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a
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge MA, 02139,

USA
bInternational Business School Budapest, Budapest, 1037, Hungary
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Supporting Information 1: Spatial diffusion and churn over the
product life-cycle

Video on spatial diffusion and churn of iWiW. Nodes denote towns and links represent invitations sent
across towns between 2002 and 2012 on a monthly basis. The size of nodes illustrates the number of users
who registered in the town by the given month and the color depicts the share of those registered users
who still logged in. Adoption started in Budapest (the capital) and was followed first in its surroundings
and other major regional subcenters. The vast majority of invitations have been sent from Budapest in
the initial phase of diffusion and subcenters started to transmit spreading when diffusion speeded up in
the middle of the life-cycle. A decisive fraction of users logged in to the website even after Facebook
entered the country in 2008. Collective churn started in 2010 and the rate of active users dropped quickly
in most of the towns. Exceptions are small villages in the countryside, where people have difficulties to
adopt new waves of social media innovation.

For the video on spatial diffusion and churn, go to https://vimeo.com/251494015
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Supporting Information 2: Correlation of Bass model predictions
and geographical characteristics

Prediction Error correlates negatively with peak of adoption indicating that Bass prediction of peaks
works better in towns that adopt late. Town size and Distance from the Capital are negatively correlated
with each other (ρ = −0.32). We find that qi is significantly smaller in large towns than in small
towns. There is a significant negative correlation between the month of Predicted Peak and qi; while
this correlation with pi is positive. Standard errors of pi and qi correlate strongly with the respective
parameters. Further correlations of SEqi indicate that estimation of qi is significantly more accurate in
towns where adoption peaks late but is less accurate in towns that are far from Budapest.

Figure S1: Pearson correlation coefficients of Bass model and geographical characteristics of towns. Peak
denotes month of observed adoption peak in towns; P. Peak is the predicted month of adoption peak by
the Bass model; P. Error is predicted month of adoption peak minus the empirical peak; pi and qi denote
Bass model parameters; SEpi and SEqi are standard errors of the estimated parameters; Pop denotes
log10 of town population and Dist denotes log10 kilometers from Budapest.
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Supporting Information 3: Network sampling for ABM

To model diffusion in the empirical social network, we sample the full network of 3 Million nodes by
keeping the distribution of nodes according to locations and network communities. This is done by
identifying the community structure of the full network with the Louvain algorithm and assigning every
node into one community. Then, we take 5%, 10%, 20% samples and stop sampling when the p-value of
the Kolmogorov-Smirnov test comparing both town and community distributions of the sampled and full
node lists is larger than 0.95. Finally, we connect the nodes with ties that link them in the full network
and exclude those nodes that are not part of the giant component.

In Table S1, we compare structural characteristics of the 5%, 10%, and 20% sample networks with
the full network. Density of links in the sampled networks are on the same magnitude as the full network.
However, the smaller sample we take the higher density. Global clustering (the ratio of closed triangles
among all possible triangles) is identical across samples, which is around half of the full network. The
fraction of links that connect individuals across towns are identical in the samples and the full network.

Table S1: Characteristics of sampled networks

Sample 5% 10% 20% 100%
Nodes in Giant Component 128,590 271,941 564,134 3,050,988
Links 675,227 2,712,588 10,799,507 279,708,125
Density 8.167× 10−5 7.33× 10−5 6.78× 10−5 6.01× 10−5

Global clustering 0.09 0.09 0.09 0.17
Links across towns, % 50.1% 51.2% 51.1% 51.1%

In Figure S2, we plot degree distribution and distance decay of connections for each sample and the
full network. The sample degree distributions lack the high probability of low-degrees (k < 10) that
is an interesting characteristic of the full network. Further, the probability of ties at short distances
(d < 101.5) deviate positively from the generally observed distance decay in the full network. This
deviation is present in the sample networks as well, but only to a lesser extent.

Figure S2: Degree distribution and distance decay in the sampled networks

In sum, by taking the 10% sample of the full network, we cannot fully represent the fraction of low
degree nodes and short-distance linkages. Consequently, Density is higher and Global Clustering is lower
in the sampled network than in the full network. In our understanding, this slight bias does not disturb
the consistency of our findings, since urban scaling of adoption and distance decay of spreading have
similar patterns in the full network and in the 10% sample we apply in the ABM.
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Supporting Information 4: Calibration of ABM parameters and
their influence on adoption

Fitting the ABM to the diffusion data

We fit our basic ABM model to the diffusion data using the method of Xiao et al. [1]. The first step
in the fitting is finding the linear transformation between the macroscopic p and q parameters of the
solution of the Bass differential equation (see Eq.1), and the microscopic pABM and qABM parameters
that drive the neighborhood adoption in the ABM (see Eq.3).(

pABM

qABM

)
= C

(
p
q

)
+ ε (S1)

First, to achieve this, we run several ABM models with all possible (p, q) pairs, where p ∈ {0.25 ×
10−4, 0.5× 10−4, 0.75× 10−4, . . . , 2× 10−4} and q ∈ {0.08, 0.1, 0.12, . . . , 0.2}, and fit the solution of the
Bass equation with nonlinear least squares method to all of the adoption curves. Thus, we get the (p, q)
pairs corresponding to the (pABM , qABM ) values, and by using OLS, we can fit both C and ε.

Second, we fit the Bass DE solution to the empirical adoption curve using again the nonlinear least
squares method. From this fit, we get p̂ = 0.0001570 and q̂ = 0.1047. Substituting these values into
Eq. S1, we get our initial estimates pABM

0 = 0.0001939 and qABM
0 = 0.1191 for the microscopic parameter

values.

Starting out from this (p0, q0) pair, we set up a grid in the (p, q) parameter space with ∆p = 0.00001
and ∆q = 0.01. We are going to run ABMs corresponding to the (p, q) pairs on this grid, and we
characterize the goodness of fit of these ABMs with respect to the empirical data by calculating the
sum of the squared deviation of the ABM adoption curve from the empirical adoption curve (SSE). We
keep track of the already visited grid points, the SSE at each gridpoint, and the two gridpoints with
the least SSEs so far. In each search step, we take these two points, and we run ABMs and calculate
the corresponding SSEs for all of their neighboring gridpoints (p±∆p, q ±∆q) that we have not visited
yet. Then, we determine the two new least SSE gridpoints, and continue the search. When there are no
new neighbors for the two selected least SSE points that have not been visited yet, we stop the search,
and select the parameter pair with the least SSE to be the parameters for the fitted ABM. Our final
parameters after this optimization step are: pABM

opt = 0.0001940, qABM
opt = 0.1191.

Selecting parameters to control for adoption threshold distribution

Figure S3: The transformation function for the modified ABM and parameter selection.

To find the optimal values of h and l, we run ABMs with the previously calculated pABM
opt and qABM

opt

parameters for different (h, l) parameter pairs where h ∈ {0, 0.1, 0.2, . . . 1} and l ∈ {0, 0.1, 0.2, . . . 1}. We
then select the combinations for which the error was below the threshold log10 SSE < 10.2. For these,
we calculate the Pearson correlation of the peak adoption time of the largest towns (where population
is greater than 5000) in the dataset. Then, as an alternative ABM model, we select h = 0.2 and l = 0.2,
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since this combination gives the highest correlation ρ = 0.12 apart from the original h = 0, l = 0
model, for which ρ = 0.14. Figure S3 illustrates T (x, h, l) from Eq. 5 (left) and CDF of ABM adoption
considering various levels of h and l (right).

The influence of transformation function on adoption probability

Figure S4 illustrates the transformation function T (Nj(t), h = 0.2, l = 0.2) and the empirical distribution
of Nj(t) on the full network. In this paper, we do not aim to develop a perfect T to weight adoption
probability that can reproduce the empirical Nj(t) distribution. Instead, we intend to modify adoption
probability in a simple way and motivated by the threshold distribution. Our approach captures the
notion that Nj(t) peaks between 0.4 and 0.6 (Figure S4). However, empirical Nj(t) are relatively rare
below 0.3 (these are high degree individuals, as reported in Figure 3B) that is not reflected by our T .

Figure S4: Threshold distribution and its modulation.

Substituting T in Eq. 3 with Eq. 5 gives us adoption probability at Nj(t)), which equals p̂ABM +

Nj(t) × q̂ABM in case h = 0.0 and l = 0.0 and p̂ABM + (−1.6Nj(t)
3 + 1.6Nj(t)

2 + 0.8Nj(t)) × q̂ABM

in case h = 0.2 and l = 0.2. We substitute p̂ABM and q̂ABM values and plot adoption probabilities as
a function of Nj(t)) in Figure S5 (left) and also their differences (right).

Figure S5: Linear and non-linear impact of neighbors on adoption probability.

Setting h = 0.2 and l = 0.2, instead of h = 0.0 and l = 0.0, slightly decreases adoption probability
until Nj(t)) = 0.2 but provides higher probability for Nj(t)) values between 0.2 and 0.8. The additional
probability of h = 0.2 and l = 0.2 is highest at Nj(t)) = 0.6. Adoption probability of the h = 0.2 and
l = 0.2 setting declines at Nj(t)) > 0.8 such that probability at Nj(t)) = 1 is approximately equal to the
probability at Nj(t)) = 0.7.
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Supporting Information 5: Urban scaling estimates with control
variables

To understand, whether urban scaling of adoption is governed by demographic characteristics of towns,
we run multiple OLS regressions with number of adopters across life-cycle stages as dependent variable.
Independent variables include town population (log) and further measures that have been used in previous
studies to predict adoption rate, or to investigate inequalities: development level (average income[2]),
inequalities (Gini of income[3]), internet infrastructure and media presence (Telecom Composite Index,
Number of TV, Number of School PC[2]), physical barriers of social interaction in towns (Rail-River
Division [3]), segregation (Ethnic Entropy[3]), town hierarchy (Subregion Centre[2]).

We find a robust urban scaling coefficient reported in Figures 4A and 4C. Economic development of
towns measured in average salary increases adoption at all phases of the life-cycle prediction; whereas
development in terms of telecommunication infrastructure facilitates adoption in the Innovation phase
only.

Table S2: Regression Results

Dependent variable:

Innovator Users (log)

(1) (2) (3)

Population (log) 1.342∗∗∗ 1.297∗∗∗ 1.083∗∗∗

(1.139, 1.546) (1.183, 1.410) (1.047, 1.118)

Average salary 0.001∗∗∗ 0.0003∗∗ 0.0001
(0.0003, 0.001) (0.0001, 0.001) (−0.00002, 0.0001)

Gini 0.146 0.236 0.044
(−0.808, 1.100) (−0.294, 0.766) (−0.120, 0.208)

Telcom index 0.082∗ 0.041 −0.016∗∗

(−0.012, 0.175) (−0.011, 0.093) (−0.032, −0.0004)

TV use −0.002 0.003 0.001
(−0.009, 0.005) (−0.001, 0.007) (−0.0003, 0.002)

PC in school −0.002 −0.002 0.001
(−0.007, 0.004) (−0.005, 0.001) (−0.0004, 0.001)

RRDI 0.067 −0.014 −0.021
(−0.167, 0.302) (−0.147, 0.118) (−0.062, 0.020)

Ethnic entropy −0.454 −0.249 −0.006
(−1.422, 0.514) (−0.795, 0.298) (−0.175, 0.163)

Town −0.070 −0.022 −0.012
(−0.250, 0.109) (−0.120, 0.077) (−0.042, 0.019)

Constant −5.161∗∗∗ −4.259∗∗∗ −2.205∗∗∗

(−6.740, −3.582) (−5.145, −3.373) (−2.480, −1.931)

Observations 143 149 149
R2 0.726 0.869 0.978
Adjusted R2 0.658 0.838 0.973

Note: 95% Confidence Interval in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Supporting Information 6: Estimates and confidence intervals of
urban scaling coefficients in the ABM sample

We estimate the logarithm of adopters in towns with the logarithm of town population using an ordinary
least squares regression. Table S3 details Figure 4C by reporting 95% confidence intervals for each
estimates. All coefficients are significantly above 1. This indicates super-linear scaling meaning that
adoption concentrates in large towns.

Table S3: Urban Scaling Coefficients

Innovators Early Adopters Majority and Laggards
Data 1.34 1.26 1.06

(1.18,1.57) (1.16,1.36) (1.02,1.09)
DE 1.19 1.18 1.04

(1.13,1.25) (1.14,1.23) (1.01,1.08)
ABM(h=0.0,l=0.0) 1.12 1.10 1.10

(1.02,1.21) (1.04,1.15) (1.06,1.13)
ABM(h=0.2,l=0.2) 1.22 1.13 1.08

(1.11,1.34) (1.05,1.21) (1.05,1.12)

Supporting Information 7: Assortativity of adoption fuels peak
prediction bias in large towns

Connections of individuals with similar tendency to adopt, or assortative mixing, is crucial in spatial
spreading. However, predicting the likelihood of adoption is the aim of diffusion models and a priori
labeling of individuals in these models would be a paradox.

Figure S6: Assortativity in adoption and its bias in peak prediction. A. Assortative mixing of adoption
categories. B. Assortative mixing (measured by Newman’s r) is higher in the empirical data than in the
ABM(h=0.0, l=0.0). C. Difference of adoption time (measured in months) between the user and his/her
direct connections is smaller in the empirical data than in both versions of the ABM. D. Assortative
mixing of adopter categories by Rogers correlates with the standardized Prediction Error in the town.
Size of the dots denotes the log of town population; blue solid line represents predicted values from a
linear regression with 95% confidence interval.
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To illustrate adoption assortativity in our data in Figure S6A, we calculated the number of links
between groups Wij and compared it to the expected number of ties E(Wij) for which uniform distribution

of links across the groups is assumed and is calculated by
∑

j Wi∗
∑

i Wj∑
Wij

. We have transformed the Wij
E(Wij)

ratio into the (-1; 1) interval using the x−1
x+1 formula. This indicator is positive if the observed number

of ties exceeds the expected number of ties and negative otherwise. The plot suggests that assortative
mixing fragment the network into categories of Innovators and Early Adopters who are only loosely
connected to Late Majority and Laggard users.

To characterize assortativity on the town level, we classified each user into the adopter categories
stated by Rogers[4] and calculated Newman’s assortativity r [5] for every town. This indicator takes
the value of 0 when there is no assortative mixing by adopter types and a positive value when links
between identical adopter types are more frequent than links between different adopter types. Figure
S6B demonstrates the similarity of peers in each town using the Newman r index of assortative mixing
[5]. In many towns, the empirical data has a stronger assortativity than the ABM(h=0.0, l=0.0). This
phenomenon is due to adoption time lag differences depicted in Figure S6C. Here we contrast ABM(h=0.0,
l=0.0) and ABM(h=0.2, l=0.2) with empirical data in terms of the average difference between adoption
time between each ego and the time of adoption of his/her network neighbors. The ABM differs from the
empirical data in determining how fast individuals follow their connections. These observations confirm
that assortative mixing in terms of adoption tendency is an important feature of spatial diffusion of
innovation.

To test how assortative mixing influences the spatial prediction of the diffusion ABM(h=0.0, l=0.0)
in Figure S6D, we estimated the prediction error with Newman’s r with ordinary least square estimator
and used the number of OSN users in the town as weights in the regression. The ABM predicted adoption
earlier in the majority of small towns, where no assortative mixing was found. On the contrary, the ABM
predicted adoption late in large towns, where Innovators and Early Adopters were only loosely connected
to Early- and Late Majority and Laggards. In case, we do not include weights in the regression, the
point estimate of assortativity is not significant. These findings confirm that assortativity in terms of
the adoption probability influences diffusion [6, 7] and fuels peak prediction bias in large towns.

Supporting Information 8: Confidence intervals of Prediction
Error estimations

We estimate the Prediction Error of DE, ABM(h=0.0, l=0.0) and ABM(h=0.2,l=0.2) models with town-
level social network variables and geographical characteristics using ordinary least squares regressions.
Table S4 details Figure 5C by reporting 95% confidence intervals for each estimates.

Table S4: Prediction Error Estimates

DE ABM(h=0.0,l=0.0) ABM(h=0.0,l=0.0)
Distance from Capital 0.035 -0.079 -0.100

(0.021,0.048) (-0.109,-0.048) (-0.134,-0.065)
N. of Users -0.011 0.020 0.023

(-0.015,-0.006) (0.010,0.030) (0.012,0.034)
Avg. Path Length -0.017 0.026 0.026

(-0.024,-0.011) (0.013,0.038) (0.012,0.040)
Modularity -0.065 0.074 0.098

(-0.089,-0.040) (0.020,0.127) (0.037,0.158)
Transitivity -0.012 -0.041 0.009

(-0.029,0.005) (-0.076,-0.006) (-0.029,0.049)
Density 0.021 -0.051 -0.007

(0.007,0.035) (-0.079,-0.023) (-0.038,0.024)
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Supporting Information 9: Regression table for ABM Prediction
Error

To understand, whether Prediction Error of adoption peaks is governed by demographic characteristics
of towns, we run multiple OLS regressions with Prediction Error of DE and ABM predictions as depen-
dent variable. Independent variables include geographical variables that we focus on (population and
distance) and further measures that have been used in previous studies to predict adoption rate, or to
investigate inequalities: development level (average income[2]), inequalities (Gini of income[3]), internet
infrastructure and media presence (Telecom Composite Index, Number of TV, Number of School PC[2]),
physical barriers of social interaction in towns (Rail-River Division [3]), segregation (Ethnic Entropy[3]),
town hierarchy (Subregion Centre[2]).

We find that Population and Distance influence ABM Prediction Error as reported in the main text.
Also, prediction is slightly late in towns that are relatively developed (measured by average income).
The rest of the socio-economic variables, however, do not have significant point estimates.

Table S5: Regression Results

Dependent variable:

Pred. Fail., DE Pred. Fail., ABM(h=0.0, l=0.0) Pred. Fail., ABM(h=0.2, l=0.2)

(1) (2) (3)

Population (log) 0.039∗∗∗ 0.030∗∗∗ 0.038∗∗∗

(0.023, 0.054) (0.013, 0.047) (0.019, 0.057)
Distance from Budapest, km (log) −0.021 −0.064∗∗∗ −0.076∗∗∗

(−0.053, 0.011) (−0.098, −0.029) (−0.114, −0.038)
Average salary −0.00002 0.0001 0.0001∗∗∗

(−0.0001, 0.00004) (−0.00001, 0.0001) (0.00005, 0.0002)
Gini 0.056 0.042 0.067

(−0.046, 0.159) (−0.069, 0.153) (−0.056, 0.190)
Telcom index −0.001 0.004 −0.003

(−0.013, 0.011) (−0.009, 0.016) (−0.017, 0.011)
TV use −0.0002 0.0004 0.0001

(−0.001, 0.001) (−0.0004, 0.001) (−0.001, 0.001)
PC in school 0.0002 0.00002 0.0003

(−0.0005, 0.001) (−0.001, 0.001) (−0.001, 0.001)
RRDI 0.006 −0.013 0.011

(−0.023, 0.036) (−0.044, 0.019) (−0.024, 0.046)
Ethnic entropy −0.084 −0.112∗ −0.013

(−0.197, 0.028) (−0.233, 0.010) (−0.147, 0.122)
Town 0.013 0.008 −0.002

(−0.012, 0.039) (−0.019, 0.036) (−0.033, 0.028)
Constant 0.075 −0.029 −0.117

(−0.295, 0.445) (−0.431, 0.372) (−0.561, 0.327)

Observations 2,237 2,237 2,237
R2 0.026 0.030 0.038
Adjusted R2 0.014 0.017 0.025

Note:95% CI in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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