 2018, Cristofalo 2013)                 | 178         | 0.54 (0.15,2.00)  | 0                            |
| HMF supplementation till discharge    | 3 ( O' Connor 2018, Cristofalo 2013, Sullivan 2010) | 314         | 0.41 (0.14, 1.26) | 0                            |
| Minimal or no industry bias           | 2 ( O'Connor 2018, Hagelberg 1990)                  | 145         | 0.62 (0.17, 2.32) | 0                            |

^

^ Definite NEC and surgical NEC are significantly decreased in HMF group vs BMF group whnen HMF is supplemented till discharge

### Supplemental Figure 1: sensitivity analysis (Definite NEC)

### 1a) Low ROB on random sequence generation

|                                   | HM         | F        | BM          | :       |                                            | Risk Ratio          |      | Risk Ratio                                  |
|-----------------------------------|------------|----------|-------------|---------|--------------------------------------------|---------------------|------|---------------------------------------------|
| Study or Subgroup                 | Events     | Total    | Events      | Total   | Weight                                     | M-H, Random, 95% Cl |      | M-H, Random, 95% Cl                         |
| O'Connor 2018                     | 3          | 64       | 3           | 61      | 42.0%                                      | 0.95 [0.20, 4.54]   |      |                                             |
| Sullivan 2010                     | 3          | 67       | 11          | 69      | 58.0%                                      | 0.28 [0.08, 0.96]   |      |                                             |
| Total (95% CI)                    |            | 131      |             | 130     | 100.0%                                     | 0.47 [0.14, 1.54]   |      |                                             |
| Total events                      | 6          |          | 14          |         |                                            |                     |      |                                             |
| Heterogeneity: Tau <sup>2</sup> = | = 0.24; Ch | i² = 1.4 | 6, df = 1 ( | P = 0.2 | 3); <b>I<sup>2</sup> =</b> 31 <sup>4</sup> | %                   |      |                                             |
| Test for overall effect:          | Z=1.25     | (P = 0.2 | 21)         |         |                                            |                     | 0.01 | 0.1 1 10 100<br>Favours (HMF) Favours (BMF) |

### 1b) Low ROB on allocation concealment

|                                                   | HM     | F        | BMI    | F     |        | Risk Ratio          | Risk Ratio                                       |
|---------------------------------------------------|--------|----------|--------|-------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                                 | Events | Total    | Events | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                              |
| O'Connor 2018                                     | 3      | 64       | 3      | 61    | 100.0% | 0.95 [0.20, 4.54]   |                                                  |
| Total (95% CI)                                    |        | 64       |        | 61    | 100.0% | 0.95 [0.20, 4.54]   |                                                  |
| Total events                                      | 3      |          | 3      |       |        |                     |                                                  |
| Heterogeneity: Not ap<br>Test for overall effect: | •      | (P = 0.9 | 95)    |       |        |                     | 0.01 0.1 1 10 100<br>Favours [HMF] Favours [BMF] |

### 1c) Low ROB on blinding

|                          | HMI      | F        | BMI         | F       |                         | Risk Ratio          | Risk Ratio                  |
|--------------------------|----------|----------|-------------|---------|-------------------------|---------------------|-----------------------------|
| Study or Subgroup        | Events   | Total    | Events      | Total   | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl         |
| Cristofalo 2013          | 1        | 29       | 5           | 24      | 42.2%                   | 0.17 [0.02, 1.32]   |                             |
| O'Connor 2018            | 3        | 64       | 3           | 61      | 57.8%                   | 0.95 [0.20, 4.54]   |                             |
| Total (95% CI)           |          | 93       |             | 85      | 100.0%                  | 0.46 [0.08, 2.52]   |                             |
| Total events             | 4        |          | 8           |         |                         |                     |                             |
| Heterogeneity: Tau² =    | 0.69; Ch | i² = 1.7 | 8, df = 1 ( | P = 0.1 | 8); I <sup>2</sup> = 44 | %                   |                             |
| Test for overall effect: | Z = 0.90 | (P = 0.3 | 37)         |         |                         |                     | Favours [HMF] Favours [BMF] |

# 1d) HMF supplementation till discharge

|                                   | HMI        | F        | BMI    | F        |             | Risk Ratio          | Risk Ratio                  |
|-----------------------------------|------------|----------|--------|----------|-------------|---------------------|-----------------------------|
| Study or Subgroup                 | Events     | Total    | Events | Total    | Weight      | M-H, Random, 95% Cl | M-H, Random, 95% Cl         |
| Cristofalo 2013                   | 1          | 29       | 5      | 24       | 18.9%       | 0.17 [0.02, 1.32]   |                             |
| O'Connor 2018                     | 3          | 64       | 3      | 61       | 32.1%       | 0.95 [0.20, 4.54]   |                             |
| Sullivan 2010                     | 3          | 67       | 11     | 69       | 49.0%       | 0.28 [0.08, 0.96]   |                             |
| Total (95% CI)                    |            | 160      |        | 154      | 100.0%      | 0.38 [0.15, 0.95]   | -                           |
| Total events                      | 7          |          | 19     |          |             |                     |                             |
| Heterogeneity: Tau <sup>2</sup> = |            |          |        | (P = 0.3 | 3); I² = 99 | 6                   | 0.01 0.1 1 10 100           |
| Test for overall effect           | : Z = 2.06 | (P = 0.0 | )4)    |          |             |                     | Favours [HMF] Favours [BMF] |

### 1e) Minimal or no industry bias

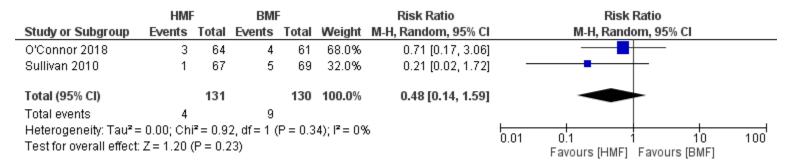
|                          | HME      | -        | BM     | F     |        | Risk Ratio          | Risk Ratio                  |
|--------------------------|----------|----------|--------|-------|--------|---------------------|-----------------------------|
| Study or Subgroup        | Events   | Total    | Events | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl         |
| Hagelberg 1990           | 0        | 10       | 0      | 10    |        | Not estimable       |                             |
| O'Connor 2018            | 3        | 64       | 3      | 61    | 100.0% | 0.95 [0.20, 4.54]   |                             |
| Total (95% CI)           |          | 74       |        | 71    | 100.0% | 0.95 [0.20, 4.54]   |                             |
| Total events             | 3        |          | 3      |       |        |                     |                             |
| Heterogeneity: Not ap    | plicable |          |        |       |        |                     |                             |
| Test for overall effect: | Z = 0.06 | (P = 0.9 | 95)    |       |        |                     | Favours [HMF] Favours [BMF] |

### Supplemental Figure 2: sensitivity analysis (Surgical NEC)

# 2a) Low ROB on random sequence generation

|                                                   | HM     | :        | BM     | F     |        | Risk Ratio          | Risk Ratio                                       |
|---------------------------------------------------|--------|----------|--------|-------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                                 | Events | Total    | Events | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                              |
| Sullivan 2010                                     | 1      | 67       | 7      | 69    | 100.0% | 0.15 [0.02, 1.16]   |                                                  |
| Total (95% CI)                                    |        | 67       |        | 69    | 100.0% | 0.15 [0.02, 1.16]   |                                                  |
| Total events                                      | 1      |          | 7      |       |        |                     |                                                  |
| Heterogeneity: Not ap<br>Test for overall effect: | •      | (P = 0.0 | )7)    |       |        |                     | 0.01 0.1 1 10 100<br>Favours (HMF) Favours (BMF) |

#### 2b) Low ROB on blinding


|                          | HMF      | =        | BMI    | F     |        | Risk Ratio          | Risk Ratio                  |
|--------------------------|----------|----------|--------|-------|--------|---------------------|-----------------------------|
| Study or Subgroup        | Events   | Total    | Events | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl         |
| Cristofalo 2013          | 0        | 29       | 4      | 24    | 100.0% | 0.09 [0.01, 1.64]   | ← <b></b>                   |
| Total (95% CI)           |          | 29       |        | 24    | 100.0% | 0.09 [0.01, 1.64]   |                             |
| Total events             | 0        |          | 4      |       |        |                     |                             |
| Heterogeneity: Not ap    | plicable |          |        |       |        |                     | 0.01 0.1 1 10 100           |
| Test for overall effect: | Z=1.62 ( | (P = 0.1 | 0)     |       |        |                     | Favours [HMF] Favours [BMF] |

# 2c) HMF supplementation till discharge

|                                   | HME      | -                    | BM          | F        |                          | Risk Ratio          | Risk Ratio                   |     |
|-----------------------------------|----------|----------------------|-------------|----------|--------------------------|---------------------|------------------------------|-----|
| Study or Subgroup                 | Events   | Total                | Events      | Total    | Weight                   | M-H, Random, 95% Cl | M-H, Random, 95% Cl          |     |
| Cristofalo 2013                   | 0        | 29                   | 4           | 24       | 34.1%                    | 0.09 [0.01, 1.64]   | <                            |     |
| Sullivan 2010                     | 1        | 67                   | 7           | 69       | 65.9%                    | 0.15 [0.02, 1.16]   |                              |     |
| Total (95% CI)                    |          | 96                   |             | 93       | 100.0%                   | 0.13 [0.02, 0.67]   |                              |     |
| Total events                      | 1        |                      | 11          |          |                          |                     |                              |     |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Ch | i <sup>2</sup> = 0.0 | 7, df = 1 ( | (P = 0.8 | (0); I <sup>2</sup> = 09 | 6                   |                              | 100 |
| Test for overall effect:          | Z = 2.42 | (P = 0.0             | )2)         |          |                          |                     | Favours [HMF] Favours [BMFI] | 100 |

#### Supplemental Figure 3: sensitivity analysis (mortality)

#### 3a) Low ROB on random sequence generation



#### **3b)** Low ROB on allocation concealment

|                                                                               | HMF    |       | BMF    |       |        | Risk Ratio          | Risk Ratio                                       |
|-------------------------------------------------------------------------------|--------|-------|--------|-------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                                                             | Events | Total | Events | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                              |
| O'Connor 2018                                                                 | 3      | 64    | 4      | 61    | 100.0% | 0.71 [0.17, 3.06]   |                                                  |
| Total (95% CI)                                                                |        | 64    |        | 61    | 100.0% | 0.71 [0.17, 3.06]   |                                                  |
| Total events                                                                  | 3      |       | 4      |       |        |                     |                                                  |
| Heterogeneity: Not applicable<br>Test for overall effect: Z = 0.45 (P = 0.65) |        |       |        |       |        |                     | 0.01 0.1 1 10 100<br>Favours [HMF] Favours [BMF] |

### 3c) Low ROB on blinding

|                                   | HMF BI     |          | BM     | F        |             | Risk Ratio          | k Ratio Risk Ratio |               |     |
|-----------------------------------|------------|----------|--------|----------|-------------|---------------------|--------------------|---------------|-----|
| Study or Subgroup                 | Events     | Total    | Events | Total    | Weight      | M-H, Random, 95% Cl | M-H, Ran           | dom, 95% Cl   |     |
| Cristofalo 2013                   | 0          | 29       | 2      | 24       | 19.2%       | 0.17 [0.01, 3.31]   | <b>←</b>           |               |     |
| O'Connor 2018                     | 3          | 64       | 4      | 61       | 80.8%       | 0.71 [0.17, 3.06]   |                    |               |     |
| Total (95% CI)                    |            | 93       |        | 85       | 100.0%      | 0.54 [0.15, 2.00]   | -                  |               |     |
| Total events                      | 3          |          | 6      |          |             |                     |                    |               |     |
| Heterogeneity: Tau <sup>2</sup> = |            |          |        | (P = 0.3 | 9); I² = 09 | 6                   | 0.01 0.1           | 1 10          | 100 |
| Test for overall effect:          | Z = 0.92 ( | (P = 0.3 | 36)    |          |             |                     | Favours (HMF       | Favours (BMF) |     |

# **3d) HMF supplementation till discharge**

| HMF BMF |                                        |                                                                                                                                                           | Risk Ratio                                                                                                                                                      | Risk Ratio                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Events  | Total                                  | Events                                                                                                                                                    | Total                                                                                                                                                           | Weight                                                                                                                                                                                                                                                                                           | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                  | I M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0       | 29                                     | 2                                                                                                                                                         | 24                                                                                                                                                              | 13.9%                                                                                                                                                                                                                                                                                            | 0.17 [0.01, 3.31]                                                                                                                                                                                                                                                                                                                                                    | ] ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3       | 64                                     | 4                                                                                                                                                         | 61                                                                                                                                                              | 58.6%                                                                                                                                                                                                                                                                                            | 0.71 [0.17, 3.06]                                                                                                                                                                                                                                                                                                                                                    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1       | 67                                     | 5                                                                                                                                                         | 69                                                                                                                                                              | 27.6%                                                                                                                                                                                                                                                                                            | 0.21 [0.02, 1.72]                                                                                                                                                                                                                                                                                                                                                    | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 160                                    |                                                                                                                                                           | 154                                                                                                                                                             | 100.0%                                                                                                                                                                                                                                                                                           | 0.41 [0.14, 1.26]                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4       |                                        | 11                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                        |                                                                                                                                                           | P = 0.5                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                | 0.01 0.1 1 10 100<br>Favours [HMF] Favours [BMF]                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Events<br>0<br>3<br>1<br>4<br>0.00; Ch | Events         Total           0         29           3         64           1         67           160         4           0.00; Chi <sup>2</sup> = 1.33 | Events         Total         Events           0         29         2           3         64         4           1         67         5           160         11 | Events         Total         Events         Total           0         29         2         24           3         64         4         61           1         67         5         69           160         154           4         11           0.00; Chi <sup>2</sup> = 1.35, df = 2 (P = 0.5) | Events         Total         Events         Total         Weight           0         29         2         24         13.9%           3         64         4         61         58.6%           1         67         5         69         27.6%           160         154         100.0%           4         11         0.00; Chi² = 1.35, df = 2 (P = 0.51); l² = 09 | Events         Total         Events         Total         Weight         M-H, Random, 95% C           0         29         2         24         13.9%         0.17 [0.01, 3.31]           3         64         4         61         58.6%         0.71 [0.17, 3.06]           1         67         5         69         27.6%         0.21 [0.02, 1.72]           160         154         100.0%         0.41 [0.14, 1.26]           4         11         0.00; Chi <sup>2</sup> = 1.35, df = 2 (P = 0.51); I <sup>2</sup> = 0%         1 |

# **3e) Minimal or no industry bias**

|                          | HMF        |          | BMF         |          |                         | Risk Ratio          | Risk Ratio                  |
|--------------------------|------------|----------|-------------|----------|-------------------------|---------------------|-----------------------------|
| Study or Subgroup        | Events     | Total    | Events      | Total    | Weight                  | M-H, Random, 95% Cl | M-H, Random, 95% Cl         |
| Hagelberg 1990           | 0          | 10       | 1           | 10       | 18.2%                   | 0.33 [0.02, 7.32]   | •                           |
| O'Connor 2018            | 3          | 64       | 4           | 61       | 81.8%                   | 0.71 [0.17, 3.06]   |                             |
| Total (95% CI)           |            | 74       |             | 71       | 100.0%                  | 0.62 [0.17, 2.32]   |                             |
| Total events             | 3          |          | 5           |          |                         |                     |                             |
| Heterogeneity: Tau² =    | 0.00; Ch   | i² = 0.1 | 9, df = 1 ( | (P = 0.6 | 6); I <sup>z</sup> = 09 | 6                   |                             |
| Test for overall effect: | Z = 0.71 ( | (P = 0.4 | 48)         |          |                         |                     | Favours [HMF] Favours [BMF] |