

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China

Journal:	BMJ Open		
Manuscript ID	bmjopen-2020-038551		
Article Type:	Original research		
Date Submitted by the Author:	16-Mar-2020		
Complete List of Authors:	Chen, Peng-yuan; Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Department of Cardiology Liu, Yuanhui; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Duan, Chongyang; School of Public Health, Southern Medical University, Guangzhou, Biostatistics Jiang, Lei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Wei, Xuebiao; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Chen, Jiyan; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University Tan, Ning; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Prov		

	Medical University; Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
Keywo	ords: Coronary heart disease < CARDIOLOGY, Coronary intervention < CARDIOLOGY, Cardiology < INTERNAL MEDICINE
	SCHOLARONE [™]
	Manuscripts
For peer r	review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

Original article Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China Pengyuan Chen^{1*}, MD; Yuanhui Liu^{2*}, MD, PhD; ChongYang Duan^{3*}, MD; Lei Jiang², MD, PhD; XueBiao Wei², MD; Wei Guo², MD, PhD; JiYan Chen², MD, PhD;

Ning Tan², MD, PhD; PengCheng He^{1,2}, MD, PhD;

Running Title: Infection of NSTE-ACS and PCI

- Department of Cardiology, Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Foshan 528000, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China

*These authors were considered equally to the work.

Address for corresponding author: PengCheng He; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.

Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai

District Foshan City, Foshan 528000, China.

Tel: +86-20-83819161 Fax: +86-20-83824369; gdhpc100@126.com

Words count: 3907 words

to orer terien only

Abstract

Objectives: we aimed to interpret the association between in-hospital infection and the prognosis among non-ST-elevation acute coronary syndrome (NSTE-ACS) patients received percutaneous coronary intervention (PCI).

Design: This observational cohort originated from the database for NSTE-ACS underwent percutaneous coronary intervention from January 1, 2010, to December 31,

2014.

Setting: five centres from south China

Participants: This multicentre observational cohort study consecutively included 8197 NSTE-ACS patients who received PCI. Only patients with adequate information to diagnose or rule out infection were included. Patients were excluded if they were diagnosed with a malignant tumor, pregnant or cardiogenic shock at index date. Patients were grouped by whether they had in-hospital infection or not.

Primary and secondary outcome measures: the primary outcome was all-cause death and major bleeding during hospitalization. The secondary outcomes included all-cause death and major bleeding during follow-up and in-hospital myocardial infarction. **Results:** Of the 5215 patients, 206 (3.95%) occurred infection. Patients with infection had a higher rate of in-hospital all-cause death and major bleeding (4.4% vs. 0.2%, 16.5% vs. 1.2% respectively, P<.001). After adjusting for confounders, infection remained independently associated with the in-hospital and long-term all-cause death (OR, 13.19, 95% CI: 4.59-37.87; HR, 2.03, 95% CI: 1.52-2.71; P<.001) and major bleeding (OR, 10.24; 95% CI: 6.17-16.98; HR, 5.31, 95% CI: 3.49-8.08; P<.001). Subgroup analysis confirmed these results.

Conclusions: the incidence of infection is low in hospitalization, but it is associated with worse in-hospital and long-term outcomes.

Key Words: Non-ST-elevation acute coronary syndrome; Percutaneous coronary

intervention; Infection; Outcomes.

to peet terien only

Strengths and limitations of this study

- We widely included NSTE-ACS patients who received PCI treatment from China.
- The characteristics of infection was detailed reported which included the time and infection type.
- Validation was done in different subgroups and variables which is our best effort based on the database.
- The potential bias may be neglected because of the study design.
- The etiology test of the infection is absent which limited the advanced

exploration of the mechanism.

Introduction

The incidence of non-ST-elevation acute coronary syndrome (NSTE-ACS) is increasing, and approximately 70% of all ACS patients are NSTE¹. These patients typically have more comorbidities than patients with ST-segment elevation myocardial infarction (STEMI) and are associated with both worse short- and long-term outcomes¹, ². Identification of patients at risk for worse outcomes could result in targeted intervention, help direct care, reduce the incidence of subsequent events, and thus optimize resource utilization.

Infection can activate platelets and the coagulation system, contributing to the prothrombotic environment^{3, 4}. Moreover, infection is an uncommon but important comorbidity in patients undergoing percutaneous coronary intervention (PCI)⁵⁻⁷. Although the reported incidence is less than 4%, infection has been proven to be associated with an increased risk of cardiovascular events among patients with STEMI^{8, 9}. However, information about infection in patients with NSTE-ACS remains scanty. Only one study of 174 octogenarian patients with ACS evaluated the impact of infection on clinical outcomes¹⁰. Thus, we aimed to assess the incidence and association of infection on short- and long-term clinical outcomes in NSTE-ACS patients undergoing PCI.

Methods

Study design and patients

This observational cohort study consisted of consecutive NSTE-ACS patients undergoing PCI from Jan 2010 to Dec 2014 at five hospitals in China. Only patients with adequate information to diagnose or rule out infection were included. Patients were

BMJ Open

excluded if they were diagnosed with a malignant tumor before the index date, pregnant or presenting with cardiogenic shock. The method to search and identify appropriate NSTE-ACS patients has been outlined previously¹¹. The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital, with a waiver of informed consent. The study was conducted in accordance with the Declaration of Helsinki.

Data collection and procedures

Data on demographics, patient history, laboratory tests, examinations, and medication history were collected by investigators in the first interview after admission. The medicines and PCI procedures were applied according to international guidelines and clinical evidence¹².

Infection during the index hospitalization was diagnosed according to the presence of any symptoms, signs and/or laboratory indicating infection. Once confirmed by the infection control doctors service, appropriate antibiotics were prescribed⁸. Infection was classified as pulmonary, urinary tract infection (UTI) or others (including nonpulmonary/ non-urinary sepsis and cellulitis), based on the clinical records during hospitalization. Community-acquired pulmonary infection was defined by a diagnosis of infection within the first 72 hours of hospital admission, and hospital-acquired pulmonary infection was defined as those occurring after the first 72 hours and were diagnosed in accordance with the criteria established by the Centers for Disease Control and Prevention¹³.

Clinical outcomes and follow up

The primary outcome was in-hospital all-cause death and in-hospital major bleeding as

BMJ Open

defined by the Bleeding Academic Research Consortium definition (grades 3-5)¹⁴. Secondary outcomes were: (1) major adverse clinical events (MACE), consisting of allcause death, myocardial infarction, or major bleeding during hospitalization; and (2) all-cause death or major bleeding during follow-up.

All patients were followed-up by trained nurses via telephone interview or clinic visits from Nov 2015 to Dec 2016. Relevant information was also collected from the residence registration system and from the clinical records of the patients who were readmitted. The details of clinical events and follow-up has been previously described¹¹.

Statistical analysis

All patients were divided into groups with or without infections. Continuous variables with a normal distribution are presented as the mean ± SD, and those with an asymmetric distribution are presented as the median and interquartile range (Q25-Q75). Student's t test or Wilcoxon rank-sum test were used to compare the continuous variables. Categorical variables are presented as frequencies and were compared by the Fisher exact test or chi-square test. Univariate and multivariable analyses were performed to evaluate the relationship between infection and clinical outcomes. Variables that were significant in the univariate analysis or clinically important were included in the multivariable models. Considering the low incidence of adverse outcomes but potential high incidence of confounders, each multivariable analysis two models were developed. The first model (model 1) included infection, age, anemia, type of disease (unstable angina and non-ST-elevation acute myocardial infarction), gender, current smokers, heart failure, and estimate glomerular filtration rate (eGFR). The

BMJ Open

second model (model 2) included radial access, cardiac biomarker positive, time to procedure, treated multi-vessel, diabetes mellitus, hypertension, prior myocardial infarction, and prior stroke. We performed subgroup analyses by older age, gender, current smokers, diabetes mellitus, types of disease, heart failure, anemia and chronic kidney disease. Analysis based on different types of infections was reported. We also introduced the GRACE (Global Registry of Acute Coronary Events)¹⁵ and CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines) score¹⁶ and compared the infection outcomes among different GRACE or CRUSADE risk groups (low, medium, or high risk). All data analyses were performed with SAS (version 9.4, SAS Institute, 210 Cary, North Carolina, USA). A 2-sided P<0.05 was considered significant.

Patient and public involvement

There was no patient or public involvement in any step of this study.

Results

Baseline characteristic

From January 1, 2010, to December 31, 2014, a total of 8197 consecutive NSTE-ACS patients underwent PCI at the 5 hospitals in China. Of the 5215 patients who met the final criteria, 206 (3.95%) received a diagnosis of infection, and 183 (89%) of them occurred within one week after hospital admission (**Figure S1**). **Table 1** shows the baseline characteristics of patients with and without infection. The patients with infection were older and a low body weight. These patients were more likely to have a

history of myocardial infarction, stroke, hypertension and diabetes, and more often had a diagnosis of heart failure, anemia and the use of intra-aortic balloon pump and dual antiplatelet therapy. Patients with infection had lower left ventricular ejection fraction, eGFR but higher GRACE risk scores compared with those without infection. However, the CRUSADE risk score was similar between the two groups.

In-hospital clinical outcomes

 Patients with infection had a higher rate of in-hospital all-cause death (4.4% vs. 0.2%), major bleeding (16.5% vs. 1.2%), and MACE (21.4% vs. 1.7%) compared with patients without infection (all P<.001) (Table 2). However, the rate of in-hospital myocardial infarction was similar between the two groups (P=0.726).

Univariable analyses showed that infection was a predictor of in-hospital all cause death (odd ratios [OR] 22.96; 95% confidence interval [CI], 9.23-57.14, P <.001), major bleeding (OR, 16.30; 95% CI, 10.42-25.50; P<.001), and MACE (OR, 14.48; 95%CI, 9.62-21.78; P<.001). After adjusting for other confounding variables, multivariable logistic regression showed that infection was significantly and independently related to the risk of the above outcomes (Figure 1).

Long-term clinical outcomes

At a median follow-up of 3.2 years, Kaplan-Meier analysis revealed that patients with in-hospital infection had a higher risk of long-term death, major bleeding, and death or major bleeding compared with those without in-hospital infection (P<.001) (**Table 2**, **Figure 2 and Figure S2**). Multivariable cox analyses demonstrated that infection was independently associated with long-term adverse outcomes even after adjusting for

BMJ Open

other potential risk factors (all cause death: hazard ratio [HR], 2.03; 95% CI, 1.52-2.71; P<.001; major bleeding: HR, 5.31; 95% CI, 3.49-8.08; P<.001; death or major bleeding: HR, 2.47; 95% CI, 1.92-3.19; P<.001). The similar result was reported in the other adjusted model (Figure 1).

Subgroup analyses

Subgroup analyses similarly revealed that infection was independently related to the inhospital events (all-cause death, major bleeding, or MACE) according to different clinical status. The unadjusted and adjusted ORs for infection are presented in **Figure S3**, **Figure S4**, **and Figure S5**. Analysis according to the infection subtypes indicated that pulmonary infection other than UTI was independently associated with poor inhospital and follow up clinical outcomes. However, the UTI was independently associated with all-cause death (**Table S1**). Furthermore, the relationship between infection and major bleeding, and MACE was consistent among patients with different GRACE or CRUSADE scores (low, medium, or high risk) (**Figure S6, S7, S8 and S9**).

Discussion

This study demonstrates that infection was uncommon in a contemporary cohort of NSTE-ACS patients who underwent PCI. But still the in-hospital infection among NSTE-ACS patients received PCI is significant associated with higher risk of inhospital and long-term clinical prognoses, such as all-cause death, major bleeding as well as the MACE.

The prevalence of infection in our study are similar to those results for the STEMI population. Data from 5,745 STEMI patients enrolled in the APEX-AMI trial

BMJ Open

demonstrated that the prevalence of serious infection was 2.4%, and that infection was associated with higher 90-day mortality (29%)⁹. Also, another study of 1,486 STEMI patients reported the prevalence of serious infection at 3.9% and the 30-day mortality was up to 53% in these patients⁸. The conclusions for these 2 studies paralleled our conclusion: infection is uncommon but associated with worse clinical outcomes. A recent retrospective cohort analyses of 174 octogenarians with ACS, for whom the patients with infection had a higher in-hospital, 30-day and long-term mortality than patients without infection¹⁰. However, that study was confined to patients older than 85 years who were admitted to the coronary care unit, the different ACS types were never specified, and the relatively liberal use of bare metal stents does not conform with the contemporary more liberal use of drug eluting stents^{17, 18}.

To our acknowledge, this study is the first to demonstrate the role of infection on patients with NSTE-ACS. Although the prevalence of infections was similar to the previous studies of STEMI^{8, 9}, the 30 and 90-day death rates were lower than those studies. These low rates might be the result of patient characteristics of our study with less patients requiring intra-aortic balloon pump support, mechanical ventilation and transfusion. However, our conclusions paralleled: patients with infections were associated with worse outcomes. This association remained consistent after the adjustment of other important potential risk factors for outcomes such as radial access, cardiac biomarker positive, time to revascularization, and treated multi-vessel.

Although infections had a negative impact on patients with NSTE-ACS, the underlying pathophysiologic mechanism remains unclear. Corrales-Medina et al¹⁹

BMJ Open

suggested that infection increased the mortality of patients who underwent elective PCI due to change in the plaques triggered by acute inflammatory reactions. Indeed, infection has been implicated as a factor contributing to initiation, progression and rupture of an atherosclerotic plaque²⁰. Infectious vectors have been reported to induce the expression of adhesion molecules such as heat shock protein 60 and monocyte chemoattractant protein-1 on endothelial cells, which can activate the endothelium and the formation of a lipid core²¹⁻²⁴. Additionally, the SIXTUS study group²⁵ demonstrated that platelet activation and TxB₂ overproduction are related to infections via Toll-like receptor 4. Moreover, MODICA et al.²⁶ reported that aspirin non-responsiveness was often observed in patients with pneumonia. Also, increased coagulation activity has been observed in pneumonia³. Therefore, infection can activate platelets and the coagulation system, which plays a critical role in deteriorating outcomes in patients with ACS. In contrast to previous STEMI reports^{8, 9}, we did not find a significant association of infection with myocardial infarction due to the low incidence of myocardial infarction in our study. However, our results were similar to previous studies that reported major bleeding more frequent in patients with infection. Although the PLATelet inhibition and patient Outcomes (PLATO) trial demonstrated that ticagrelor, a more potent and consistent platelet P2Y₁₂ inhibitor, was associated with significantly fewer pulmonary infections and death related to infection than clopidogrel, the incidence of bleeding in patients with infection in that study was not reported⁴. Because of dysfunction of platelets and the coagulation system, patients with infection might be at higher risk of ischemia and bleeding. Therefore, more attention should be

BMJ Open

paid to patients with infection when antithrombotic therapy was determined. Finally, infection can also result in worse outcomes for NSTE-ACS patients through increasing catecholamines and potentially adverse hemodynamic effects, such as coronary vasoconstriction and increased myocardial metabolic demands²⁷.

Although UTI was associated to some degree with in-hospital all-cause death, it was not associated with other worse outcomes. One reason why pulmonary infection is related to these worse clinical outcomes, while UTI is not, could be the lower prevalence of UTI comparing to pulmonary infection (0.3% vs. 2.6%). The prevalence of UTI was lower in our study compared with STEMI patients (0.3% vs. 7%)⁸. Therefore, when the population sample size was expanded, UTI would be similar to the pulmonary infection relating to the worse clinical outcomes.

Limitations

The study had several limitations. First, as a retrospective study a causal relationship between the infection and outcomes could not be determined. Second, despite adjustment for important confounders, we could not completely eliminate all the potential bias including selection bias. Third, although the infections were not centrally adjudicated, the infection was confirmed by the infection control services who were authorized to approve the use of antibiotic. In addition, all other adverse clinical events were evaluated by an independent clinical events committee that was masked to the infection details.

Conclusions

Infection is an uncommon complication in patients with NSTE-ACS undergoing PCI

Page 17 of 47

BMJ Open

but is nonetheless independently associated with worse in-hospital and long-term outcomes. Future studies are indicated to identify NSTE-ACS patients at risk for infection which could then result in targeted intervention, help direct care, reduce the incidence of subsequent adverse events, and thus optimize resource utilization.

Acknowledgements

The authors appreciate the efforts of revising the manuscript, Scott J. Denardo, MD, Reid Heart Center/First Health of Carolinas Cardiac and Vascular Institute, Pinehurst, NC, USA. We thank the patients who participated in this trial and their relatives; the clinical and research teams; and the nursing teams in our hospital for their work on the study. Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China.(Danqing Yu; Jianfang Luo; Zhonghan Ni;Peixia Huo; Qiong Ren; Yanyan Zhong;Liyun Wang; Jianxia He; Ruijuan Xiao; Yuanling Li; Xinrong Liu; Hui Wang; Mingyu Chen; Haiyan Xue;Xuxi Yang; Suqin Xie;). Department of Cardiology, The Second People's Hospital of Nanhai District, Guangdong General Hospital's Nanhai Hospital, Foshan, 528251, China (Wenfei He).

Funding

This study was supported by a grant from the National Science Foundation for Young Scientists of China (Grant No. 81800325) and Science and Technology Planning Project of Guangzhou City (201906010089, 201707010002), and China Youth Research Funding (2017-CCA-VG-018 and 2017-CCA-VG-02). The funders had no

role in the study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. The work was not funded by any industry sponsors. All authors agreed to submit the manuscript for publication.

Authors' contributions

P-C He designed and supervised the study; P-Y Chen, Y-H Liu, L Jiang, X-B Wei and W Guo performed the study, and C-Y Duan analyzed the data; Y-H Liu and other authors provided the samples and demographics from patients and controls; Y-H Liu and P-Y Chen wrote the manuscript; N Tan, J-Y Chen and P-C He revised the manuscript for important intellectual content.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval and consent to participate

The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital (NO. GDREC2016210H(R1)). Patients were included with a waiver of informed consent.

This article does not contain any studies with animals performed by any of the authors.

Data availability statement

Data source for this study is a retrospective public health database with data which all hospitalisations that were already anonymised. Data were confidentially stored once the original study published according to the original protocol, but data are available upon reasonable request.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-

commercial.

References

1.Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2016 Update. *Circulation*. 2016;133(4):e38-e360.

2.Amsterdam EA, Wenger NK, Brindis RG, Casey DJ, Ganiats TG, Holmes DJ, et al.
2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2014;130(25):e344-e426.
3.Milbrandt EB, Reade MC, Lee M, Shook SL, Angus DC, Kong L, et al. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. *Mol Med*. 2009;15(11-12):438-445.

4.Varenhorst C, Alstrom U, Braun OO, Storey RF, Mahaffey KW, Bertilsson M, et al. Causes of mortality with ticagrelor compared with clopidogrel in acute coronary syndromes. *Heart.* 2014;100(22):1762-1769.

5.Rizos M, Falagas ME, Tsiodras S, Betsou A, Foukas P, Michalopoulos A. Usual interstitial pneumonia associated with cytomegalovirus infection after percutaneous transluminal coronary angioplasty. *Eur J Clin Microbiol.* 2004;23(11):848-850.

6.Alfonso F. Fatal infection after rapamycin eluting coronary stent implantation. *Heart.* 2005;91(6):e51.

7.Ziakas A, Konstantinou V, Giannoglou G, Gemitzis K, Louridas G. Enoxaparininduced psoas hematoma complicated by Staphylococcus aureus infection after cardiac catheterization. *Thromb Res.* 2006;118(4):535-537.

8. Piccaro DOP, Gonzales V, Lopes RD, Schmidt MM, Garofallo S, Santos RP, et al.

 Serious infections among unselected patients with ST-elevation myocardial infarction treated with contemporary primary percutaneous coronary intervention. *Am Heart J.* 2016;181:52-59.

9.Truffa AA, Granger CB, White KR, Newby LK, Mehta RH, Hochman JS, et al. Serious infection after acute myocardial infarction: incidence, clinical features, and outcomes. *JACC Cardiovasc Interv.* 2012;5(7):769-776.

10.Keskin K, Çetinkal G, Sığırcı S, Yıldız SS, Çetin Ş, Gürdal A, et al. The impact of infection on mortality in octogenarians who were admitted due to acute coronary syndrome. *Arch Gerontol Geriat.* 2018;76:48-53.

11.Chen J, He P, Liu Y, Wei X, Jiang L, Guo W, et al. Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non–ST-Segment Elevation Acute Coronary Syndrome. *JAMA Intern Med.* 2019;179(2):186.

12.Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. *Eur Heart J*. 2016;37(3):267-315.

13. CDC-Center for Disease Control and Prevention. Identifying health care associated infections (HAI) for NHSN surveillance. Vol 2015:1-14.

14.Ndrepepa G, Schuster T, Hadamitzky M, Byrne RA, Mehilli J, Neumann FJ, et al. Validation of the Bleeding Academic Research Consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention. *Circulation.* 2012;125(11):1424-1431.

15.Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Predictors of hospital mortality in the global registry of acute coronary events. *Arch Intern Med.* 2003;163 (19):2345-2353.

16.Subherwal S, Bach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. *Circulation*. 2009;119(14):1873-1882.

17.Palmerini T, Genereux P, Caixeta A, Cristea E, Lansky A, Mehran R, et al. Prognostic value of the SYNTAX score in patients with acute coronary syndromes undergoing percutaneous coronary intervention: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage StrategY) trial. *J Am Coll Cardiol.* 2011;57(24):2389-2397.

18.Sabate M, Brugaletta S, Cequier A, Iniguez A, Serra A, Jimenez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. *Lancet*. 2016;387(10016):357-366.

19.Corrales-Medina VF, Musher DM, Shachkina S, Chirinos JA. Acute pneumonia and the cardiovascular system. *Lancet.* 2013;381(9865):496-505.

20.Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK, et al. Infections, atherosclerosis, and coronary heart disease. *Eur Heart J.* 2017;38(43): 3195-3201.

21.Hsu YC, Lin JT, Ho HJ, Kao YH, Huang YT, Hsiao NW, et al. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients. *Hepatology*. 2014;59(4):1293-1302.

22.Huang CY, Shih CM, Tsao NW, Lin YW, Shih CC, Chiang KH, et al. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression. *Am J Transl Res.* 2016;8(2):384-404.

23.Lei L, Li H, Yan F, Li Y, Xiao Y. Porphyromonas gingivalis lipopolysaccharide alters atherosclerotic-related gene expression in oxidized low-density-lipoprotein-induced macrophages and foam cells. *J Periodontal Res.* 2011;46(4):427-437.

24.Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. *Blood*. 2001;97(2):352-358.

25.Cangemi R, Casciaro M, Rossi E, Calvieri C, Bucci T, Calabrese CM, et al. Platelet activation is associated with myocardial infarction in patients with pneumonia. *J Am Coll Cardiol.* 2014;64(18):1917-1925.

26.Modica A, Karlsson F, Mooe T, Fakulteten M, Medicin IFRF, Universitet U, et al.. Platelet aggregation and aspirin non-responsiveness increase when an acute coronary syndrome is complicated by an infection. *J Thromb Haemost*.2007; 5(3):507-511.

27. Corrales-Medina VF, Musher DM, Wells GA, Chirinos JA, Chen L, Fine MJ. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. *Circulation.* 2012;125

(6):773-781.

to occurrence on the terms of term

Table legends Table 1. The baseline characteristics at index hospitalization Table 2. In-hospital and long-term clinical outcomes Table 51. Univariate and multivariable logistic for clinical outcomes by stratinfection subtype. Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical outcomes Figure 1. Univariate and multivariable logistic or Cox analysis for clinical outcomes Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure 52. Kaplan-Meier estimated event rates of all cause death or modeling Figure S3. Subgroup analysis of in-hospital all cause death	
 Table 1. The baseline characteristics at index hospitalization Table 2. In-hospital and long-term clinical outcomes Table S1. Univariate and multivariable logistic for clinical outcomes by stratinfection subtype. Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical or Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection at all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or moleceding Figure S3. Subgroup analysis of in-hospital all cause death 	
 Table 2. In-hospital and long-term clinical outcomes Table S1. Univariate and multivariable logistic for clinical outcomes by strainfection subtype. Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical outcomes Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection are all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or moleeding Figure S3. Subgroup analysis of in-hospital all cause death 	
 Table S1. Univariate and multivariable logistic for clinical outcomes by strainfection subtype. Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical or Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection and all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or moleceding Figure S3. Subgroup analysis of in-hospital all cause death 	
 infection subtype. Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical or Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and maje bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death 	ifying
Figure legends Figure 1. Univariate and multivariable logistic or Cox analysis for clinical or Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and maje bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death	
 Figure 1. Univariate and multivariable logistic or Cox analysis for clinical or Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death 	
 Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death 	tcomes
 bleeding (B) Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death 	r
 Figure S1. Time from hospital admission to the diagnosis of infection a all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death 	
all patients. Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death	nong
Figure S2. Kaplan-Meier estimated event rates of all cause death or m bleeding Figure S3. Subgroup analysis of in-hospital all cause death	
bleeding Figure S3. Subgroup analysis of in-hospital all cause death	ajor
Figure S3. Subgroup analysis of in-hospital all cause death	
Figure S4. Subgroup analysis of in-hospital major bleeding	
Figure S5. Subgroup analysis of in-hospital major adverse clinical events	
Figure S6. Subgroup analysis of in-hospital major bleeding based on differe	nt risk of
GRACE and CRUSADE adjusted by the model 1	
Figure S7. Subgroup analysis of in-hospital major bleeding based on differe	nt risk o
GRACE and CRUSADE adjusted by the model 2	
Figure S8. Subgroup analysis of in-hospital major adverse clinical events ba	sed on
different risk of GRACE and CRUSADE adjusted by the model 1 23	

Figure S9. Subgroup analysis of in-hospital major adverse clinical events based on different risk of GRACE and CRUSADE adjusted by the model 2

ν² i a

	All patients*			P	
	Uninfected	Infected	Total	<u>v</u> alue	
	(N=5009)	(N=206)	(N=5215)		
Demographics					
Age, y	63.61 ± 10.30	70.86 ± 9.20	63.90±10.36	<.00	
Age≥65 y	2380(47.5%)	157(76.2%)	2537(48.6%)	<.00	
Female	1229(24.5%)	54(26.2%)	1283(24.6%)	0.584	
Weight, kg	65.69±11.67	63.55 ± 12.22	65.60± 11.70	0.01	
Heart rate, bpm	73.81±10.91	77.75±15.62	73.96± 11.16	<.00	
Blood pressure, mmHg					
Systolic	133.37± 19.03	136.60± 22.99	133.50± 19.21	0.04	
Diastolic	76.99±11.27	75.81±12.56	76.95 ± 11.32	0.18	
Medical history and risk factors,					
n(%)					
Current Smoker	1306(26.1%)	53(25.7%)	1359(26.1%)	0.91	
Cardiac arrest	8(0.2%)	0(0.0%)	8(0.2%)	0.56	
Myocardial Infarction	784(15.7%)	53(25.7%)	837(16.0%)	<.00	
Percutaneous coronary intervention	940(18.8%)	35(17.0%)	975(18.7%)	0.52	
Coronary-artery bypass surgery	70(1.4%)	5(2.4%)	75(1.4%)	0.22	
Stroke	302(6.0%)	23(11.2%)	325(6.2%)	0.00	
Atrial Fibrillation	125(2.5%)	8(3.9%)	133(2.6%)	0.21	
Hypertension	3259(65.1%)	157(76.2%)	3416(65.5%)	<.00	
Dishatas mallitus	1500(20 10/)	06(16, 6%)	1605(30.8%	< 00	

	All patients*			Р
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	vulue
IABP	44(0.9%)	30(14.6%)	74(1.4%)	<.001
CRUSAD	42.12 ± 12.04	40.66 ± 13.19	$^{42.06\pm}_{12.09}$	0.097
GRACE	124.54± 27.67	143.75± 29.82	125.17± 27.94	<.001
Type of disease, n(%)				
NSTEMI	3121(62.3%)	131(63.6%)	3252(62.4%)	0.709
Unstable angina	1888(37.7%)	75(36.4%)	1963(37.6%)	
Heart Failure, n(%)	489(9.8%)	66(32.0%)	555(10.6%)	<.001
LVEF, %	61.79 ± 10.77	255.99±13.71	61.54± 10.98	<.001
eGFR, mL/min/1.73m ²	81.64±24.99	0.85 ± 28.14	4 ^{80.81±} 25.45	<.001
eGFR≤60, n(%)	851(17.0%)	101(49.0%)	952(18.3%)	<.001
Serum creatinine, µmol/dL	1.05 ± 0.69	1.55 ± 1.28	1.07 ± 0.73	<.001
Hematocrit, g/L	0.39 ± 0.05	0.35 ± 0.06	0.39 ± 0.05	<.001
Anemia, n(%)	1605(32.0%)	127(61.7%)	1732(33.2%)	<.001
Cardiac biomarker positive, n(%)	2984(62.3%)	120(61.5%)	3104(62.2%)	0.836
In hospital medication, n(%)				
Dual antiplatelet therapy	4845(96.7%)	194(94.2%)	5039(96.6%)	0.047
Statin	4909(98.0%)	202(98.1%)	5074(97.3%)	0.956
ACE inhibitor or ARB	3939(78.6%)	170(82.5%)	4109(78.8%)	0.181
Calcium-channel blocker	1066(21.3%)	72(35.0%)	1138(21.8%)	<.001
β-blocker	4245(84.7%)	165(80.1%)	4410(84.6%)	0.070
Procedure characteristics, n(%)				

	All patients*		Р	
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	
Radial access	4470(89.2%)	154(74.8%)	4624(88.7%)	<.001
Coronary anatomy				
Any left main	690(13.8%)	49(23.8%)	739(14.2%)	<.001
Multi-vessel disease	3072(61.3%)	127(61.7%)	3199(61.3%)	
Others	1247(24.9%)	30(14.6%)	1277(24.5%)	
Treated vessel				
Any left main	480(9.6%)	35(17.0%)	515(9.9%)	0.002
Multi-vessel	1764(35.2%)	66(32.0%)	1830(35.1%	
Others	2765(55.2%)	105(51.0%)) 2870(55.0%)	
Stent type				
Drug eluting stent	5004(99.9%)	206(100.0%)	5210(99.9%)	0.902
Bare metal stent	2(0.0%)	0(0.0%)	2(0.0%)	
PTCA or aspiration only	3(0.1%)	0(0.0%)	3(0.1%)	
Number of stents	2(1~3)	2(1~3)	2(1~3)	0.048
Total length of stents	45(27~71)	48 (31~76)	45(27~71)	0.053
Thrombus aspiration	61(1.2%)	5(2.4%)	66(1.3%)	0.128
Time to procedure	1(1~2)	2(1~6)	1(1~2)	<.001
In 24 hours	2817(56.2%)	81(39.3%)	2898(55.6%	<.001
24~72 hours	1505(30.0%)	47(22.8%)) 1552(29.8%	
> 72 hours	687(13.7%)	78(37.9%)	765(14.7%)	
In-hospital days	4(3~6)	11(7~18)	4(3~6)	<.001

*Abbreviations: IABP=intra-aortic balloon pump; GRACE=Global Registry of Acute

Coronary Events; CRUSADE=Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines; NSTEMI=Non-ST elevation myocardial infarction; LVEF=left ventricular ejection fraction; eGFR=Estimate glomerular filtration rate; PTCA=Percutaneous transluminal coronary angioplasty. ACE=angiostensin-converting enzyme; ARB=angiotensin receptor blocker.

Outcomes	Uninfected	Infected	P value
	(N=5009)	(N=206)	
In-hospital outcomes			
Death*	10(0.2%)	9(4.4%)	<.001
Myocardial infarction	17(0.3%)	1(0.5%)	0.726
Death or myocardial infarction	27(0.5%)	10(4.9%)	<.001
Major bleeding	62(1.2%)	34(16.5%)	<.001
Death or Myocardial infarction or major bleeding	84(1.7%)	44(21.4%)	<.001
Long-term outcomes			
30 days			
Death	17(0.3%)	10(4.9%)	<.001
Major bleeding	61(1.2%)	31(15.0%)	<.001
Death or major bleeding	74(1.5%)	37(18.0%)	<.001
One year			
Death	93(1.9%)	35(17.0%)	<.001
Major bleeding	75(1.5%)	34(16.5%)	<.001
Death or major bleeding	161(3.2%)	56(27.2%)	< 001

Outcomes	Uninfected	Infected	P value
	(N=5009)	(N=206)	
Death	346(6.9%)	61(29.6%)	<.001
Major bleeding	111(2.2%)	36(17.5%)	<.001
Death or major bleeding	437(8.7%)	81(39.3%)	<.001

*All cause death;

for oper teries only

P Value

<.001

0.958 <.001 <.001

<.001

<.001 <.001

<.001

<.001 0.873 0.001

<.001 <.001

<.001

<.001 <.001

Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and major bleeding (B)

Supplementary Appendix 1
BMJ Open

Table S1. Univariate and multivariable logistic for clinical outcomes by stratifying infection subtype.
Figure S1. Time from hospital admission to the diagnosis of infection among all patients.
Figure S2. Kaplan-Meier estimated event rates of all cause death or major bleeding
Figure S3. Subgroup analysis of in-hospital all cause death
Figure S4. Subgroup analysis of in-hospital major bleeding
Figure S5. Subgroup analysis of in-hospital major adverse clinical events
Figure S6. Subgroup analysis of in-hospital major bleeding based on different risk of GRACE and CRUSADE adjusted by the model 1
Figure S7. Subgroup analysis of in-hospital major bleeding based on different risk of GRACE

and CRUSADE adjusted by the model 2

Figure S8. Subgroup analysis of in-hospital major adverse clinical events based on different risk of GRACE and CRUSADE adjusted by the model 1

Figure S9. Subgroup analysis of in-hospital major adverse clinical events based on different risk of GRACE and CRUSADE adjusted by the model 2

Table S1 Univariate and multivariable logistic for clinical outcomes by stratifying infection subtype.

Outcomes		Inivariate ana	lysis	Mu	Multivariable analysis			
(Compare with uninfected patients)	OR	95%CI	P value	OR	95%CI	Pvalue		
Model 1								
In hospital								
Death								
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	8.56	2.06~35.57	0.003		
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	11.51	2.15~61.49	0.004		
Urinary tract infection	31.24	3.78~258.58	0.001	21.59	2.32~200.48	0.007		
Other infection	29.99	8.01~112.27	<.001	23.14	5.59~95.86	<.001		
Major Bleeding								
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	18.13	9.92~33.16	<.001		
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	9.04	3.63~22.49	<.001		
Urinary tract infection	5.16	0.67~39.50	0.114	3.10	0.39~24.51	0.283		
Other infection	4.95	1.50~16.31	0.009	3.25	0.95~11.13	0.061		
Death or MI or Major Bleeding								
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	14.23	8.07~25.10	<.001		
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	11.28	5.14~24.76	<.001		
Urinary tract infection	3.76	0.49~28.65	0.202	2.44	0.31~19.04	0.396		
Other infection	6.26	2.43~16.13	<.001	4.51	1.69~12.01	0.003		
Follow up								
Death								
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.06	1.39~3.06	<.001		
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	2.57	1.56~4.24	<.001		
Urinary tract infection	3.66	1.37~9.82	0.010	2.38	0.88~6.39	0.086		
Other infection	2.62	1.44~4.79	0.002	1.45	0.79~2.66	0.232		
Major Bleeding								
Community acquired pulmonary infections	14.29	9.26~22.06	<.001	8.86	5.49~14.27	<.001		

Outcomes	Ţ	J nivariate ana	lysis	Multivariable analysis			
(Compare with uninfected patients)	OR	95%CI	P valu	e OR	95%CI	Pvalu	
Hospital acquired pulmonary infections	7.08	3.30~15.20	<.001	4.16	1.87~9.27	<.001	
Urinary tract infection	2.54	0.35~18.13	0.354	1.66	0.23~11.98	0.616	
Other infection	2.49	0.79~7.83	0.119	1.83	0.57~5.85	0.307	
Death or Major Bleeding							
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	2.85	2.05~3.97	<.001	
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	2.93	1.87~4.61	<.001	
Urinary tract infection	2.85	1.07~7.64	0.037	1.78	0.66~4.78	0.253	
Other infection	2.62	1.51~4.55	0.001	1.60	0.92~2.80	0.099	
Model 2							
In hospital							
Death							
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	2.01	0.37~10.86	0.418	
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	6.48	0.92~45.66	0.061	
Urinary tract infection	31.24	3.78~258.58	0.001	14.68	0.96~223.51	0.053	
Other infection	29.99	8.01~112.27	<.001	5.02	0.98~25.62	0.052	
Major Bleeding							
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	11.91	6.10~23.28	<.001	
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	7.47	2.80~19.90	<.001	
Urinary tract infection	5.16	0.67~39.50	0.114	1.92	0.15~25.23	0.619	
Other infection	4.95	1.50~16.31	0.009	1.05	0.26~4.23	0.942	
Death or MI or Major Bleeding							
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	9.69	5.12~18.37	<.001	
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	10.00	4.33~23.12	<.001	
Urinary tract infection	3.76	0.49~28.65	0.202	1.59	0.13~19.16	0.713	
Other infection	6.26	2.43~16.13	<.001	1.71	0.54~5.35	0.360	
Follow up							
Death							
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.70	1.81~4.03	<.001	
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	3.56	2.15~5.90	<.001	

Outcomes	τ	J nivariate an a	alysis	Mu	ıltivariable ar	nalysis	
(Compare with uninfected patients)	OR	OR 95%CI		e OR	95%CI	Pvalue	
Urinary tract infection	3.66	1.37~9.82	0.010	2.90	1.08~7.80	0.034	
Other infection	2.62	1.44~4.79	0.002	1.32	0.71~2.44	0.376	
Major Bleeding	14.29	9.26~22.06	<.001	6.30	3.79~10.49	<.001	
Community acquired pulmonary infections	57.08	3.30~15.20	<.001	3.51	1.57~7.84	0.002	
Hospital acquired pulmonary infections	2.54	0.35~18.13	0.354	1.42	0.19~10.39	0.731	
Urinary tract infection	2.49	0.79~7.83	0.119	1.01	0.31~3.29	0.981	
Other infection							
Death or Major Bleeding							
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	3.55	2.55~4.94	<.001	
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	3.46	2.20~5.45	<.001	
Urinary tract infection	2.85	1.07~7.64	0.037	1.96	0.73~5.28	0.181	
Other infection	2.62	1.51~4.55	0.001	1.38	0.78~2.41	0.266	

Model 1 included age, gender, current smokers, heart failure, anemia, type of disease, estimate glomerular filtration rate.

Model 2 included diabetes mellitus, hypertension, prior myocardial infarction, prior stroke, radial access, chronic kidney disease, intra-aortic balloon pump.

BMJ Open

BMJ Open

Figure S2. Kaplan-Meier estimated event rates of all cause death or major bleeding

BMJ Open

Subgroup	Uninfected o of events/no o	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Mul Interaction* OR	ltivariable Analysis (95%CI)		P Value #	P Value for Interaction*
All population	82/5009	40/206		14.48 (9.62~21.78)	<.001		; -	9.63 (6.10~15.22)	<.001	
Age,y						0.314				0.270
<65	28/2629	8/49	· · · · · · · · · · · · · · · · · · ·	18.13 (7.80~42.17)	<.001			13.80 (5.51~34.56)	<.001	
82	54/2380	32/157		11.03 (6.87~17.69)	<.001			9.49 (5.63~15.99)	<.001	
Gender						0.017				0.011
Male	52/3780	33/152	-	19.88 (12.39~31.90)	<.001			13.27 (7.81~22.54)	<.001	
Female	30/1229	7/54		5.95 (2.49~14.25)	<.001			3.91 (1.48~10.33)	0.006	
Surrent Smoker	00/0700	00/450		12 02 (0 02 01 00)	004	0.652	1	0.26 (5.62, 15.50)	004	0.579
NO	12/1206	32/153		17.60 (6.09, 44.90)	<.001			9.30 (3.02~13.39) 13 75 (4.65, 40.60)	<.001	
Tes	13/1300	0/00		17.03 (0.30~44.00)	<.001	0.021		13.73 (4.03~40.03)	<.001	0.969
No	55/3500	20/110		13 92 (8 01~24 20)	~ 001	0.551	_	10 44 (5 61~19 41)	< 001	0.000
Yes	27/1509	20/96		14.44 (7.75~26.92)	<.001			9.78 (4.89~19.53)	<.001	
ype of disease	21,1000	_0,00				0.013	1	.,		0.015
UA	32/1888	7/75		5.97 (2.54~14.01)	<.001	-	·	3.74 (1.48~9.48)	0.005	
NSTEMI	50/3121	33/131		20.68 (12.75~33.54)	<.001			14.20 (8.21~24.56)	<.001	
leart Failure						0.575				0.651
No	66/4520	23/140	-	13.27 (7.98~22.07)	<.001		-	9.96 (5.74~17.29)	<.001	
Yes	16/489	17/66		10.26 (4.88~21.57)	<.001			10.24 (4.48~23.41)	<.001	
Anemia	50/040	10/70	i _	40.00 (0.07.00.01)		0.496	<u> </u>	44 47 (5 04 00 05)		0.418
NO	52/3404 20/1605	16/79		12 23 (6 00-21 60)	<.001			11.47 (5.91~22.25) 8 98 (4 79-16 96)	<.001	
GFR ml /min/1 73r	n2	24/12/	_	12.23 (0.30~21.09)	<.001	0.699	. —	0.00 (4.75~10.00)	<.001	0 706
	58/4158	16/105		12.71 (7.03~22.97)	<.001	0.035		10.52 (5.65~19.56)	<.001	0.700
<60	24/851	24/101	_	10.74 (5.82~19.81)	<.001			9.76 (4.94~19.29)	<.001	
			riter	(ritten			
			0.5 2 10				15 2 10			
		Enver le	fected Equaritati	fected		Equor Infonto	d Eavorthinf	acted		
		rav0f lf	ravor Unir			Pavor infecte	a ravor Unini	oulou		

Figure S6. Subgroup analysis of in-hospital major bleeding based on different risk of GRACE and CRUSADE adjusted by the model 1

Figure S7. Subgroup analysis of in-hospital major bleeding based on different risk of GRACE and CRUSADE adjusted by the model 2

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S8. Subgroup analysis of in-hospital major adverse clinical events based on different risk

of GRACE and CRUSADE adjusted by the model 1

Figure S9. Subgroup analysis of in-hospital major adverse clinical events based on different risk

of GRACE and CRUSADE adjusted by the model 2

	Subgroup	Uninfecte	dInfected	Univariate Analysis		P Value	P Value for M	ultivariable Analys	is	P Value	P Value for
	no of	events/no o	of patients	OR(95%CI)		#	Interaction*O	R(95%CI)		#	Interaction*
	All population	82/5009	40/206	-	14.48 (9.62~21.78)	<.001		-#-	6.35 (3.86~10.47)	<.001	
	CRUSAD										
	Low rX&	9/791	10/40	_ _	28.96 (10.96~76.52)	<.001	0.885		9.86 (3.01~32.34)	<.001	0.987
	Moderate r¥& 🖀 🗊 🗊 🗊	21/1596	11/62		16.18 (7.41~35.32)	<.001	0.149		5.79 (2.14~15.68)	0.001	0.166
	High risk (>40)	50/2471	17/96		10.42 (5.75~18.87)	<.001			6.15 (3.01~12.54)	<.001	
	GRACE										
	Low r¥&∰22®®	9/1269	1/15		10.00 (1.19~84.32)	0.034	0.304	→	13.20 (1.36~128.22)	0.026	0.085
	Moderate r 🗙 🏀 🗂 🖉 🗐 🖄	0 19/1921	8/57		16.34 (6.82~39.14)	<.001	0.987		15.81 (6.46~38.70)	<.001	0.701
	High risk (>140)	23/1141	8/74		5.89 (2.54~13.68)	<.001		j —	5.50 (2.20~13.74)	<.001	
				rittiti			I	irm.			
			Favor Infe	0.5 2 10 80 Incted Favor	r Uninfected		0. Favor Infected	5 2 10 80 Fav	or Uninfected		
#:P valu	e for group; *P value for Interaction	on of group wit	h subgroups	5							

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item		Page No
	No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	3-4
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	NA
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-8 &
		and effect modifiers. Give diagnostic criteria, if applicable	supplement
Data sources/	8*	For each variable of interest, give sources of data and details of methods	supplement
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9 &
		(c) Explain how missing data were addressed	supplement
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	9-10
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	9-10
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	

BMJ Open

Outcome data		15* Report numbers of outcome events or summary measures over time	9-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	10-11 &
		(b) Report category boundaries when continuous variables were categorized	supplement
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	11 &
		sensitivity analyses	supplement
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	14
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14-15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15
Other information	1		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15-16
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038551.R1
Article Type:	Original research
Date Submitted by the Author:	10-Jun-2020
Complete List of Authors:	Chen, Peng-yuan; Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Department of Cardiology Liu, Yuanhui; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China. Duan, Chongyang; School of Public Health, Southern Medical University, Guangzhou, Biostatistics Jiang, Lei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Wei, Xuebiao; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Reople's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Chen, Jiyan; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Tan, Ning; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology He, Pengcheng; Guangdong Cardiovascular Institute, Department of Cardiology; Southern Medical University
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Infectious diseases
Keywords:	Coronary heart disease < CARDIOLOGY, Coronary intervention <

	CARDIOLOGY, Cardiology < INTERNAL MEDICINE
0	SCHOLARONE" Manuscripts
1	
3	
+ 5	
7	
3	
)	
2	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

Original article Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China Pengyuan Chen^{1*}, MD; Yuanhui Liu^{2,3*}, MD, PhD; ChongYang Duan^{4*}, MD; Lei

Jiang², MD, PhD; XueBiao Wei², MD; Wei Guo², MD, PhD; JiYan Chen², MD, PhD; Ning Tan^{2,3}, MD, PhD; PengCheng He^{2,3}, MD, PhD;

Running Title: Infection of NSTE-ACS and PCI

- Department of Cardiology, Guangdong General Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Foshan 528000, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China

*These authors were considered equally to the work.

Address for corresponding author: PengCheng He; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.

Tel: +86-20-83819161 Fax: +86-20-83824369; gdhpc100@126.com

Words count: 2278 words

for occite teries only

Abstract

Objectives: we aimed to describe the association between in-hospital infection and the prognosis among non-ST-elevation acute coronary syndrome (NSTE-ACS) patients received percutaneous coronary intervention (PCI).

Design: This observational cohort originated from the database for NSTE-ACS underwent percutaneous coronary intervention from January 1, 2010, to December 31,

2014.

Setting: five centres from south China

Participants: This multicentre observational cohort study consecutively included 8197 NSTE-ACS patients who received PCI. Only patients with adequate information to diagnose or rule out infection were included. Patients were excluded if they were diagnosed with a malignant tumor, pregnant or cardiogenic shock at index date. Patients were grouped by whether they had in-hospital infection or not.

Primary and secondary outcome measures: The primary outcome was all-cause death and major bleeding during hospitalization. The secondary outcomes included all-cause death and major bleeding during follow-up and in-hospital myocardial infarction. **Results:** Of the 5215 patients, 206 (3.95%) occurred infection. Patients with infection had a higher rate of in-hospital all-cause death and major bleeding (4.4% vs. 0.2%, 16.5% vs. 1.2% respectively, P<.001). After adjusting for confounders, infection remained independently associated with in-hospital and long-term all-cause death (OR, 13.19, 95% CI: 4.59-37.87; HR, 2.03, 95% CI: 1.52-2.71; P<.001) and major bleeding (OR, 10.24; 95% CI: 6.17-16.98; HR, 5.31, 95% CI: 3.49-8.08; P<.001). Subgroup analysis

confirmed these results.

Conclusions: The incidence of infection is low in hospitalization, but it is associated with worse in-hospital and long-term outcomes.

Key Words: Non-ST-elevation acute coronary syndrome; Percutaneous coronary

intervention; Infection; Outcomes.

for occurrent only

Strengths and limitations of this study

- We widely included NSTE-ACS patients who received PCI treatment from China.
- The characteristics of infection was detailed reported which included the time and infection type.
- Validation was done in different subgroups and variables which is our best effort based on the database.
- The potential bias may be neglected because of the study design.
- The etiology test of the infection is absent which limited the advanced

exploration of the mechanism.

Introduction

The incidence of non-ST-elevation acute coronary syndrome (NSTE-ACS) is increasing, and approximately 80% of all ACS patients are NSTE¹. Despite that there are more comorbidities in patients with ST-segment elevation myocardial infarction (STEMI), the NSTE-ACS patients still suffer high rate of cardiovascular events both in elder and whole population.^{1, 2}. Identification of patients at risk of worse outcomes could contribute to targeted intervention, help direct care, reduce the incidence of subsequent events, and thus optimize resource utilization.

Infection can activate platelets and the coagulation system, resulting in the prothrombotic environment^{3, 4}. Moreover, infection is an uncommon but important comorbidity in patients undergoing percutaneous coronary intervention (PCI)⁵⁻⁷. Although the reported incidence is less than 4%, infection has been proven to be associated with an increased risk of cardiovascular events among patients with STEMI^{8, 9}. However, information about infection in patients with NSTE-ACS remains scanty. Only one study of 174 octogenarian patients with ACS evaluated the impact of infection on clinical outcomes¹⁰. Thus, we aimed to assess the incidence of infection and its association with short- and long-term clinical outcomes in NSTE-ACS patients undergoing PCI.

Methods

Study design and patients

This observational cohort study consisted of consecutive NSTE-ACS patients undergoing PCI from Jan 2010 to Dec 2014 at five hospitals in China. Only patients with adequate information to diagnose or rule out infection were included. Patients were

BMJ Open

excluded if they were diagnosed with a malignant tumor before the index date, pregnant or presenting with cardiogenic shock. The method to search and identify appropriate NSTE-ACS patients has been outlined previously¹¹. The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital, with a waiver of informed consent. The study was conducted in accordance with the Declaration of Helsinki.

Data collection and procedures

Data on demographics, patient history, laboratory tests, examinations, and medication history were collected by investigators in the first interview after admission. The medicines and PCI procedures were applied according to international guidelines and clinical evidence¹².

Infection during the index hospitalization was diagnosed according to the presence of any symptoms, signs and/or laboratory indicating infection. Once confirmed by the infection control doctors service, appropriate antibiotics were prescribed⁸. Infection was classified as pulmonary, urinary tract infection (UTI) or others (including nonpulmonary/ non-urinary sepsis and cellulitis), based on the clinical records during hospitalization. Community-acquired pulmonary infection was defined by a diagnosis of infection within the first 72 hours of hospital admission, and hospital-acquired pulmonary infection was defined as those occurring after the first 72 hours and were diagnosed in accordance with the criteria established by the Centers for Disease Control and Prevention¹³.

Clinical outcomes and follow up

The primary outcome was in-hospital all-cause death and in-hospital major bleeding as

BMJ Open

defined by the Bleeding Academic Research Consortium definition (grades 3-5)¹⁴. Secondary outcomes were: (1) major adverse clinical events (MACE), consisting of allcause death, myocardial infarction, or major bleeding during hospitalization; and (2) all-cause death or major bleeding during follow-up.

All patients were followed-up by trained nurses via telephone interview or clinic visits from Nov 2015 to Dec 2016. Relevant information was also collected from the residence registration system and from the clinical records of the patients who were readmitted. The details of clinical events and follow-up have been previously described¹¹. All adverse clinical events were evaluated by an independent clinical events committee that was masked to the infection details.

Statistical analysis

All patients were divided into groups with or without infections. Continuous variables with a normal distribution are presented as the mean \pm SD, and those with an asymmetric distribution are presented as the median and interquartile range (Q25-Q75). Student's t test or Wilcoxon rank-sum test were used to compare the continuous variables. Categorical variables are presented as frequencies and were compared by the Fisher exact test or chi-square test. Univariate and multivariable analyses were performed to evaluate the relationship between infection and clinical outcomes. Variables that were significant in the univariate analysis or clinically important were included in the multivariable models. Considering the low incidence of adverse outcomes but potential high incidence of confounders, two models were developed for each multivariable analysis. The first model (model 1) included infection, age, anemia,

BMJ Open

type of disease (unstable angina and non-ST-elevation acute myocardial infarction), gender, current smokers, heart failure, and estimate glomerular filtration rate (eGFR). The second model (model 2) included radial access, cardiac biomarker positive, time to procedure, treated multi-vessel, diabetes mellitus, hypertension, prior myocardial infarction, and prior stroke. We performed subgroup analyses by older age, gender, current smokers, diabetes mellitus, types of disease, heart failure, anemia and chronic kidney disease. Analysis based on different types of infections was reported. We also introduced the GRACE (Global Registry of Acute Coronary Events)¹⁵ and CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines) score¹⁶ and compared the infection outcomes among different GRACE or CRUSADE risk groups (low, medium, or high risk). All data analyses were performed with SAS (version 9.4, SAS Institute, 210 Cary, North Carolina, USA). A two-sided P<0.05 was considered significant.

Propensity score analyses were conducted to test the robustness of the results. All factors listed in **Table 1** were considered in the propensity score model development. The heterogeneity analysis between the centers was conducted using meta-analysis methods.

Patient and public involvement

There was no patient or public involvement in any step of this study.

Results

Baseline characteristic

From January 1, 2010, to December 31, 2014, a total of 8197 consecutive NSTE-ACS patients underwent PCI at the 5 hospitals in China. Of the 5215 patients who met the final criteria, 206 (3.95%) received a diagnosis of infection, and 183 (89%) of them occurred within one week after hospital admission (**Figure S1**). **Table 1** shows the baseline characteristics of patients with and without infection. The patients with infection were older and had a low body weight. These patients were more likely to have a history of myocardial infarction, stroke, hypertension and diabetes, and more often had a diagnosis of heart failure, anemia and the use of intra-aortic balloon pump and dual antiplatelet therapy. Patients with infection had lower left ventricular ejection fraction, eGFR but higher GRACE risk scores compared with those without infection. However, the CRUSADE risk score was similar between the two groups.

In-hospital clinical outcomes

Patients with infection had a higher rate of in-hospital all-cause death (4.4% vs. 0.2%), major bleeding (16.5% vs. 1.2%), and MACE (21.4% vs. 1.7%) compared with patients without infection (all P<.001) (Table 2). However, the rate of in-hospital myocardial infarction was similar between the two groups (P=0.726).

Univariable analyses showed that infection was a predictor for in-hospital all cause death (odd ratios [OR] 22.96; 95% confidence interval [CI], 9.23-57.14, P <.001), major bleeding (OR, 16.30; 95% CI, 10.42-25.50; P<.001), and MACE (OR, 14.48; 95%CI, 9.62-21.78; P<.001). After adjusting for other confounding variables, multivariable logistic regression showed that infection was significantly and independently related to the risk of the above outcomes (**Figure 1**).

Long-term clinical outcomes

At a median follow-up of 3.2 years, Kaplan-Meier analysis revealed that patients with in-hospital infection had a higher risk of long-term death, major bleeding, and death or major bleeding compared with those without in-hospital infection (P<.001) (**Table 2**, **Figure 2 and Figure S2**). Multivariable cox analyses demonstrated that infection was independently associated with long-term adverse outcomes even after adjusting for other potential risk factors (all cause death: hazard ratio [HR], 2.03; 95% CI, 1.52-2.71; P<.001; major bleeding: HR, 5.31; 95% CI, 3.49-8.08; P<.001; death or major bleeding: HR, 2.47; 95% CI, 1.92-3.19; P<.001). The similar result was reported in the other adjusted model (**Figure 1**).

Subgroup analyses

Subgroup analyses similarly revealed that infection was independently related to the inhospital events (all-cause death, major bleeding, or MACE) according to different clinical status. The unadjusted and adjusted ORs for infection are presented in **Figure S3**, **Figure S4**, **and Figure S5**. Analysis according to the infection subtypes indicated that pulmonary infection other than UTI was independently associated with poor inhospital and follow up clinical outcomes. However, the UTI was independently associated with all-cause death (**Table S1**).

Propensity Score Analyses

We matched 740 patients with or without infection in a 1:4 ratio (**Table S2 and Figure S6**). The result showed a higher rate of major bleeding during the hospital stay (OR, 18; 95%CI, 2.40-134.8, P=0.015), and a similar result was found at follow-up (HR,

5.33;95%CI, 1.55-18.30, P=0.007), but matched results showed an absence of a significant difference in all-cause death (in-hospital: OR, 4.01; 95%CI, 0.25-64.30; follow-up: OR, 2; 95%CI, 0.97-4.12)(**Table S3**).

Discussion

This study demonstrates that infection was uncommon in a contemporary cohort of NSTE-ACS patients who underwent PCI. But still the in-hospital infection among NSTE-ACS patients received PCI is significant associated with higher risk of inhospital and long-term clinical prognoses, such as all-cause death, major bleeding as well as the MACE.

The prevalence of infection in our study is similar to those results for the STEMI population. Data from 5,745 STEMI patients enrolled in the APEX-AMI trial demonstrated that the prevalence of serious infection was 2.4%, and that infection was associated with higher 90-day mortality (29%)⁹. Also, another study of 1,486 STEMI patients reported the prevalence of serious infection at 3.9% and the 30-day mortality was up to 53% in these patients⁸. The conclusions for these 2 studies paralleled our conclusion: infection is uncommon but associated with worse clinical outcomes. A recent retrospective cohort analyses of 174 octogenarians with ACS, for whom the patients with infection had a higher in-hospital, 30-day and long-term mortality than patients without infection¹⁰. However, that study was confined to patients older than 85 years who were admitted to the coronary care unit, the different ACS types were never specified, and the relatively liberal use of bare metal stents does not conform with the contemporary more liberal use of drug eluting stents^{17, 18}.

BMJ Open

To our acknowledge, this study is the first to demonstrate the role of infection on patients with NSTE-ACS. Although the prevalence of infections was similar to the previous studies of STEMI^{8, 9}, the 30 and 90-day death rates were lower than those studies. These low rates might be the result of patient characteristics of our study with less patients requiring intra-aortic balloon pump support, mechanical ventilation and transfusion. However, our conclusions paralleled: patients with infections were associated with worse outcomes. This association remained consistent after the adjustment of other important potential risk factors for outcomes such as radial access, cardiac biomarker positive, time to revascularization, and treated multi-vessel.

Although infections had a negative impact on patients with NSTE-ACS, the underlying pathophysiologic mechanism remains unclear. Corrales-Medina et al.¹⁹ suggested that infection increased the mortality of patients who underwent elective PCI due to the change in plaques triggered by acute inflammatory reactions. Indeed, infection has been implicated as a factor contributing to initiation, progression and rupture of an atherosclerotic plaque²⁰. Infectious vectors have been reported to induce the expression of adhesion molecules such as heat shock protein 60 and monocyte chemoattractant protein-1 on endothelial cells, which can activate the endothelium and the formation of a lipid core²¹⁻²⁴. Additionally, the SIXTUS study group²⁵ demonstrated that platelet activation and TxB₂ overproduction are related to infections via Toll-like receptor 4. Moreover, MODICA et al.²⁶ reported that aspirin non-responsiveness was often observed in patients with pneumonia. Also, increased coagulation activity has been observed in pneumonia³. Therefore, infection can activate platelets and the

BMJ Open

coagulation system, which plays a critical role in deteriorating outcomes in patients with ACS. In contrast to previous STEMI reports^{8, 9}, we did not find a significant association of infection with myocardial infarction due to the low incidence of myocardial infarction in our study. However, our results were similar to previous studies that reported major bleeding was more frequent in patients with infection. Although the PLATelet inhibition and patient Outcomes (PLATO) trial demonstrated that ticagrelor, a more potent and consistent platelet P2Y₁₂ inhibitor, was associated with significantly fewer pulmonary infections and death related to infection than clopidogrel, the incidence of bleeding in patients with infection in that study was not reported⁴. Because of dysfunction of platelets and the coagulation system, patients with infection might be at higher risk of ischemia and bleeding. Therefore, more attention should be paid to patients with infection when antithrombotic therapy was determined. Finally, infection can also result in worse outcomes for NSTE-ACS patients through increasing catecholamines and potentially adverse hemodynamic effects, such as coronary vasoconstriction and increased myocardial metabolic demands²⁷.

Although UTI was associated to some degree with in-hospital all-cause death, it was not associated with other worse outcomes. One reason why pulmonary infection is related to these worse clinical outcomes, while UTI is not, could be the lower prevalence of UTI comparing to pulmonary infection (0.3% vs. 2.6%). The prevalence of UTI was lower in our study compared with STEMI patients (0.3% vs. 7%)⁸. Therefore, when the population sample size was expanded, UTI would be similar to the pulmonary infection related to the worse clinical outcomes.

Limitations

The study had several limitations. First, as a retrospective study a causal relationship between the infection and outcomes could not be determined. Second, despite adjustment for important confounders, we could not completely eliminate all the potential bias including selection bias. Third, although the infections were not centrally adjudicated, the infection was confirmed by the infection control services who were authorized to approve the use of antibiotic.

Conclusions

Infection is an uncommon complication in patients with NSTE-ACS undergoing PCI but is nonetheless independently associated with worse in-hospital and long-term outcomes. Future studies are indicated to identify NSTE-ACS patients at risk of infection which could then contribute to targeted intervention, help direct care, reduce the incidence of subsequent adverse events, and thus optimize resource utilization.

Acknowledgements

The authors appreciate the efforts of revising the manuscript, Scott J. Denardo, MD, Reid Heart Center/First Health of Carolinas Cardiac and Vascular Institute, Pinehurst, NC, USA. We thank the patients who participated in this trial and their relatives; the clinical and research teams; and the nursing teams in our hospital for their work on the study. Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China.(Danqing Yu; Jianfang Luo; Zhonghan Ni;Peixia Huo; Qiong Ren; Yanyan Zhong;Liyun Wang; Jianxia He; Ruijuan Xiao; Yuanling Li; Xinrong Liu; Hui Wang; Mingyu Chen; Haiyan Xue;Xuxi Yang; Suqin Xie;). Department of Cardiology, The Second People's Hospital of Nanhai District, Guangdong General Hospital's Nanhai Hospital, Foshan, 528251, China (Wenfei He).

Funding

 This study was supported by a grant from the Outstanding Young Talent Program of Guangdong Provincial People's Hospital (grant number: KJ012019084), National Science Foundation for Young Scientists of China (Grant No. 81800325) and Science and Technology Planning Project of Guangzhou City (201906010089, 201707010002), and China Youth Research Funding (2017-CCA-VG-02). The funders had no role in the study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. The work was not funded by any industry sponsors. All authors agreed to submit the manuscript for publication.

Authors' contributions

P-C He designed and supervised the study; P-Y Chen, Y-H Liu, L Jiang, X-B Wei and W Guo performed the study, and C-Y Duan analyzed the data; Y-H Liu and other authors provided the samples and demographics from patients and controls; Y-H Liu and P-Y Chen wrote the manuscript; N Tan, J-Y Chen and P-C He revised the manuscript for important intellectual content.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval and consent to participate

The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital (NO. GDREC2016210H(R1)). Patients were included with a waiver of informed consent.

This article does not contain any studies with animals performed by any of the authors.

Data availability statement

Data source for this study is a retrospective public health database with data which all hospitalizations that were already anonymized. Data were confidentially stored once the original study published according to the original protocol, but data are available upon reasonable request.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is noncommercial.

References

1.Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update. *Circulation*. 2019;139(10):e56-e528.

 Morici N, Savonitto S, Ferri L A, Grosseto D, Bossi I, Sganzerla P, et al. Outcomes of Elderly Patients with ST-Elevation or Non-ST-Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention[J]. *The American Journal of Medicine*.
 2019; 132(2): 209-216.

3.Milbrandt EB, Reade MC, Lee M, Shook SL, Angus DC, Kong L, et al. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. *Mol Med.* 2009;15(11-12):438-445.

4.Varenhorst C, Alstrom U, Braun OO, Storey RF, Mahaffey KW, Bertilsson M, et al. Causes of mortality with ticagrelor compared with clopidogrel in acute coronary syndromes. *Heart.* 2014;100(22):1762-1769.

5.Rizos M, Falagas ME, Tsiodras S, Betsou A, Foukas P, Michalopoulos A. Usual interstitial pneumonia associated with cytomegalovirus infection after percutaneous transluminal coronary angioplasty. *Eur J Clin Microbiol.* 2004;23(11):848-850.

6.Alfonso F. Fatal infection after rapamycin eluting coronary stent implantation. *Heart.* 2005;91(6):e51.

7.Ziakas A, Konstantinou V, Giannoglou G, Gemitzis K, Louridas G. Enoxaparininduced psoas hematoma complicated by Staphylococcus aureus infection after cardiac catheterization. *Thromb Res.* 2006;118(4):535-537.
8.Piccaro DOP, Gonzales V, Lopes RD, Schmidt MM, Garofallo S, Santos RP, et al. Serious infections among unselected patients with ST-elevation myocardial infarction treated with contemporary primary percutaneous coronary intervention. *Am Heart J.* 2016;181:52-59.

9.Truffa AA, Granger CB, White KR, Newby LK, Mehta RH, Hochman JS, et al. Serious infection after acute myocardial infarction: incidence, clinical features, and outcomes. *JACC Cardiovasc Interv.* 2012;5(7):769-776.

10.Keskin K, Çetinkal G, Sığırcı S, Yıldız SS, Çetin Ş, Gürdal A, et al. The impact of infection on mortality in octogenarians who were admitted due to acute coronary syndrome. *Arch Gerontol Geriat.* 2018;76:48-53.

11.Chen J, He P, Liu Y, Wei X, Jiang L, Guo W, et al. Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non–ST-Segment Elevation Acute Coronary Syndrome. *JAMA Intern Med.* 2019;179(2):186.

12.Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. *Eur Heart J*. 2016;37(3):267-315.

13. CDC-Center for Disease Control and Prevention. Identifying health care associated infections (HAI) for NHSN surveillance. Vol 2015:1-14.

14.Ndrepepa G, Schuster T, Hadamitzky M, Byrne RA, Mehilli J, Neumann FJ, et al. Validation of the Bleeding Academic Research Consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention.

Circulation. 2012;125(11):1424-1431.

15.Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Predictors of hospital mortality in the global registry of acute coronary events. *Arch Intern Med.* 2003;163 (19):2345-2353.

16.Subherwal S, Bach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. *Circulation*. 2009;119(14):1873-1882.

17.Palmerini T, Genereux P, Caixeta A, Cristea E, Lansky A, Mehran R, et al. Prognostic value of the SYNTAX score in patients with acute coronary syndromes undergoing percutaneous coronary intervention: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage StrategY) trial. *J Am Coll Cardiol.* 2011;57(24):2389-2397.

18.Sabate M, Brugaletta S, Cequier A, Iniguez A, Serra A, Jimenez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. *Lancet*. 2016;387(10016):357-366.

19.Corrales-Medina VF, Musher DM, Shachkina S, Chirinos JA. Acute pneumonia and the cardiovascular system. *Lancet*. 2013;381(9865):496-505.

20.Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK, et al. Infections, atherosclerosis, and coronary heart disease. *Eur Heart J.* 2017;38(43): 3195-

3201.

21.Hsu YC, Lin JT, Ho HJ, Kao YH, Huang YT, Hsiao NW, et al. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients. *Hepatology*. 2014;59(4):1293-1302.

22.Huang CY, Shih CM, Tsao NW, Lin YW, Shih CC, Chiang KH, et al. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression. *Am J Transl Res.* 2016;8(2):384-404.

23.Lei L, Li H, Yan F, Li Y, Xiao Y. Porphyromonas gingivalis lipopolysaccharide alters atherosclerotic-related gene expression in oxidized low-density-lipoprotein-induced macrophages and foam cells. *J Periodontal Res.* 2011;46(4):427-437.

24.Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. *Blood.* 2001;97(2):352-358.

25.Cangemi R, Casciaro M, Rossi E, Calvieri C, Bucci T, Calabrese CM, et al. Platelet activation is associated with myocardial infarction in patients with pneumonia. *J Am Coll Cardiol.* 2014;64(18):1917-1925.

26.Modica A, Karlsson F, Mooe T, Fakulteten M, Medicin IFRF, Universitet U, et al.. Platelet aggregation and aspirin non-responsiveness increase when an acute coronary syndrome is complicated by an infection. *J Thromb Haemost*.2007; 5(3):507-511.

27. Corrales-Medina VF, Musher DM, Wells GA, Chirinos JA, Chen L, Fine MJ. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. *Circulation*. 2012;125 (6):773-781.

for peet teriew only

]	able legends
]	Table 1. The baseline characteristics at index hospitalization
]	able 2. In-hospital and long-term clinical outcomes
]	able S1. Univariate and multivariable logistic for clinical outcomes by s
i	nfection subtype.
]	Sable S2 Propensity Score Analyses
]	Sable S3 Outcomes of Propensity Score Analyses
F	igure legends
F	Figure 1. Univariate and multivariable logistic or Cox analysis for clinical
F	Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and n
t	eleeding (B)
F	igure S1. Time from hospital admission to the diagnosis of infectior
а	Ill patients.
F	Figure S2. Kaplan-Meier estimated event rates of all cause death or
k	leeding
F	igure S3. Subgroup analysis of in-hospital all cause death
F	igure S4. Subgroup analysis of in-hospital major bleeding
F	igure S5. Subgroup analysis of in-hospital major adverse clinical events
ŀ	Figure S6. Distributions of propensity scores between the two groups before

	P	All patients*		D
	Uninfected	Infected	Total	_P value
	(N=5009)	(N=206)	(N=5215)	, and c
Demographics				
Age, y	63.61 ± 10.30	70.86±9.20	63.90±10.36	<.001
Age≥65 y	2380(47.5%)	157(76.2%)	2537(48.6%)	<.001
Female	1229(24.5%)	54(26.2%)	1283(24.6%)	0.584
Weight, kg	65.69±11.67	763.55 ± 12.22	$2^{65.60\pm}_{11.70}$	0.011
Heart rate, bpm	73.81 ± 10.91	77.75 ± 15.62	2 ^{73.96±} 11.16	<.001
Blood pressure, mmHg				
Systolic	133.37± 19.03	136.60± 22.99	133.50± 19.21	0.049
Diastolic	76.99 ± 11.27	775.81 ± 12.56	5 ^{76.95±} 11.32	0.188
Medical history and risk factors,				
n(%)				
Current Smoker	1306(26.1%)	53(25.7%)	1359(26.1%)	0.912
Cardiac arrest	8(0.2%)	0(0.0%)	8(0.2%)	0.566
Myocardial Infarction	784(15.7%)	53(25.7%)	837(16.0%)	<.001
Percutaneous coronary intervention	940(18.8%)	35(17.0%)	975(18.7%)	0.522
Coronary-artery bypass surgery	70(1.4%)	5(2.4%)	75(1.4%)	0.224
Stroke	302(6.0%)	23(11.2%)	325(6.2%)	0.003
Atrial Fibrillation	125(2.5%)	8(3.9%)	133(2.6%)	0.216
Hypertension	3259(65.1%)	157(76.2%)	3416(65.5%)	<.001
Diabetes mellitus	1509(30.1%)	96(46.6%)	1605(30.8%)	<.001
Presentation characteristics				

	I	All patients*		р
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	,
IABP	44(0.9%)	30(14.6%)	74(1.4%)	<.001
CRUSAD	42.12 ± 12.04	40.66±13.19	42.06 ± 12.09	0.097
GRACE	124.54± 27.67	143.75± 29.82	125.17± 27.94	<.001
Type of disease, n(%)				
NSTEMI	3121(62.3%)	131(63.6%)	3252(62.4%)	0.709
Unstable angina	1888(37.7%)	75(36.4%)	1963(37.6%)	
Heart Failure, n(%)	489(9.8%)	66(32.0%)	555(10.6%)	<.00
LVEF, %	61.79±10.77	755.99±13.71	61.54± 10.98	<.00
eGFR, mL/min/1.73m ²	81.64±24.99	0.85 ± 28.14	$4^{80.81\pm}_{25.45}$	<.00
eGFR≤60, n(%)	851(17.0%)	101(49.0%)	952(18.3%)	<.00
Serum creatinine, µmol/dL	1.05 ± 0.69	1.55 ± 1.28	1.07 ± 0.73	<.00
Hematocrit, g/L	0.39 ± 0.05	0.35 ± 0.06	0.39 ± 0.05	<.00
Anemia, n(%)	1605(32.0%)	127(61.7%)	1732(33.2%)	<.00
Cardiac biomarker positive, n(%)	2984(62.3%)	120(61.5%)	3104(62.2%)	0.836
In hospital medication, n(%)				
Dual antiplatelet therapy	4845(96.7%)	194(94.2%)	5039(96.6%)	0.047
Statin	4909(98.0%)	202(98.1%)	5074(97.3%)	0.956
ACE inhibitor or ARB	3939(78.6%)	170(82.5%)	4109(78.8%)	0.181
Calcium-channel blocker	1066(21.3%)	72(35.0%)	1138(21.8%)	<.00
β-blocker	4245(84.7%)	165(80.1%)	4410(84.6%)	0.070
Procedure characteristics, n(%)				

1	
2	
2	
1	
-+ _	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 28	
20	
29	
21	
21	
⊃∠ ⊃⊃	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

	A	All patients*		Р
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	
Radial access	4470(89.2%)	154(74.8%)	4624(88.7%)	<.001
Coronary anatomy				
Any left main	690(13.8%)	49(23.8%)	739(14.2%)	<.001
Multi-vessel disease	3072(61.3%)	127(61.7%)	3199(61.3%)	
Others	1247(24.9%)	30(14.6%)	1277(24.5%)	
Treated vessel				
Any left main	480(9.6%)	35(17.0%)	515(9.9%)	0.002
Multi-vessel	1764(35.2%)	66(32.0%)	1830(35.1%	
Others	2765(55.2%)	105(51.0%)	2870(55.0%	
Stent type			,	
Drug eluting stent	5004(99.9%)	206(100.0%)	5210(99.9%)	0.902
Bare metal stent	2(0.0%)	0(0.0%)	2(0.0%)	
PTCA or aspiration only	3(0.1%)	0(0.0%)	3(0.1%)	
Number of stents	2(1~3)	2(1~3)	2(1~3)	0.048
Total length of stents	45(27~71)	48 (31~76)	45(27~71)	0.053
Thrombus aspiration	61(1.2%)	5(2.4%)	66(1.3%)	0.128
Time to procedure	1(1~2)	2(1~6)	1(1~2)	<.001
In 24 hours	2817(56.2%)	81(39.3%)	2898(55.6%	<.001
24~72 hours	1505(30.0%)	47(22.8%))	
> 72 hours	687(13.7%)	78(37.9%)	765(14.7%)	
In-hospital days	4(3~6)	11(7~18)	4(3~6)	<.001

*Abbreviations: IABP=intra-aortic balloon pump; GRACE=Global Registry of Acute

Coronary Events; CRUSADE=Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines; NSTEMI=Non-ST elevation myocardial infarction; LVEF=left ventricular ejection fraction; eGFR=Estimate glomerular filtration rate; PTCA=Percutaneous transluminal coronary angioplasty. ACE=angiostensin-converting enzyme; ARB=angiotensin receptor blocker.

	Uninfected	Infected	P value	
	(N=5009)	(N=206)		
In-hospital outcomes				
Death*	10(0.2%)	9(4.4%)	<.001	
Myocardial infarction	17(0.3%)	1(0.5%)	0.726	
Death or myocardial infarction	27(0.5%)	10(4.9%)	<.001	
Major bleeding	62(1.2%)	34(16.5%)	<.001	
Death or Myocardial infarction or major bleeding	84(1.7%)	44(21.4%)	<.001	
Long-term outcomes				
30 days				
Death	17(0.3%)	10(4.9%)	<.001	
Major bleeding	61(1.2%)	31(15.0%)	<.001	
Death or major bleeding	74(1.5%)	37(18.0%)	<.001	
One year				
Death	93(1.9%)	35(17.0%)	<.001	
Major bleeding	75(1.5%)	34(16.5%)	<.001	
Death or major bleeding	161(3.2%)	56(27.2%)	<.001	
Three years				
Death	346(6.9%)	61(29.6%)	<.001	
Major bleeding	111(2.2%)	36(17.5%)	<.001	
Death or major bleeding	437(8.7%)	81(39.3%)	<.001	
* All agusa dagth:				

	Га	ble	2	In-hos	pital a	and L	long-term	clinical	outcomes
--	----	-----	---	--------	---------	-------	-----------	----------	----------

Years

2444

94

Years

2228

93

1514

73

884

50

253

17

1622

68

909

46

249

19

Α

Cumulative Death

0.5

0.4

0.3

0.1

0.0

Uninfected 5009

0.25

0.20

0.15

0.10

0.05

0.00

Uninfected 5009

Infected 206

Number at risk

4326

151

Infected

В

Cumulative Major Bleeding

Number at risk

206

4839

170

Uninfected - Infected

3668

125

P value < 0.001

3317

116

- Uninfected - Infected

P value < 0.001

Supplementary Appendix 1

Table S1. Univariate and multivariable logistic for clinical outcomes by stratifying infection

 subtype.

 Table S2 Propensity Score Analyses

 Table S3 Outcomes of Propensity Score Analyses

Figure S1. Time from hospital admission to the diagnosis of infection among all patients.

Figure S2. Kaplan-Meier estimated event rates of all cause death or major bleeding

Figure S3. Subgroup analysis of in-hospital all cause death

Figure S4. Subgroup analysis of in-hospital major bleeding

Figure S5. Subgroup analysis of in-hospital major adverse clinical events

Figure S6. Distributions of propensity scores between the two groups before and after matching (the first row is the density plots and the second row is the QQ plots)

Outcomes	U	J <mark>nivariate ana</mark>	lysis	Mu	ıltivariable an	alysis
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalu
Model 1						
In hospital						
Death						
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	8.56	2.06~35.57	0.003
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	11.51	2.15~61.49	0.004
Urinary tract infection	31.24	3.78~258.58	0.001	21.59	2.32~200.48	0.007
Other infection	29.99	8.01~112.27	<.001	23.14	5.59~95.86	<.001
Major Bleeding						
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	18.13	9.92~33.16	<.001
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	9.04	3.63~22.49	<.001
Urinary tract infection	5.16	0.67~39.50	0.114	3.10	0.39~24.51	0.283
Other infection	4.95	1.50~16.31	0.009	3.25	0.95~11.13	0.061
Death or MI or Major Bleeding						
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	14.23	8.07~25.10	<.001
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	11.28	5.14~24.76	<.001
Urinary tract infection	3.76	0.49~28.65	0.202	2.44	0.31~19.04	0.396
Other infection	6.26	2.43~16.13	<.001	4.51	1.69~12.01	0.003
Follow up						
Death						
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.06	1.39~3.06	<.001
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	2.57	1.56~4.24	<.001
Urinary tract infection	3.66	1.37~9.82	0.010	2.38	0.88~6.39	0.086
Other infection	2.62	1.44~4.79	0.002	1.45	0.79~2.66	0.232
Major Bleeding						
Community acquired pulmonary infections	14.29	9.26~22.06	<.001	8.86	5.49~14.27	<.001
Hearital convirad multiplanami infections	7.08	3.30 - 15.20	< 001	1 16	1 87~9 27	< 001

Outcomes	τ	J nivariate ana	lysis	Mu	ltivariable an	alysis
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalue
Urinary tract infection	2.54	0.35~18.13	0.354	1.66	0.23~11.98	0.616
Other infection	2.49	0.79~7.83	0.119	1.83	0.57~5.85	0.307
Death or Major Bleeding						
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	2.85	2.05~3.97	<.001
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	2.93	1.87~4.61	<.001
Urinary tract infection	2.85	1.07~7.64	0.037	1.78	0.66~4.78	0.253
Other infection	2.62	1.51~4.55	0.001	1.60	0.92~2.80	0.099
Model 2						
In hospital						
Death						
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	2.01	0.37~10.86	0.418
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	6.48	0.92~45.66	0.061
Urinary tract infection	31.24	3.78~258.58	0.001	14.68	0.96~223.51	0.053
Other infection	29.99	8.01~112.27	<.001	5.02	0.98~25.62	0.052
Major Bleeding						
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	11.91	6.10~23.28	<.001
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	7.47	2.80~19.90	<.001
Urinary tract infection	5.16	0.67~39.50	0.114	1.92	0.15~25.23	0.619
Other infection	4.95	1.50~16.31	0.009	1.05	0.26~4.23	0.942
Death or MI or Major Bleeding						
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	9.69	5.12~18.37	<.001
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	10.00	4.33~23.12	<.001
Urinary tract infection	3.76	0.49~28.65	0.202	1.59	0.13~19.16	0.713
Other infection	6.26	2.43~16.13	<.001	1.71	0.54~5.35	0.360
Follow up						
Death						
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.70	1.81~4.03	<.001
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	3.56	2.15~5.90	<.001
Urinary tract infection	3.66	1.37~9.82	0.010	2.90	1.08~7.80	0.034

Outcomes	Univariate analysis				Multivariable analysis		
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalue	
Other infection	2.62	1.44~4.79	0.002	1.32	0.71~2.44	0.376	
Major Bleeding	14.29	9.26~22.06	<.001	6.30	3.79~10.49	<.001	
Community acquired pulmonary infections	7.08	3.30~15.20	<.001	3.51	1.57~7.84	0.002	
Hospital acquired pulmonary infections	2.54	0.35~18.13	0.354	1.42	0.19~10.39	0.731	
Urinary tract infection	2.49	0.79~7.83	0.119	1.01	0.31~3.29	0.981	
Other infection							
Death or Major Bleeding							
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	3.55	2.55~4.94	<.001	
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	3.46	2.20~5.45	<.001	
Urinary tract infection	2.85	1.07~7.64	0.037	1.96	0.73~5.28	0.181	
Other infection	2.62	1.51~4.55	0.001	1.38	0.78~2.41	0.266	

Model 1 included age, gender, current smokers, heart failure, anemia, type of disease, estimate glomerular filtration rate.

Model 2 included diabetes mellitus, hypertension, prior myocardial infarction, prior stroke, radial Look S access, chronic kidney disease, intra-aortic balloon pump.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Propensity Score Analyses				
	Uninfected	Infected	Total	P value	
	(N=592)	(N=148)	(N=740)		
Demographics					
Age, y	70.39 ± 9.09	70.24±9.15	70.36±9.09	0.861	
Age≥65 y	444(75.0%)	110(74.3%)	554(74.9%)	0.865	
Female	166(28.0%)	37(25.0%)	203(27.4%)	0.458	
Weight, kg	63.25±12.22	63.99±12.03	63.40±12.18	0.510	
Heart rate, bpm	75.01±12.30	75.37±12.80	75.08 ± 12.40	0.751	
Blood pressure, mmHg					
Systolic	137.48±21.34	137.12±21.66	137.41±21.39	0.854	
Diastolic	76.07±11.68	76.00±11.13	76.06±11.56	0.944	
Medical history and risk factors, n(%)					
Current Smoker	157(26.5%)	41(27.7%)	198(26.8%)	0.771	
Myocardial Infarction	126(21.3%)	29(19.6%)	155(20.9%)	0.651	
Percutaneous coronary intervention	100(16.9%)	25(16.9%)	125(16.9%)	1	
Coronary-artery bypass surgery	10(1.7%)	4(2.7%)	14(1.9%)	0.418	
Stroke	36(6.1%)	9(6.1%)	45(6.1%)	1	
Atrial Fibrillation	19(3.2%)	5(3.4%)	24(3.2%)	0.917	
Hypertension	445(75.2%)	111(75.0%)	556(75.1%)	0.966	
Diabetes mellitus	248(41.9%)	67(45.3%)	315(42.6%)	0.457	
Type of disease, n(%)					
NSTEMI	225(38.0%)	60(40.5%)	285(38.5%)	0.571	
Unstable angina	367(62.0%)	88(59.5%)	455(61.5%)	NA	
Heart Failure, n(%)	123(20.8%)	32(21.6%)	155(20.9%)	0.821	

Table S2 Propensity Score Analyses

	Propensi	ty Score Analy	ses	
	Uninfected	Infected	Total	P value
	(N=592)	(N=148)	(N=740)	
LVEF, %	59.67±12.02	57.81±13.16	59.29±12.28	3 0.118
eGFR, mL/min/1.73m2	65.65±26.10	66.66±28.13	65.85±26.50	0.678
$eGFR \le 60, n(\%)$	234(39.5%)	58(39.2%)	292(39.5%)	0.940
Serum creatinine, µmol/dL	1.39±1.16	1.43 ± 1.32	1.40 ± 1.19	0.726
Hematocrit, g/L	0.36 ± 0.05	0.37 ± 0.05	0.36 ± 0.05	0.690
Anemia, n(%)	337(56.9%)	81(54.7%)	418(56.5%)	0.630
Cardiac biomarker positive, n(%)	344(61.5%)	84(59.2%)	428(61.1%)	0.603
In hospital medication, n(%)				
Dual antiplatelet therapy	558(94.3%)	138(93.2%)	696(94.1%)	0.641
Statin	576(97.3%)	145(98.0%)	721(97.4%)	0.642
ACE inhibitor or ARB	487(82.3%)	123(83.1%)	610(82.4%)	0.809
Calcium-channel blocker	200(33.8%)	46(31.1%)	246(33.2%)	0.532
β-blocker	488(82.4%)	120(81.1%)	608(82.2%)	0.701
Procedure characteristics, n(%)				
Radial access	486(82.1%)	116(78.4%)	602(81.4%)	0.299
Coronary anatomy				
Any left main	117(19.8%)	26(17.6%)	143(19.3%)	0.786
Multi-vessel disease	363(61.3%)	95(64.2%)	458(61.9%)	
Others	112(18.9%)	27(18.2%)	139(18.8%)	
Treated vessel				
Any left main	77(13.0%)	17(11.5%)	94(12.7%)	0.708
Multi-vessel	209(35.3%)	49(33.1%)	258(34.9%)	
Others	306(51.7%)	82(55.4%)	388(52.4%)	

Propensity Score Analyses					
	Uninfected	Infected	Total	<i>P</i> value	
	(N=592)	(N=148)	(N=740)		
Stent type					
Drug eluting stent	592(100.0%)	148(100.0%)	740(100.0%)	1	
Number of stents	2.26 ± 1.29	2.27 ± 1.38	2.26 ± 1.31	0.933	
Total length of stents	56.48±35.90	58.22±38.71	56.83±36.46	0.604	
Thrombus aspiration	16(2.7%)	3(2.0%)	19(2.6%)	0.642	
Time to procedure					
In 24 hours	253(42.7%)	59(39.9%)	312(42.2%)	0.816	
24~72 hours	135(22.8%)	35(23.6%)	170(23.0%)		
> 72 hours	204(34.5%)	54(36.5%)	258(34.9%)		

*Abbreviations: NSTEMI=Non-ST elevation myocardial infarction; LVEF=left ventricular

ejection fraction; eGFR=Estimate glomerular filtration rate; ACE=angiostensin-converting

enzyme; ARB=angiotensin receptor blocker.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Outcomes	Logistics analysis					
	OR/H	R 95%CI	P value			
In-hospital Death	4.01	0.25~64.30	0.981			
In-hospital Major bleeding	18	2.40~134.8	0.005			
In-hospital MI	2.0	0.18~22.20	0.57			
In-hospital Death or Major bleeding	17.24	4.66~63.73	<.001			
Follow-up Death	2	0.97~4.12	0.06			
Follow-up Major bleeding	5.33	1.55~18.30	0.007			
Follow-up Death or Major bleeding	2.46	1.29~4.69	0.006			

Table S3 Outcomes of Propensity Score Analyses

BMJ Open

Figure S3. Subgroup analysis of in-hospital all cause death

Subgroup no of e	Uninfected	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Interaction*	Multivariable Analysis OR(95%CI)		P Value #	P Value for Interaction*
All population	10/5009	9/205	;	22.95 (9.22~57.13)	<.001			13.19 (4.59~37.87)	<.001	
Age.v						0.013				0.010
<65	3/2629	5/148	— ∎ →	101.78 (23.57~439.47)<.001	0.010	_ _ →	113.19 (20.93~611.96)	<.001	0.010
028	7/2380	4/157		8.86 (2.57~30.60)	0.001			3.50 (0.90~13.64)	0.071	
Gender						0.968				0.973
Male	5/3780	9/152		47.52 (15.72~143.59)	<.001			44.39 (12.44~158.36)	<.001	
Female	5/1229	0/53		0.00 (0.00~Int)	0.984			0.00 (0.00~Int)	0.974	
Current Smoke	r 0/2702	6/150	_	16 97 (5 02 49 02)	- 001	0.230	_	11 20 (2 25, 29 00)	- 001	0.189
Voe	1/1306	3/53		78 28 (8 00~765 75)	< 001			28 98 (2 45~343 35)	0.008	
Diabetes mellit	us	0/00		10.20 (0.00 100.10)	<.001	0.572	_	20.00 (2.10 010.00)	0.000	0.604
No	7/3500	6/110		28.79 (9.51~87.16)	<.001			19.52 (5.47~69.72)	<.001	
Yes	3/1509	3/95	·	16.37 (3.26~82.23)	0.001			6.30 (1.08~36.87)	0.041	
Type of disease				5 00 (0 50 44 4A)		0.094				0.106
UA	5/1888	7/75		5.09 (0.59~44.11)	0.140			3.19 (0.32~31.65)	0.322	
NS I EIVII Hoort Epiluro	5/5121	8/130		40.07 (13.10~120.75)	<.001	0.407	_	25.51 (0.05~90.50)	<.001	0.440
No	7/4520	5/140		23.88 (7.48~76.20)	<.001	0.407		20.56 (5.59~75.64)	<.001	0.440
Yes	3/489	4/65		10.62 (2.32~48.59)	0.002			6.49 (1.25~33.62)	0.026	
Anemia						0.462				0.365
No	3/3404	2/79		29.45 (4.85~178.74)	<.001		_	42.87 (5.37~342.46)	<.001	
Yes	7/1605	7/126		13.43 (4.63~38.92)	<.001			10.12 (3.05~33.57)	<.001	
eGFR,mL/min/	1.73m ²	0/405		20.25 (5.02.92.52)	004	0.673	_	04 EQ (E 40 111 0C)	004	0.537
 ∠60	0/4058	3/105		20.33 (3.02~62.32)	<.001			24.56 (5.45~111.26)	<.001	
200	4/031	0/100		10.02 (0.10-40.10)	<.001			1.20 (1.07-20.00)	0.004	
							05 5 40			
		-	0.5 5 40			-	0.5 5 40			
		Favo	r Intected Pavor Unint	ected		Favor	r Intected Favor Unint	ected		

#:P value for group; *P value for Interaction of group with subgroups

Figure S4. Subgroup analysis of in-hospital major bleeding

	n	Uninfected o of events/no o	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Interaction*	Multivaria OR (95%)	able Analysis CI)		P Value #	P Value for Interaction*
	All population	60/5009	34/206	;	16.31 (10.43~25.51)) <.001		;		10.24 (6.17~16.98)	<.001	
	Age,y						0.976					0.990
	<65	18/2629	4/49		12.89 (4.20~39.63)	<.001				9.51 (2.78~32.50)	<.001	
	Gender	42/2380	30/157	-	13.15 (7.96~21.71)	<.001	0.052			11.25 (6.44~19.63)	<.001	0.027
	Male	37/3780	27/152	-	21.85 (12.90~37.02) 7 81 (3 19~19 11)) <.001				14.08 (7.74~25.60) 4 52 (1 65~12 40)	<.001	
	Current Smoker	20/1223		-	1.51 (5.16 16.11)	<	0.541		-	1.02 (1.00 12.10)	0.000	0.483
	No Yes	51/3703 9/1306	27/153 7/53		15.35 (9.32~25.28) 21.93 (7.82~61.46)	<.001 <.001				9.49 (5.40~16.68) 17.16 (5.18~56.88)	<.001 <.001	
	Diabetes mellitus	40/2500	15/110	_	13 66 (7 29-25 58)	< 001	0.526		_	9 70 (4 77-19 74)	< 001	0.426
	Yes	20/1509	19/96	_	18.37 (9.42~35.84)	<.001				12.31 (5.81~26.06)	<.001	
	Type of disease UA	19/1888	6/75		8.55 (3.31~22.09)	<.001	0.115	-		4.48 (1.54~13.03)	0.006	0.118
	NSTEMI	41/3121	28/131	-	20.42 (12.15~34.32) <.001	0 922			13.59 (7.54~24.51)	<.001	0.992
	No	49/4520	19/140		14.33 (8.19~25.07)	<.001	0.025			10.16 (5.52~18.73)	<.001	0.005
	Yes Anemia	11/489	15/66	-	12.78 (5.57~29.31)	<.001	0.557			11.32 (4.51~28.40)	<.001	0.465
	No	39/3404	14/79	-	18.58 (9.62~35.89)	<.001				12.10 (5.90~24.82)	<.001	
	eGFR,mL/min/1.73	21/1605 3m ²	20/12/		14.10 (7.41~20.02)	<.001	0.543		_	3.33 (4.03~13.03)	<.001	0.636
	□≌ <60	40/4158 20/851	13/105 21/101		14.55 (7.53~28.12) 10.91 (5.67~20.98)	<.001 <.001				11.50 (5.73~23.08) 10.51 (5.03~21.93)	<.001 <.001	
				rienne	. ,			ri		. ,		
				0.5 2 10 8	0		Frank	0.5 2	2 10 80	and the left stand		
#·P valu	a for group: *P value fo	r Interaction of arou	Favor	oups	Favor Uninfected		Favor In	nected	Fav	or Uninfected		
	5 11	5										

BMJ Open

Figure S5. Subgroup analysis of in-hospital major adverse clinical events

Subgroup	Uninfected no of events/no of	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Multiv Interaction* OR(95	ariable Analysis 5%CI)		P Value #	P Value for Interaction*
All population	82/5009	40/206	-	14.48 (9.62~21.78)	<.001			9.63 (6.10~15.22)	<.001	
Age,y <65 □≋≣	28/2629 54/2380	8/49 32/157	- - -	18.13 (7.80~42.17) 11.03 (6.87~17.69)	<.001 <.001	0.314	s	13.80 (5.51~34.56) 9.49 (5.63~15.99)	<.001 <.001	0.270
Gender Male Female	52/3780 30/1229	33/152 7/54		19.88 (12.39~31.90) 5.95 (2.49~14.25)	<.001 <.001	0.017	-=- =-	13.27 (7.81~22.54) 3.91 (1.48~10.33)	<.001 0.006	0.011
Current Smoker No Yes	69/3703 13/1306	32/153 8/53	* -	13.93 (8.82~21.99) 17.69 (6.98~44.80)	<.001 <.001	0.652	- - -	9.36 (5.62~15.59) 13.75 (4.65~40.69)	<.001 <.001	0.579
No Yes Type of disease	55/3500 27/1509	20/110 20/96	- - -	13.92 (8.01~24.20) 14.44 (7.75~26.92)	<.001 <.001	0.013	-	10.44 (5.61~19.41) 9.78 (4.89~19.53)	<.001 <.001	0.015
UA NSTEMI Heart Failure	32/1888 50/3121	7/75 33/131		5.97 (2.54~14.01) 20.68 (12.75~33.54)	<.001 <.001	0.575	 	3.74 (1.48~9.48) 14.20 (8.21~24.56)	0.005 <.001	0.651
No Yes Anemia	66/4520 16/489	23/140 17/66	-	13.27 (7.98~22.07) 10.26 (4.88~21.57)	<.001 <.001	0.496	-	9.96 (5.74~17.29) 10.24 (4.48~23.41)	<.001 <.001	0.418
No Yes eGFR,mL/min/1.7	52/3404 30/1605 '3m ²	16/79 24/127	+	16.38 (8.87~30.24) 12.23 (6.90~21.69)	<.001 <.001	0.699		11.47 (5.91~22.25) 8.98 (4.79~16.86)	<.001 <.001	0.706
□≌ <60	58/4158 24/851	16/105 24/101	-	12.71 (7.03~22.97) 10.74 (5.82~19.81)	<.001 <.001	Г		10.52 (5.65~19.56) 9.76 (4.94~19.29)	<.001 <.001	
		Favor Ir	0.5 2 10 nfected Favor Uninfe	cted		0.5 Favor Infected	2 10 Favor Uninfe	ected		

#:P value for group; *P value for Interaction of group with subgroups

BMJ Open

Figure S6. Distributions of propensity scores between the two groups before and after matching (the first row is the density plots and the second row is the QQ plots)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item		Page No
	No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	3-4
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	NA
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-8 &
		and effect modifiers. Give diagnostic criteria, if applicable	supplement
Data sources/	8*	For each variable of interest, give sources of data and details of methods	supplement
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9 &
		(c) Explain how missing data were addressed	supplement
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	9-10
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	9-10
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	

BMJ Open

Outcome data		15* Report numbers of outcome events or summary measures over time	9-10		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and			
		their precision (eg, 95% confidence interval). Make clear which confounders were			
		adjusted for and why they were included	10-11 &		
		(b) Report category boundaries when continuous variables were categorized			
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period			
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	11 &		
		sensitivity analyses	supplement		
Discussion					
Key results	18	Summarise key results with reference to study objectives	11-12		
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	14		
		imprecision. Discuss both direction and magnitude of any potential bias			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14-15		
		multiplicity of analyses, results from similar studies, and other relevant evidence			
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15		
Other information	1				
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15-16		
		applicable, for the original study on which the present article is based			

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

BMJ Open

Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038551.R2
Article Type:	Original research
Date Submitted by the Author:	07-Aug-2020
Complete List of Authors:	Chen, Peng-yuan; Guangdong Provincial People's Hospital's Nanhai Hospital, Department of Cardiology Liu, Yuanhui; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China. Duan, Chongyang; School of Public Health, Southern Medical University, Guangzhou, Biostatistics Jiang, Lei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Wei, Xuebiao; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial Reople's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Guo, Wei; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Chen, Jiyan; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology Tan, Ning; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiology He, Pengcheng; Guangdong Cardiovascular Institute, Department of Cardiology; Southern Medical University
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Infectious diseases
Keywords:	Coronary heart disease < CARDIOLOGY, Coronary intervention <

	CARDIOLOGY, Cardiology < INTERNAL MEDICINE
0	SCHOLARONE" Manuscripts
1	
3	
+ 5	
7	
3	
)	
2	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

2
3
4
5
5
6
7
8
Q
10
10
11
12
13
14
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
22
32
33
34
35
26
30
37
38
39
10
40
41
42
43
44
45
45
46
47
48
10
47
50
51
52
52
55
54
55
56
57
58
20
59
60

Original article

Impact of infection for non-ST-elevation acute coronary syndrome patients undergoing percutaneous coronary intervention: insight from a multicentre observational cohort from China

Pengyuan Chen^{1*}, MD; Yuanhui Liu^{2,3*}, MD, PhD; ChongYang Duan^{4*}, MD; Lei Jiang², MD, PhD; XueBiao Wei², MD; Wei Guo², MD, PhD; JiYan Chen², MD, PhD; Ning Tan^{2,3}, MD, PhD; PengCheng He^{2,3}, MD, PhD;

Running Title: Infection of NSTE-ACS and PCI

- Department of Cardiology, Guangdong Provincial People's Hospital's Nanhai Hospital, the Second Hospital of Nanhai District Foshan City, Foshan 528000, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China

*These authors contributed equally to the work.

Address for corresponding author: PengCheng He; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of

> Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.

Tel: +86-20-83819161 Fax: +86-20-83824369; gdhpc100@126.com

Words count: 2333 words

to beet teries only

Abstract

Objectives: we aimed to describe the association between in-hospital infection and the prognosis among non-ST-elevation acute coronary syndrome (NSTE-ACS) patients received percutaneous coronary intervention (PCI).

Design: This observational cohort originated from the database for NSTE-ACS underwent percutaneous coronary intervention from January 1, 2010, to December 31,

2014.

Setting: five centres from south China

Participants: This multicentre observational cohort study consecutively included 8197 NSTE-ACS patients who received PCI. Only patients with adequate information to diagnose or rule out infection were included. Patients were excluded if they were diagnosed with a malignant tumor, pregnant or cardiogenic shock at index date. Patients were grouped by whether they had in-hospital infection or not.

Primary and secondary outcome measures: The primary outcome was all-cause death and major bleeding during hospitalization. The secondary outcomes included all-cause death and major bleeding during follow-up and in-hospital myocardial infarction. **Results:** Of the 5215 patients, 206 (3.95%) occurred infection. Patients with infection had a higher rate of in-hospital all-cause death and major bleeding (4.4% vs. 0.2%, 16.5% vs. 1.2% respectively, P<.001). After adjusting for confounders, infection remained independently associated with in-hospital and long-term all-cause death (OR, 13.19, 95% CI: 4.59-37.87; HR, 2.03, 95% CI: 1.52-2.71; P<.001) and major bleeding (OR, 10.24; 95% CI: 6.17-16.98; HR, 5.31, 95% CI: 3.49-8.08; P<.001). Subgroup analysis

confirmed these results.

Conclusions: The incidence of infection is low in hospitalization, but it is associated with worse in-hospital and long-term outcomes.

Key Words: Non-ST-elevation acute coronary syndrome; Percutaneous coronary

intervention; Infection; Outcomes.

for occurrent only
Strengths and limitations of this study

- We widely included NSTE-ACS patients who received PCI treatment from China.
- The characteristics of infection was detailed reported which included the time and infection type.
- Validation was done in different subgroups and variables which is our best effort based on the database.
- The potential bias may be neglected because of the study design.
- The etiology test of the infection is absent which limited the advanced

exploration of the mechanism.

Introduction

Acute coronary syndrome (ACS) is a leading cause of death both in China and around the world¹. As compared with STEMI patients, those with non-ST elevation acute coronary syndrome (NSTEACS) have shown improved outcomes after the extensive use of an invasive approach, but continue to show a higher burden of comorbidities and prior cardiovascular events which might expose them to iatrogenic and infective complications.². Identification of patients at risk of worse outcomes could contribute to targeted intervention, help direct care, reduce the incidence of subsequent events, and thus optimize resource utilization.

Infection can activate platelets and the coagulation system, resulting in the prothrombotic environment^{3, 4}. Moreover, infection is an uncommon but important comorbidity in patients undergoing percutaneous coronary intervention (PCI)⁵⁻⁷. Although the reported incidence is less than 4%, infection has been proven to be associated with an increased risk of cardiovascular events among patients with STEMI^{8, 9}. However, information about infection in patients with NSTE-ACS remains scanty. Only one study of 174 octogenarian patients with ACS evaluated the impact of infection on clinical outcomes¹⁰. Thus, we aimed to assess the incidence of infection and its association with short- and long-term clinical outcomes in NSTE-ACS patients undergoing PCI.

Methods

Study design and patients

This observational cohort study consisted of consecutive NSTE-ACS patients undergoing PCI from Jan 2010 to Dec 2014 at five hospitals in China. Only patients

with adequate information to diagnose or rule out infection were included. Patients were excluded if they were diagnosed with a malignant tumor or infection before the index date, pregnant or presenting with cardiogenic shock. The method to search and identify appropriate NSTE-ACS patients has been outlined previously¹¹. The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital, with a waiver of informed consent. The study was conducted in accordance with the Declaration of Helsinki.

Data collection and procedures

Data on demographics, patient history, laboratory tests, examinations, and medication history were collected by investigators in the first interview after admission. The medicines and PCI procedures were applied according to international guidelines and clinical evidence¹².

Infection during the index hospitalization was diagnosed according to the presence of any symptoms, signs and/or laboratory indicating infection. Once confirmed by the infection control doctors service, appropriate antibiotics were prescribed⁸. Infection was classified as pulmonary, urinary tract infection (UTI) or others (including nonpulmonary/ non-urinary sepsis and cellulitis), based on the clinical records during hospitalization. Community-acquired pulmonary infection was defined by a diagnosis of infection within the first 72 hours of hospital admission, and hospital-acquired pulmonary infection was defined as those occurring after the first 72 hours and were diagnosed in accordance with the criteria established by the Centers for Disease Control and Prevention¹³.

Clinical outcomes and follow up

BMJ Open

The primary outcome was in-hospital all-cause death and in-hospital major bleeding as defined by the Bleeding Academic Research Consortium definition (grades 3-5)¹⁴. Secondary outcomes were: (1) major adverse clinical events (MACE), consisting of all-cause death, myocardial infarction, or major bleeding during hospitalization; and (2) all-cause death or major bleeding during follow-up.

All patients were followed-up by trained nurses via telephone interview or clinic visits from Nov 2015 to Dec 2016. Relevant information was also collected from the residence registration system and from the clinical records of the patients who were readmitted. The details of clinical events and follow-up have been previously described¹¹. All adverse clinical events were evaluated by an independent clinical events committee that was masked to the infection details.

Statistical analysis

All patients were divided into groups with or without infections. Continuous variables with a normal distribution are presented as the mean \pm SD, and those with an asymmetric distribution are presented as the median and interquartile range (Q25-Q75). Student's t test or Wilcoxon rank-sum test were used to compare the continuous variables. Categorical variables are presented as frequencies and were compared by the Fisher exact test or chi-square test. Univariate and multivariable analyses were performed to evaluate the relationship between infection and clinical outcomes. Variables that were significant in the univariate analysis or clinically important were included in the multivariable models. Considering the low incidence of adverse outcomes but potential high incidence of confounders, two models were developed for

BMJ Open

each multivariable analysis. The first model (model 1) included infection, age, anemia, type of disease (unstable angina and non-ST-elevation acute myocardial infarction), gender, current smokers, heart failure, and estimate glomerular filtration rate (eGFR). The second model (model 2) included radial access, cardiac biomarker positive, time to procedure, treated multi-vessel, diabetes mellitus, hypertension, prior myocardial infarction, and prior stroke. We performed subgroup analyses by older age, gender, current smokers, diabetes mellitus, types of disease, heart failure, anemia and chronic kidney disease. Analysis based on different types of infections was reported. We also introduced the GRACE (Global Registry of Acute Coronary Events)¹⁵ and CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines) score¹⁶ and compared the infection outcomes among different GRACE or CRUSADE risk groups (low, medium, or high risk). All data analyses were performed with SAS (version 9.4, SAS Institute, 210 Cary, North Carolina, USA). A two-sided P<0.05 was considered significant.

Propensity score analyses were conducted to test the robustness of the results. All factors listed in **Table 1** were considered in the propensity score model development. The heterogeneity analysis between the centers was conducted using meta-analysis methods.

Patient and public involvement

There was no patient or public involvement in any step of this study.

Results

Baseline characteristic

From January 1, 2010, to December 31, 2014, a total of 8197 consecutive NSTE-ACS patients underwent PCI at the 5 hospitals in China. Of the 5215 patients who met the final criteria, 206 (3.95%) received a diagnosis of infection, and 183 (89%) of them occurred within one week after hospital admission (**Figure S1**). **Table 1** shows the baseline characteristics of patients with and without infection. The patients with infection were older and had a low body weight. These patients were more likely to have a history of myocardial infarction, stroke, hypertension and diabetes, and more often had a diagnosis of heart failure, anemia and the use of intra-aortic balloon pump and dual antiplatelet therapy. Patients with infection had lower left ventricular ejection fraction, eGFR but higher GRACE risk scores compared with those without infection. However, the CRUSADE risk score was similar between the two groups.

In-hospital clinical outcomes

Patients with infection had a higher rate of in-hospital all-cause death (4.4% vs. 0.2%), major bleeding (16.5% vs. 1.2%), and MACE (21.4% vs. 1.7%) compared with patients without infection (all P<.001) (**Table 2**). However, the rate of in-hospital myocardial infarction was similar between the two groups (P=0.726).

Univariable analyses showed that infection was a predictor for in-hospital all cause death (odd ratios [OR] 22.96; 95% confidence interval [CI], 9.23-57.14, P <.001), major bleeding (OR, 16.30; 95% CI, 10.42-25.50; P<.001), and MACE (OR, 14.48; 95%CI, 9.62-21.78; P<.001). After adjusting for other confounding variables, multivariable logistic regression showed that infection was significantly and

independently related to the risk of the above outcomes (Figure 1).

Long-term clinical outcomes

At a median follow-up of 3.2 years, Kaplan-Meier analysis revealed that patients with in-hospital infection had a higher risk of long-term death, major bleeding, and death or major bleeding compared with those without in-hospital infection (P<.001) (**Table 2**, **Figure 2 and Figure S2**). Multivariable cox analyses demonstrated that infection was independently associated with long-term adverse outcomes even after adjusting for other potential risk factors (all cause death: hazard ratio [HR], 2.03; 95% CI, 1.52-2.71; P<.001; major bleeding: HR, 5.31; 95% CI, 3.49-8.08; P<.001; death or major bleeding: HR, 2.47; 95% CI, 1.92-3.19; P<.001). The similar result was reported in the other adjusted model (**Figure 1**).

Subgroup analyses

Subgroup analyses similarly revealed that infection was independently related to the inhospital events (all-cause death, major bleeding, or MACE) according to different clinical status. The unadjusted and adjusted ORs for infection are presented in **Figure S3**, **Figure S4**, **and Figure S5**. Analysis according to the infection subtypes indicated that pulmonary infection other than UTI was independently associated with poor inhospital and follow up clinical outcomes. However, the UTI was independently associated with all-cause death (**Table S1**).

Propensity Score Analyses

We matched 740 patients with or without infection in a 1:4 ratio (**Table S2 and Figure S6**). The result showed a higher rate of major bleeding during the hospital stay (OR,

18; 95%CI, 2.40-134.8, P=0.015), and a similar result was found at follow-up (HR, 5.33;95%CI, 1.55-18.30, P=0.007), but matched results showed an absence of a significant difference in all-cause death (in-hospital: OR, 4.01; 95%CI, 0.25-64.30; follow-up: OR, 2; 95%CI, 0.97-4.12)(**Table S3**).

Discussion

This study demonstrates that infection was uncommon in a contemporary cohort of NSTE-ACS patients who underwent PCI. But still the in-hospital infection among NSTE-ACS patients received PCI is significant associated with higher risk of inhospital and long-term clinical prognoses, such as all-cause death, major bleeding as well as the MACE.

The prevalence of infection in our study is similar to those results for the STEMI population. Data from 5,745 STEMI patients enrolled in the APEX-AMI trial demonstrated that the prevalence of serious infection was 2.4%, and that infection was associated with higher 90-day mortality (29%)⁹. Also, another study of 1,486 STEMI patients reported the prevalence of serious infection at 3.9% and the 30-day mortality was up to 53% in these patients⁸. The conclusions for these 2 studies paralleled our conclusion: infection is uncommon but associated with worse clinical outcomes. A recent retrospective cohort analyses of 174 octogenarians with ACS, for whom the patients with infection had a higher in-hospital, 30-day and long-term mortality than patients without infection¹⁰. However, that study was confined to patients older than 85 years who were admitted to the coronary care unit, the different ACS types were never specified, and the relatively liberal use of bare metal stents does not conform with the

BMJ Open

contemporary more liberal use of drug eluting stents^{17, 18}.

To our acknowledge, this study is the first to demonstrate the role of infection on patients with NSTE-ACS. Although the prevalence of infections was similar to the previous studies of STEMI^{8, 9}, the 30 and 90-day death rates were lower than those studies. These low rates might be the result of patient characteristics of our study with less patients requiring intra-aortic balloon pump support, mechanical ventilation and transfusion. However, our conclusions paralleled: patients with infections were associated with worse outcomes. This association remained consistent after the adjustment of other important potential risk factors for outcomes such as radial access, cardiac biomarker positive, time to revascularization, and treated multi-vessel.

Although infections had a negative impact on patients with NSTE-ACS, the underlying pathophysiologic mechanism remains unclear. Corrales-Medina et al.¹⁹ suggested that infection increased the mortality of patients who underwent elective PCI due to the change in plaques triggered by acute inflammatory reactions. Indeed, infection has been implicated as a factor contributing to initiation, progression and rupture of an atherosclerotic plaque²⁰. Infectious vectors have been reported to induce the expression of adhesion molecules such as heat shock protein 60 and monocyte chemoattractant protein-1 on endothelial cells, which can activate the endothelium and the formation of a lipid core²¹⁻²⁴. Additionally, the SIXTUS study group²⁵ demonstrated that platelet activation and TxB₂ overproduction are related to infections via Toll-like receptor 4. Moreover, MODICA et al.²⁶ reported that aspirin non-responsiveness was often observed in patients with pneumonia. Also, increased coagulation activity has

BMJ Open

been observed in pneumonia³. Therefore, infection can activate platelets and the coagulation system, which plays a critical role in deteriorating outcomes in patients with ACS. In contrast to previous STEMI reports^{8, 9}, we did not find a significant association of infection with myocardial infarction due to the low incidence of myocardial infarction in our study. However, our results were similar to previous studies that reported major bleeding was more frequent in patients with infection. Although the PLATelet inhibition and patient Outcomes (PLATO) trial demonstrated that ticagrelor, a more potent and consistent platelet P2Y₁₂ inhibitor, was associated with significantly fewer pulmonary infections and death related to infection than clopidogrel, the incidence of bleeding in patients with infection in that study was not reported⁴. Because of dysfunction of platelets and the coagulation system, patients with infection might be at higher risk of ischemia and bleeding. Therefore, more attention should be paid to patients with infection when antithrombotic therapy was determined. Finally, infection can also result in worse outcomes for NSTE-ACS patients through increasing catecholamines and potentially adverse hemodynamic effects, such as coronary vasoconstriction and increased myocardial metabolic demands²⁷.

Although UTI was associated to some degree with in-hospital all-cause death, it was not associated with other worse outcomes. One reason why pulmonary infection is related to these worse clinical outcomes, while UTI is not, could be the lower prevalence of UTI comparing to pulmonary infection (0.3% vs. 2.6%). The prevalence of UTI was lower in our study compared with STEMI patients (0.3% vs. 7%)⁸. Therefore, when the population sample size was expanded, UTI would be similar to the

pulmonary infection related to the worse clinical outcomes.

Limitations

The study had several limitations. First, as a retrospective study a causal relationship between the infection and outcomes could not be determined. Second, despite adjustment for important confounders, we could not completely eliminate all the potential bias including selection bias. Third, although the infections were not centrally adjudicated, the infection was confirmed by the infection control services who were authorized to approve the use of antibiotic. Furthermore, because there is not a general screen of infection in all the patients, the infection can be underestimated. But the symptom-leading diagnose of infection is more practical in real world, and can be promoted easily in clinic.

Conclusions

Infection is an uncommon complication in patients with NSTE-ACS undergoing PCI but is nonetheless independently associated with worse in-hospital and long-term outcomes. Future studies are indicated to identify NSTE-ACS patients at risk of infection which could then contribute to targeted intervention, help direct care, reduce the incidence of subsequent adverse events, and thus optimize resource utilization.

Acknowledgements

The authors appreciate the efforts of revising the manuscript, Scott J. Denardo, MD, Reid Heart Center/First Health of Carolinas Cardiac and Vascular Institute, Pinehurst, NC, USA. We thank the patients who participated in this trial and their relatives; the clinical and research teams; and the nursing teams in our hospital for their work on the study. Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academic of Medical Sciences, Guangzhou 510100, China.(Danqing Yu; Jianfang Luo; Zhonghan Ni;Peixia Huo; Qiong Ren; Yanyan Zhong;Liyun Wang; Jianxia He; Ruijuan Xiao; Yuanling Li; Xinrong Liu; Hui Wang; Mingyu Chen; Haiyan Xue;Xuxi Yang; Suqin Xie;). Department of Cardiology, The Second People's Hospital of Nanhai District, Guangdong General Hospital's Nanhai Hospital, Foshan, 528251, China (Wenfei He).

Funding

This study was supported by a grant from the Outstanding Young Talent Program of Guangdong Provincial People's Hospital (grant number: KJ012019084), National Science Foundation for Young Scientists of China (Grant No. 81800325) and Science and Technology Planning Project of Guangzhou City (201906010089, 201707010002), and China Youth Research Funding (2017-CCA-VG-02). The funders had no role in the study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. The work was not funded by any industry sponsors. All authors agreed to submit the manuscript for publication.

Authors' contributions

P-C He designed and supervised the study; P-Y Chen, Y-H Liu, L Jiang, X-B Wei and W Guo performed the study, and C-Y Duan analyzed the data; Y-H Liu and other authors provided the samples and demographics from patients and controls; Y-H Liu and P-Y Chen wrote the manuscript; N Tan, J-Y Chen and P-C He revised the

manuscript for important intellectual content.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval and consent to participate

The study protocol was approved by the central ethics committee of the Guangdong Provincial People's Hospital (NO. GDREC2016210H(R1)). Patients were included with a waiver of informed consent.

This article does not contain any studies with animals performed by any of the authors.

Data availability statement

Data source for this study is a retrospective public health database with data which all hospitalizations that were already anonymized. Data were confidentially stored once the original study published according to the original protocol, but data are available upon reasonable request.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is noncommercial.

References

1. Chan, MY, Du X, Eccleston, D, Ma, C, Mohanan, PP, Ogita, M, et al. Acute coronary syndrome in the Asia-Pacific region. *Int J Cardiol.* 2016;202:861-869.

 Morici N, Savonitto S, Ferri L A, Grosseto D, Bossi I, Sganzerla P, et al. Outcomes of Elderly Patients with ST-Elevation or Non-ST-Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention[J]. *The American Journal of Medicine*.
 2019; 132(2): 209-216.

3.Milbrandt EB, Reade MC, Lee M, Shook SL, Angus DC, Kong L, et al. Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. *Mol Med.* 2009;15(11-12):438-445.

4.Varenhorst C, Alstrom U, Braun OO, Storey RF, Mahaffey KW, Bertilsson M, et al. Causes of mortality with ticagrelor compared with clopidogrel in acute coronary syndromes. *Heart.* 2014;100(22):1762-1769.

5.Rizos M, Falagas ME, Tsiodras S, Betsou A, Foukas P, Michalopoulos A. Usual interstitial pneumonia associated with cytomegalovirus infection after percutaneous transluminal coronary angioplasty. *Eur J Clin Microbiol.* 2004;23(11):848-850.

6.Alfonso F. Fatal infection after rapamycin eluting coronary stent implantation. *Heart.* 2005;91(6):e51.

7.Ziakas A, Konstantinou V, Giannoglou G, Gemitzis K, Louridas G. Enoxaparininduced psoas hematoma complicated by Staphylococcus aureus infection after cardiac catheterization. *Thromb Res.* 2006;118(4):535-537.

8. Piccaro DOP, Gonzales V, Lopes RD, Schmidt MM, Garofallo S, Santos RP, et al.

 Serious infections among unselected patients with ST-elevation myocardial infarction treated with contemporary primary percutaneous coronary intervention. *Am Heart J.* 2016;181:52-59.

9.Truffa AA, Granger CB, White KR, Newby LK, Mehta RH, Hochman JS, et al. Serious infection after acute myocardial infarction: incidence, clinical features, and outcomes. *JACC Cardiovasc Interv.* 2012;5(7):769-776.

10.Keskin K, Çetinkal G, Sığırcı S, Yıldız SS, Çetin Ş, Gürdal A, et al. The impact of infection on mortality in octogenarians who were admitted due to acute coronary syndrome. *Arch Gerontol Geriat.* 2018;76:48-53.

11.Chen J, He P, Liu Y, Wei X, Jiang L, Guo W, et al. Association of Parenteral Anticoagulation Therapy With Outcomes in Chinese Patients Undergoing Percutaneous Coronary Intervention for Non–ST-Segment Elevation Acute Coronary Syndrome. *JAMA Intern Med.* 2019;179(2):186.

12.Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. *Eur Heart J*. 2016;37(3):267-315.

13. CDC-Center for Disease Control and Prevention. Identifying health care associated infections (HAI) for NHSN surveillance. Vol 2015:1-14.

14.Ndrepepa G, Schuster T, Hadamitzky M, Byrne RA, Mehilli J, Neumann FJ, et al. Validation of the Bleeding Academic Research Consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention. *Circulation.* 2012;125(11):1424-1431.

15.Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, et al. Predictors of hospital mortality in the global registry of acute coronary events. *Arch Intern Med.* 2003;163 (19):2345-2353.

16.Subherwal S, Bach RG, Chen AY, Gage BF, Rao SV, Newby LK, et al. Baseline risk of major bleeding in non-ST-segment-elevation myocardial infarction: the CRUSADE (Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines) Bleeding Score. *Circulation*. 2009;119(14):1873-1882.

17.Palmerini T, Genereux P, Caixeta A, Cristea E, Lansky A, Mehran R, et al. Prognostic value of the SYNTAX score in patients with acute coronary syndromes undergoing percutaneous coronary intervention: analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage StrategY) trial. *J Am Coll Cardiol.* 2011;57(24):2389-2397.

18.Sabate M, Brugaletta S, Cequier A, Iniguez A, Serra A, Jimenez-Quevedo P, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. *Lancet*. 2016;387(10016):357-366.

19.Corrales-Medina VF, Musher DM, Shachkina S, Chirinos JA. Acute pneumonia and the cardiovascular system. *Lancet.* 2013;381(9865):496-505.

20.Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK, et al. Infections, atherosclerosis, and coronary heart disease. *Eur Heart J.* 2017;38(43): 3195-3201.

21.Hsu YC, Lin JT, Ho HJ, Kao YH, Huang YT, Hsiao NW, et al. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients. *Hepatology*. 2014;59(4):1293-1302.

22.Huang CY, Shih CM, Tsao NW, Lin YW, Shih CC, Chiang KH, et al. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression. *Am J Transl Res.* 2016;8(2):384-404.

23.Lei L, Li H, Yan F, Li Y, Xiao Y. Porphyromonas gingivalis lipopolysaccharide alters atherosclerotic-related gene expression in oxidized low-density-lipoprotein-induced macrophages and foam cells. *J Periodontal Res.* 2011;46(4):427-437.

24.Park IW, Wang JF, Groopman JE. HIV-1 Tat promotes monocyte chemoattractant protein-1 secretion followed by transmigration of monocytes. *Blood*. 2001;97(2):352-358.

25.Cangemi R, Casciaro M, Rossi E, Calvieri C, Bucci T, Calabrese CM, et al. Platelet activation is associated with myocardial infarction in patients with pneumonia. *J Am Coll Cardiol.* 2014;64(18):1917-1925.

26.Modica A, Karlsson F, Mooe T, Fakulteten M, Medicin IFRF, Universitet U, et al.. Platelet aggregation and aspirin non-responsiveness increase when an acute coronary syndrome is complicated by an infection. *J Thromb Haemost*.2007; 5(3):507-511.

27. Corrales-Medina VF, Musher DM, Wells GA, Chirinos JA, Chen L, Fine MJ. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. *Circulation.* 2012;125

(6):773-781.

to occurrence on the terms of terms of

]	able legends
]	Table 1. The baseline characteristics at index hospitalization
]	able 2. In-hospital and long-term clinical outcomes
]	able S1. Univariate and multivariable logistic for clinical outcomes by s
i	nfection subtype.
]	Sable S2 Propensity Score Analyses
]	Sable S3 Outcomes of Propensity Score Analyses
F	igure legends
F	Figure 1. Univariate and multivariable logistic or Cox analysis for clinical
F	Figure 2. Kaplan-Meier estimated event rates of all cause death (A) and n
t	eleeding (B)
F	igure S1. Time from hospital admission to the diagnosis of infectior
а	Ill patients.
F	Figure S2. Kaplan-Meier estimated event rates of all cause death or
k	leeding
F	igure S3. Subgroup analysis of in-hospital all cause death
F	igure S4. Subgroup analysis of in-hospital major bleeding
F	igure S5. Subgroup analysis of in-hospital major adverse clinical events
ŀ	Figure S6. Distributions of propensity scores between the two groups before

	P	All patients*		D
	Uninfected	Infected	Total	_P value
	(N=5009)	(N=206)	(N=5215)	, uiuc
Demographics				
Age, y	63.61 ± 10.30	70.86±9.20	63.90±10.36	<.001
Age≥65 y	2380(47.5%)	157(76.2%)	2537(48.6%)	<.001
Female	1229(24.5%)	54(26.2%)	1283(24.6%)	0.584
Weight, kg	65.69±11.67	763.55 ± 12.22	$2^{65.60\pm}_{11.70}$	0.011
Heart rate, bpm	73.81 ± 10.91	77.75 ± 15.62	2 ^{73.96±} 11.16	<.001
Blood pressure, mmHg				
Systolic	133.37± 19.03	136.60± 22.99	133.50± 19.21	0.049
Diastolic	76.99 ± 11.27	775.81 ± 12.56	5 ^{76.95±} 11.32	0.188
Medical history and risk factors,				
n(%)				
Current Smoker	1306(26.1%)	53(25.7%)	1359(26.1%)	0.912
Cardiac arrest	8(0.2%)	0(0.0%)	8(0.2%)	0.566
Myocardial Infarction	784(15.7%)	53(25.7%)	837(16.0%)	<.001
Percutaneous coronary intervention	940(18.8%)	35(17.0%)	975(18.7%)	0.522
Coronary-artery bypass surgery	70(1.4%)	5(2.4%)	75(1.4%)	0.224
Stroke	302(6.0%)	23(11.2%)	325(6.2%)	0.003
Atrial Fibrillation	125(2.5%)	8(3.9%)	133(2.6%)	0.216
Hypertension	3259(65.1%)	157(76.2%)	3416(65.5%)	<.001
Diabetes mellitus	1509(30.1%)	96(46.6%)	1605(30.8%)	<.001
Presentation characteristics				

	I	All patients*		р
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	,
IABP	44(0.9%)	30(14.6%)	74(1.4%)	<.001
CRUSAD	42.12 ± 12.04	40.66±13.19	42.06 ± 12.09	0.097
GRACE	124.54± 27.67	143.75± 29.82	125.17± 27.94	<.001
Type of disease, n(%)				
NSTEMI	3121(62.3%)	131(63.6%)	3252(62.4%)	0.709
Unstable angina	1888(37.7%)	75(36.4%)	1963(37.6%)	
Heart Failure, n(%)	489(9.8%)	66(32.0%)	555(10.6%)	<.00
LVEF, %	61.79±10.77	755.99±13.71	61.54± 10.98	<.00
eGFR, mL/min/1.73m ²	81.64±24.99	0.85 ± 28.14	$4^{80.81\pm}_{25.45}$	<.00
eGFR≤60, n(%)	851(17.0%)	101(49.0%)	952(18.3%)	<.00
Serum creatinine, µmol/dL	1.05 ± 0.69	1.55 ± 1.28	1.07 ± 0.73	<.00
Hematocrit, g/L	0.39 ± 0.05	0.35 ± 0.06	0.39 ± 0.05	<.00
Anemia, n(%)	1605(32.0%)	127(61.7%)	1732(33.2%)	<.00
Cardiac biomarker positive, n(%)	2984(62.3%)	120(61.5%)	3104(62.2%)	0.836
In hospital medication, n(%)				
Dual antiplatelet therapy	4845(96.7%)	194(94.2%)	5039(96.6%)	0.047
Statin	4909(98.0%)	202(98.1%)	5074(97.3%)	0.956
ACE inhibitor or ARB	3939(78.6%)	170(82.5%)	4109(78.8%)	0.181
Calcium-channel blocker	1066(21.3%)	72(35.0%)	1138(21.8%)	<.00
β-blocker	4245(84.7%)	165(80.1%)	4410(84.6%)	0.070
Procedure characteristics, n(%)				

1	
2	
2	
1	
-+ _	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 28	
20	
29	
21	
21	
⊃∠ ⊃⊃	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

	A	All patients*		Р
	Uninfected	Infected	Total	value
	(N=5009)	(N=206)	(N=5215)	
Radial access	4470(89.2%)	154(74.8%)	4624(88.7%)	<.001
Coronary anatomy				
Any left main	690(13.8%)	49(23.8%)	739(14.2%)	<.001
Multi-vessel disease	3072(61.3%)	127(61.7%)	3199(61.3%)	
Others	1247(24.9%)	30(14.6%)	1277(24.5%)	
Treated vessel				
Any left main	480(9.6%)	35(17.0%)	515(9.9%)	0.002
Multi-vessel	1764(35.2%)	66(32.0%)	1830(35.1%	
Others	2765(55.2%)	105(51.0%)	2870(55.0%	
Stent type			,	
Drug eluting stent	5004(99.9%)	206(100.0%)	5210(99.9%)	0.902
Bare metal stent	2(0.0%)	0(0.0%)	2(0.0%)	
PTCA or aspiration only	3(0.1%)	0(0.0%)	3(0.1%)	
Number of stents	2(1~3)	2(1~3)	2(1~3)	0.048
Total length of stents	45(27~71)	48 (31~76)	45(27~71)	0.053
Thrombus aspiration	61(1.2%)	5(2.4%)	66(1.3%)	0.128
Time to procedure	1(1~2)	2(1~6)	1(1~2)	<.001
In 24 hours	2817(56.2%)	81(39.3%)	2898(55.6%	<.001
24~72 hours	1505(30.0%)	47(22.8%)) 1552(29.8%	
> 72 hours	687(13.7%)	78(37.9%)	765(14.7%)	
In-hospital days	4(3~6)	11(7~18)	4(3~6)	<.001

*Abbreviations: IABP=intra-aortic balloon pump; GRACE=Global Registry of Acute

Coronary Events; CRUSADE=Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines; NSTEMI=Non-ST elevation myocardial infarction; LVEF=left ventricular ejection fraction; eGFR=Estimate glomerular filtration rate; PTCA=Percutaneous transluminal coronary angioplasty. ACE=angiostensin-converting enzyme; ARB=angiotensin receptor blocker.

	Uninfected	Infected	P value	
	(N=5009)	(N=206)		
In-hospital outcomes				
Death*	10(0.2%)	9(4.4%)	<.001	
Myocardial infarction	17(0.3%)	1(0.5%)	0.726	
Death or myocardial infarction	27(0.5%)	10(4.9%)	<.001	
Major bleeding	62(1.2%)	34(16.5%)	<.001	
Death or Myocardial infarction or major bleeding	84(1.7%)	44(21.4%)	<.001	
Long-term outcomes				
30 days				
Death	17(0.3%)	10(4.9%)	<.001	
Major bleeding	61(1.2%)	31(15.0%)	<.001	
Death or major bleeding	74(1.5%)	37(18.0%)	<.001	
One year				
Death	93(1.9%)	35(17.0%)	<.001	
Major bleeding	75(1.5%)	34(16.5%)	<.001	
Death or major bleeding	161(3.2%)	56(27.2%)	<.001	
Three years				
Death	346(6.9%)	61(29.6%)	<.001	
Major bleeding	111(2.2%)	36(17.5%)	<.001	
Death or major bleeding	437(8.7%)	81(39.3%)	<.001	
* All agusa dagth:				

	Га	ble	2	In-hos	pital a	and L	long-term	clinical	outcomes
--	----	-----	---	--------	---------	-------	-----------	----------	----------

Years

2444

94

Years

2228

93

1514

73

884

50

253

17

1622

68

909

46

249

19

Α

Cumulative Death

0.5

0.4

0.3

0.1

0.0

Uninfected 5009

0.25

0.20

0.15

0.10

0.05

0.00

Uninfected 5009

Infected 206

Number at risk

4326

151

Infected

В

Cumulative Major Bleeding

Number at risk

206

4839

170

Uninfected - Infected

3668

125

P value < 0.001

3317

116

- Uninfected - Infected

P value < 0.001

Supplementary Appendix 1

Table S1. Univariate and multivariable logistic for clinical outcomes by stratifying infection

 subtype.

 Table S2 Propensity Score Analyses

 Table S3 Outcomes of Propensity Score Analyses

Figure S1. Time from hospital admission to the diagnosis of infection among all patients.

Figure S2. Kaplan-Meier estimated event rates of all cause death or major bleeding

Figure S3. Subgroup analysis of in-hospital all cause death

Figure S4. Subgroup analysis of in-hospital major bleeding

Figure S5. Subgroup analysis of in-hospital major adverse clinical events

Figure S6. Distributions of propensity scores between the two groups before and after matching (the first row is the density plots and the second row is the QQ plots)

Outcomes	U	J <mark>nivariate ana</mark>	lysis	Mu	ıltivariable an	alysis
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalu
Model 1						
In hospital						
Death						
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	8.56	2.06~35.57	0.003
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	11.51	2.15~61.49	0.004
Urinary tract infection	31.24	3.78~258.58	0.001	21.59	2.32~200.48	0.007
Other infection	29.99	8.01~112.27	<.001	23.14	5.59~95.86	<.001
Major Bleeding						
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	18.13	9.92~33.16	<.001
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	9.04	3.63~22.49	<.001
Urinary tract infection	5.16	0.67~39.50	0.114	3.10	0.39~24.51	0.283
Other infection	4.95	1.50~16.31	0.009	3.25	0.95~11.13	0.061
Death or MI or Major Bleeding						
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	14.23	8.07~25.10	<.001
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	11.28	5.14~24.76	<.001
Urinary tract infection	3.76	0.49~28.65	0.202	2.44	0.31~19.04	0.396
Other infection	6.26	2.43~16.13	<.001	4.51	1.69~12.01	0.003
Follow up						
Death						
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.06	1.39~3.06	<.001
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	2.57	1.56~4.24	<.001
Urinary tract infection	3.66	1.37~9.82	0.010	2.38	0.88~6.39	0.086
Other infection	2.62	1.44~4.79	0.002	1.45	0.79~2.66	0.232
Major Bleeding						
Community acquired pulmonary infections	14.29	9.26~22.06	<.001	8.86	5.49~14.27	<.001
Hearital convirad multiplanami infections	7.08	3.30 - 15.20	< 001	1 16	1 87~9 27	< 001

Outcomes	τ	J nivariate ana	lysis	Mu	ltivariable an	alysis
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalue
Urinary tract infection	2.54	0.35~18.13	0.354	1.66	0.23~11.98	0.616
Other infection	2.49	0.79~7.83	0.119	1.83	0.57~5.85	0.307
Death or Major Bleeding						
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	2.85	2.05~3.97	<.001
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	2.93	1.87~4.61	<.001
Urinary tract infection	2.85	1.07~7.64	0.037	1.78	0.66~4.78	0.253
Other infection	2.62	1.51~4.55	0.001	1.60	0.92~2.80	0.099
Model 2						
In hospital						
Death						
Community acquired pulmonary infections	17.24	4.66~63.73	<.001	2.01	0.37~10.86	0.418
Hospital acquired pulmonary infections	23.25	4.95~109.28	<.001	6.48	0.92~45.66	0.061
Urinary tract infection	31.24	3.78~258.58	0.001	14.68	0.96~223.51	0.053
Other infection	29.99	8.01~112.27	<.001	5.02	0.98~25.62	0.052
Major Bleeding						
Community acquired pulmonary infections	28.32	16.54~48.48	<.001	11.91	6.10~23.28	<.001
Hospital acquired pulmonary infections	14.80	6.37~34.43	<.001	7.47	2.80~19.90	<.001
Urinary tract infection	5.16	0.67~39.50	0.114	1.92	0.15~25.23	0.619
Other infection	4.95	1.50~16.31	0.009	1.05	0.26~4.23	0.942
Death or MI or Major Bleeding						
Community acquired pulmonary infections	21.85	13.05~36.59	<.001	9.69	5.12~18.37	<.001
Hospital acquired pulmonary infections	16.69	8.01~34.77	<.001	10.00	4.33~23.12	<.001
Urinary tract infection	3.76	0.49~28.65	0.202	1.59	0.13~19.16	0.713
Other infection	6.26	2.43~16.13	<.001	1.71	0.54~5.35	0.360
Follow up						
Death						
Community acquired pulmonary infections	5.52	3.78~8.06	<.001	2.70	1.81~4.03	<.001
Hospital acquired pulmonary infections	6.16	3.78~10.02	<.001	3.56	2.15~5.90	<.001
Urinary tract infection	3.66	1.37~9.82	0.010	2.90	1.08~7.80	0.034

Outcomes	Univariate analysis				Multivariable analysis		
(Compare with uninfected patients)	OR	95%CI	P value	e OR	95%CI	Pvalue	
Other infection	2.62	1.44~4.79	0.002	1.32	0.71~2.44	0.376	
Major Bleeding	14.29	9.26~22.06	<.001	6.30	3.79~10.49	<.001	
Community acquired pulmonary infections	7.08	3.30~15.20	<.001	3.51	1.57~7.84	0.002	
Hospital acquired pulmonary infections	2.54	0.35~18.13	0.354	1.42	0.19~10.39	0.731	
Urinary tract infection	2.49	0.79~7.83	0.119	1.01	0.31~3.29	0.981	
Other infection							
Death or Major Bleeding							
Community acquired pulmonary infections	6.83	4.99~9.35	<.001	3.55	2.55~4.94	<.001	
Hospital acquired pulmonary infections	6.32	4.08~9.79	<.001	3.46	2.20~5.45	<.001	
Urinary tract infection	2.85	1.07~7.64	0.037	1.96	0.73~5.28	0.181	
Other infection	2.62	1.51~4.55	0.001	1.38	0.78~2.41	0.266	

Model 1 included age, gender, current smokers, heart failure, anemia, type of disease, estimate glomerular filtration rate.

Model 2 included diabetes mellitus, hypertension, prior myocardial infarction, prior stroke, radial access, chronic kidney disease, intra-aortic balloon pump.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Propensity Score Analyses				
	Uninfected	Infected	Total	P value	
	(N=592)	(N=148)	(N=740)		
Demographics					
Age, y	70.39 ± 9.09	70.24±9.15	70.36±9.09	0.861	
Age≥65 y	444(75.0%)	110(74.3%)	554(74.9%)	0.865	
Female	166(28.0%)	37(25.0%)	203(27.4%)	0.458	
Weight, kg	63.25±12.22	63.99±12.03	63.40±12.18	0.510	
Heart rate, bpm	75.01±12.30	75.37±12.80	75.08 ± 12.40	0.751	
Blood pressure, mmHg					
Systolic	137.48±21.34	137.12±21.66	137.41±21.39	0.854	
Diastolic	76.07±11.68	76.00±11.13	76.06±11.56	0.944	
Medical history and risk factors, n(%)					
Current Smoker	157(26.5%)	41(27.7%)	198(26.8%)	0.771	
Myocardial Infarction	126(21.3%)	29(19.6%)	155(20.9%)	0.651	
Percutaneous coronary intervention	100(16.9%)	25(16.9%)	125(16.9%)	1	
Coronary-artery bypass surgery	10(1.7%)	4(2.7%)	14(1.9%)	0.418	
Stroke	36(6.1%)	9(6.1%)	45(6.1%)	1	
Atrial Fibrillation	19(3.2%)	5(3.4%)	24(3.2%)	0.917	
Hypertension	445(75.2%)	111(75.0%)	556(75.1%)	0.966	
Diabetes mellitus	248(41.9%)	67(45.3%)	315(42.6%)	0.457	
Type of disease, n(%)					
NSTEMI	225(38.0%)	60(40.5%)	285(38.5%)	0.571	
Unstable angina	367(62.0%)	88(59.5%)	455(61.5%)	NA	
Heart Failure, n(%)	123(20.8%)	32(21.6%)	155(20.9%)	0.821	

Table S2 Propensity Score Analyses

	Propensi	ty Score Analy	ses	
	Uninfected	Infected	Total	P value
	(N=592)	(N=148)	(N=740)	
LVEF, %	59.67±12.02	57.81±13.16	59.29±12.28	3 0.118
eGFR, mL/min/1.73m2	65.65±26.10	66.66±28.13	65.85±26.50	0.678
$eGFR \le 60, n(\%)$	234(39.5%)	58(39.2%)	292(39.5%)	0.940
Serum creatinine, µmol/dL	1.39±1.16	1.43 ± 1.32	1.40 ± 1.19	0.726
Hematocrit, g/L	0.36 ± 0.05	0.37 ± 0.05	0.36 ± 0.05	0.690
Anemia, n(%)	337(56.9%)	81(54.7%)	418(56.5%)	0.630
Cardiac biomarker positive, n(%)	344(61.5%)	84(59.2%)	428(61.1%)	0.603
In hospital medication, n(%)				
Dual antiplatelet therapy	558(94.3%)	138(93.2%)	696(94.1%)	0.641
Statin	576(97.3%)	145(98.0%)	721(97.4%)	0.642
ACE inhibitor or ARB	487(82.3%)	123(83.1%)	610(82.4%)	0.809
Calcium-channel blocker	200(33.8%)	46(31.1%)	246(33.2%)	0.532
β-blocker	488(82.4%)	120(81.1%)	608(82.2%)	0.701
Procedure characteristics, n(%)				
Radial access	486(82.1%)	116(78.4%)	602(81.4%)	0.299
Coronary anatomy				
Any left main	117(19.8%)	26(17.6%)	143(19.3%)	0.786
Multi-vessel disease	363(61.3%)	95(64.2%)	458(61.9%)	
Others	112(18.9%)	27(18.2%)	139(18.8%)	
Treated vessel				
Any left main	77(13.0%)	17(11.5%)	94(12.7%)	0.708
Multi-vessel	209(35.3%)	49(33.1%)	258(34.9%)	
Others	306(51.7%)	82(55.4%)	388(52.4%)	

	Propensity Score Analyses			
	Uninfected	Infected	fected Total	<i>P</i> value
	(N=592)	(N=148)	(N=740)	
Stent type				
Drug eluting stent	592(100.0%)	148(100.0%)	740(100.0%)	1
Number of stents	2.26 ± 1.29	2.27 ± 1.38	2.26±1.31	0.933
Total length of stents	56.48±35.90	58.22±38.71	56.83±36.46	0.604
Thrombus aspiration	16(2.7%)	3(2.0%)	19(2.6%)	0.642
Time to procedure				
In 24 hours	253(42.7%)	59(39.9%)	312(42.2%)	0.816
24~72 hours	135(22.8%)	35(23.6%)	170(23.0%)	
> 72 hours	204(34.5%)	54(36.5%)	258(34.9%)	

*Abbreviations: NSTEMI=Non-ST elevation myocardial infarction; LVEF=left ventricular

ejection fraction; eGFR=Estimate glomerular filtration rate; ACE=angiostensin-converting

enzyme; ARB=angiotensin receptor blocker.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Outcomes	Logistics analysis			
	OR/H	R 95%CI	P value	
In-hospital Death	4.01	0.25~64.30	0.981	
In-hospital Major bleeding	18	2.40~134.8	0.005	
In-hospital MI	2.0	0.18~22.20	0.57	
In-hospital Death or Major bleeding	17.24	4.66~63.73	<.001	
Follow-up Death	2	0.97~4.12	0.06	
Follow-up Major bleeding	5.33	1.55~18.30	0.007	
Follow-up Death or Major bleeding	2.46	1.29~4.69	0.006	

Table S3 Outcomes of Propensity Score Analyses

BMJ Open

Figure S3. Subgroup analysis of in-hospital all cause death

Subgroup no of e	Uninfected	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Interaction*	Multivariable Analysis OR(95%CI)		P Value #	P Value for Interaction*
All population	10/5009	9/205	;	22.95 (9.22~57.13)	<.001			13.19 (4.59~37.87)	<.001	
Age,y						0.013				0.010
<65	3/2629	5/148	_ →	101.78 (23.57~439.47) <.001		_ →	113.19 (20.93~611.96)	<.001	
D2E Conder	7/2380	4/157	-	8.86 (2.57~30.60)	0.001	0.069		3.50 (0.90~13.64)	0.071	0.072
Male	5/3780	9/152		47.52 (15.72~143.59)	<.001	0.900		44.39 (12.44~158.36)	<.001	0.975
Female	5/1229	0/53		0.00 (0.00~Inf)	0.984			0.00 (0.00~Inf)	0.974	
Current Smoke	r			40.07 (5.00.40.00)		0.230				0.189
NO	9/3703	6/152		16.87 (5.93~48.02) 78 28 (8 00-765 75)	<.001			11.29 (3.35~38.09) 28 98 (2.45-343.35)	<.001	
Diabetes mellit	us	3/33	-	10.20 (0.00-100.10)	<.001	0.572	_	20.00 (2.40-040.00)	0.000	0.604
No	7/3500	6/110	<u> </u>	28.79 (9.51~87.16)	<.001			19.52 (5.47~69.72)	<.001	
Yes Typo of discose	3/1509	3/95	· · · · ·	16.37 (3.26~82.23)	0.001	0.004		6.30 (1.08~36.87)	0.041	0.106
UA	5/1888	7/75		5.09 (0.59~44.11)	0.140	0.094		3.19 (0.32~31.65)	0.322	0.106
NSTEMI	5/3121	8/130		40.87 (13.18~126.75)	<.001			25.31 (6.65~96.30)	<.001	
Heart Failure				00.00 (7.40.70.00)		0.407				0.440
No	7/4520	5/140 4/65		23.88 (7.48~76.20)	<.001			20.56 (5.59~75.64) 6 49 (1 25~33 62)	<.001	
Anemia	3/405	1/00		10.02 (2.02 10.00)	0.002	0.462	-	0.10 (1.20 00.02)	0.020	0.365
No	3/3404	2/79		29.45 (4.85~178.74)	<.001			42.87 (5.37~342.46)	<.001	
Yes	7/1605	7/126	· · · ·	13.43 (4.63~38.92)	<.001	0.070		10.12 (3.05~33.57)	<.001	
eGFR,mL/min/	1.73m² 6/4058	3/105		20 35 (5 02~82 52)	< 001	0.673		24 58 (5 43~111 26)	< 001	0.537
<60	4/851	6/100		13.52 (3.75~48.76)	<.001			7.29 (1.87~28.39)	0.004	
			rimm				rttttt			
			0.5 5 40				0.5 5 40			
		Favo	r Infected Favor Uninf	lected		Favor	Infected Favor Uninf	ected		

#:P value for group; *P value for Interaction of group with subgroups

Figure S4. Subgroup analysis of in-hospital major bleeding

	Subgroup	Uninfected o of events/no o	Infected of patients	Univaria OR(95%	te Analysis SCI)			P Value #	P Value for Interaction	Multiva * OR(959	riable Analy %CI)	sis		P Value #	P Value for Interaction*
	All population	60/5009	34/206	:		16.31 (1	0.43~25.51)	<.001		;			10.24 (6.17~16.98)	<.001	
	Age,y								0.976						0.990
	<65	18/2629	4/49			12.89 (4	.20~39.63)	<.001					9.51 (2.78~32.50)	<.001	
	u≊∺ Gender	42/2380	30/157			13.15 (7	.96~21.71)	<.001	0.052				11.25 (6.44~19.63)	<.001	0.027
	Male	37/3780	27/152			21.85 (1)	2.90~37.02)	<.001					14.08 (7.74~25.60)	<.001	
	Current Smoker	20/1220			-	1.01 (0.1		<	0.541		-			0.000	0.483
	No Yes	51/3703 9/1306	27/153 7/53			- 21.93 (7	.32~25.28) .82~61.46)	<.001 <.001				-	9.49 (5.40~16.68) 17.16 (5.18~56.88)	<.001 <.001	
	Diabetes mellitus	40/2500	15/110		_	13.66.(7	20-25 58)	< 001	0.526				9 70 (4 77-19 74)	< 001	0.426
	Yes	20/1509	19/96			18.37 (9	.42~35.84)	<.001					12.31 (5.81~26.06)	<.001	
	lype of disease UA	19/1888	6/75			8.55 (3.3	31~22.09)	<.001	0.115				4.48 (1.54~13.03)	0.006	0.118
	NSTEMI Hoart Failuro	41/3121	28/131		-8-	20.42 (1	2.15~34.32)	<.001	0.823				13.59 (7.54~24.51)	<.001	0.883
	No	49/4520	19/140			14.33 (8	.19~25.07)	<.001	0.025				10.16 (5.52~18.73)	<.001	0.003
	Yes Anemia	11/489	15/66		-	12.78 (5	.57~29.31)	<.001	0.557				11.32 (4.51~28.40)	<.001	0.465
	No	39/3404	14/79			18.58 (9	.62~35.89)	<.001					12.10 (5.90~24.82)	<.001	
	eGFR,mL/min/1.73	21/1605 3m ²	20/127			14.10 (7	.41~20.02)	<.001	0.543				3.33 (4.03~13.03)	<.001	0.636
	□≊ <60	40/4158 20/851	13/105 21/101			14.55 (7 10.91 (5	.53~28.12) .67~20.98)	<.001 <.001					11.50 (5.73~23.08) 10.51 (5.03~21.93)	<.001 <.001	
				ri.	TTTT	۰ ٦				-i		7			
			Fourt	0.5	2 10 8	80 Fourier Lipinfected			Fourier	0.5	2 10	80 Found I	Ininfa ato d		
#·P value	for group: *P value for	r Interaction of grou	ravor	nuos		Pavor Oniniected			Favor	Intected		Favor C	minected		

BMJ Open

Figure S5. Subgroup analysis of in-hospital major adverse clinical events

Subgroup	Uninfected no of events/no	Infected of patients	Univariate Analysis OR(95%CI)		P Value #	P Value for Multiv Interaction* OR(95	ariable Analysis 5%CI)		P Value #	P Value for Interaction*
All population	82/5009	40/206	-	14.48 (9.62~21.78)	<.001		-	9.63 (6.10~15.22)	<.001	
Age,y <65 □≋⊞	28/2629 54/2380	8/49 32/157	- -	18.13 (7.80~42.17) 11.03 (6.87~17.69)	<.001 <.001	0.314		13.80 (5.51~34.56) 9.49 (5.63~15.99)	<.001 <.001	0.270
Gender Male Female	52/3780 30/1229	33/152 7/54		19.88 (12.39~31.90) 5.95 (2.49~14.25)	<.001 <.001	0.017	-=- =-	13.27 (7.81~22.54) 3.91 (1.48~10.33)	<.001 0.006	0.011
Current Smoker No Yes	69/3703 13/1306	32/153 8/53	- - -	13.93 (8.82~21.99) 17.69 (6.98~44.80)	<.001 <.001	0.652	- - -	9.36 (5.62~15.59) 13.75 (4.65~40.69)	<.001 <.001	0.579
No Yes Type of disease	55/3500 27/1509	20/110 20/96	- - -	13.92 (8.01~24.20) 14.44 (7.75~26.92)	<.001 <.001	0.013		10.44 (5.61~19.41) 9.78 (4.89~19.53)	<.001 <.001	0.015
UA NSTEMI Heart Failure	32/1888 50/3121	7/75 33/131	-	5.97 (2.54~14.01) 20.68 (12.75~33.54)	<.001 <.001	0.575		3.74 (1.48~9.48) 14.20 (8.21~24.56)	0.005 <.001	0.651
No Yes Anemia	66/4520 16/489	23/140 17/66	÷	13.27 (7.98~22.07) 10.26 (4.88~21.57)	<.001 <.001	0.496	-	9.96 (5.74~17.29) 10.24 (4.48~23.41)	<.001 <.001	0.418
No Yes eGFR,mL/min/1.7	52/3404 30/1605 '3m ²	16/79 24/127	+	16.38 (8.87~30.24) 12.23 (6.90~21.69)	<.001 <.001	0.699	-	11.47 (5.91~22.25) 8.98 (4.79~16.86)	<.001 <.001	0.706
□≋≐⊐ <60	58/4158 24/851	16/105 24/101		12.71 (7.03~22.97) 10.74 (5.82~19.81)	<.001 <.001	Г	 	10.52 (5.65~19.56) 9.76 (4.94~19.29)	<.001 <.001	
		Favor Ir	0.5 2 10 Infected Favor Uninfe	cted		0.5 Favor Infected	2 10 Favor Uninfe	cted		

#:P value for group; *P value for Interaction of group with subgroups

BMJ Open

Figure S6. Distributions of propensity scores between the two groups before and after matching (the first row is the density plots and the second row is the QQ plots)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item		Page No
	No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	3-4
		was done and what was found	
Introduction			·
Background/rationale	2	Explain the scientific background and rationale for the investigation being	6
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed	NA
		and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7-8 &
		and effect modifiers. Give diagnostic criteria, if applicable	supplement
Data sources/	8*	For each variable of interest, give sources of data and details of methods	supplement
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9 &
		(c) Explain how missing data were addressed	supplement
		(d) If applicable, explain how loss to follow-up was addressed	~~ FF
		(<i>e</i>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
i unorpunto	10	potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	9-10
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical.	
*		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	9-10
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	

BMJ Open

Outcome data		15* Report numbers of outcome events or summary measures over time	9-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	10-11 &
		(b) Report category boundaries when continuous variables were categorized	supplement
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	11 &
		sensitivity analyses	supplement
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	14
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14-15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14-15
Other information	ı		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	15-16
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.