
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Based on a large cohort of >4K samples, the authors derive a novel species prevalence metric that 

separates healthy metagenome samples from non-healthy ones. The metric was designed to rely 

on species prevalence rather than abundances which makes it robust against batch effects and 

some common confounding. Validation with an additional test set of about 600 individuals 

demonstrates that the metric is robust even when applied to diseases not present in the training 

data set. 

 

The question of what constitutes a healthy microbiome is one of the unsolved key problems in the 

field right now and the manuscript shows a novel and creative way to get closer to an answer. The 

major strength of the novel microbiome health index presented here is that the authors took a lot 

of care to circumvent some of the common problems in designing a score based on samples from 

heterogeneous studies and protocols. In particular, I found the strategy to use a prevalence-based 

score rather than an abundance score quite appealing. I do have some doubts about using species 

abundance rather than other taxonomic ranks or gene abundances. Also it should be mentioned 

that the score classifies absence of diagnosed disease rather than actual health status and that 

there may be geographical/cultural biases since the training set is mostly (but not exclusively) 

composed of samples from the US, Europe and Asia. Nevertheless the manuscript takes a good 

first step at defining health through the microbiome and will be of interest to a wide readership 

and the medical community. The manuscript is well written and provides a clear path from 

motivation to results. 

 

Suggested major changes 

 

1) The paper develops a novel microbiome health index but I feel like the “health” part would 

require some additional validation. The index itself is designed to separate disease samples from 

their controls and samples with abnormal BMI. However, it is unclear whether those controls are 

indeed healthy individuals as the only thing one knows for sure is that they did not show 

symptoms severe enough to be classified as diseased in the particular study. In order to validate 

that the microbiome index indeed quantifies health I would like to see at least a validation with a 

data set that contains a detailed clinical characterization of the cohort to check whether individuals 

with the highest health index do indeed show better clinical labs, higher indices of self-reported 

well-being or less ambulant treatments than individuals with a lower index. The authors own RA 

cohort may be helpful here. Alternatively, the authors could train a genus-level score (as 

suggested below) and validate the health status on the American Gut data set 

(https://doi.org/10.1128/mSystems.00031-18) which includes a wide array of health measures 

and self-evaluations. 

 

2) I was surprised the authors chose species as the summary rank for their health index. If one 

wanted to design a score specifically for metagenome samples better performance would probably 

be achieved by using bacterial gene abundances directly as this is much closer to a functional 

analysis. The authors claim themselves that one would expect less functional heterogeneity than 

taxonomic heterogeneity and show that the identified species share similar genes. I do think that 

basing an index on taxon abundances is still valuable but would probably be more useful on the 

genus-level as this opens up validation with many more 16S amplicon sequencing data sets 

(where reliable taxonomic classification is usually only achieved down to the genus-level). At the 

very least I would like to see a comparison of accuracies on various taxonomic ranks to show that 

the species level does indeed show better performance than other ranks. 

 

3) The index will naturally depend on the training set and may not extend well to cohorts different 

from the training data. Even though the authors tried to generate a diverse data set it still included 

very few samples that are not from developed countries. There are only a handful of samples not 



from the US, Europe or Asia, and it looks like the health index does not perform well for data sets 

from different cohorts. For instance see the study from Obregon-Tito et. al. (Peru) in Figure 2 but 

also several studies from China where the healthy cohorts are primarily classified as “less healthy” 

(lower index). This limitation should be mentioned in the text as its misinterpretation in a potential 

clinical setting could have negative consequences for underrepresented groups. 

 

Suggested minor changes 

 

4) Some studies are missing in Figure 2. For instance the study from Sankaranarayanan et. al. The 

figure caption should explain why studies were omitted here. 

 

5) The gene copy number number analysis presented in Figure 3 seemed a bit inaccurate since it 

only used data from reference strains which are probably not representative of the actual strains in 

the samples. Metagenome data allows to quantify gene copy number directly from the sequencing 

data. This can b achieved by metagenomic assembly and de novo gene prediction. Metagenomic 

binning should still allow to connect gene abundances back to the Metaphlan marker genes. This 

would be much more representative of shared functions than some arbitrary reference strains. 

 

6) I feel like the formula for the health index (h) should be motivated and explained a bit better. 

The description in the supplement does describe *how* the index is calculated but I would have 

liked to read *why* the authors chose that particular formula. For instance, the weighting with the 

Shannon diversity makes sense to me as it prefers samples with a high diversity of health-related 

microbes, but the description is a bit complicated and may not be accessible to a wide readership - 

especially one that is not familiar with alpha diversity or the Shannon index. 

 

7) The authors claim that their measure is robust against batch effects but this is not 

demonstrated. The authors should show that the distribution of the index for healthy individuals 

does not vary between studies and does not depend on library size. 

 

8) I would appreciate if some more of the source code is provided to reproduce the study. For now 

the authors include a script that calculates the health index but do not provide materials that 

would allow running the Metaphlan analysis on the full data set used in the study. The provided 

SRA accession for the authors' data does not seem to be exist (may still be under embargo). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In their manuscript, Gupta and colleagues posit a functional form for a microbiome index, 

parameterize the index using a large dataset of cross-sectional microbiome studies, then 

investigate the metagenomic meaning of the index and compare its performance in classifying 

cases vs. controls in the dataset of microbiome studies. 

 

I have serious concerns about the validity and utility of this approach. I was confused by the 

rationale for the work and the organization of the manuscript. My approach will be to re-construct 

the authors' argument and key claims, noting what I think are the key issues in each case. 

 

# Rationale 

 

As I understood, this work is motivated by three rationales. 

 

First, there are barriers to understanding the role of the microbiome in health and disease when 

using individual studies (line 76 and following). Therefore, meta-analyses comparing health and 

disease across studies, populations, and diseases is important to microbiome science. 

 



Table 2 and Figure 3 seem to be the fulfillment of this meta-analysis rationale, but the results are 

presented through the lens of the creation of the novel index, which makes it difficult to interpret 

the results as a meta-analysis per se. 

 

If a meta-analysis were the focus of the paper, I would have expected the authors to carefully 

survey previous meta-analyses and make a clear advancement over them in terms of dataset, 

methodology, or interpretation. It was not clear to me how the novel index was a methodological 

advance in the identification of health- and disease-associated species. 

 

Second, a common analysis in microbiome studies comparing cases and controls is bacterial alpha 

diversity, with the expectation that health individuals will have higher diversity than ill ones. 

However, alpha diversity is not a "reliable and accurate" metric (l. 67), and new metrics must be 

developed to "provide a significant advancement in current microbiome science" (l. 70). The 

authors therefore developed a novel index, the GHMI. 

 

I was confused why a novel metric will advance microboime science, and I found the Introduction's 

explanation vague. The authors themselves cite Shade's "Diversity is the question, not the 

answer", which I think posits the question that the authors do not answer here: how does the 

novel metric explain something previously unknown about the microbiome? 

 

Put another way, if alpha diversity analyses are themselves misguided, why is it good to have an 

index that is more accurate than alpha diversity? 

 

To my mind, a microbiome index has two important features, accuracy and interpretability. 

"Accuracy" means that the index must accurately separate cases and controls. "Interpretability" 

means that the index's separation of cases and controls must lead to some biological hypothesis, 

as per Shade. The author's index appears more accurate, but I found its mathematical formulation 

confusing. The identification of health- and disease-associated species, the first step in the index's 

parameterization, is interpretable, but that brings me back to the meta-analysis rationale above. 

 

Furthermore, if the twin goals are accuracy and interpretability, I would be curious whether 

simpler, more interpretable functional forms of the index achieve similar accuracy. How does, say, 

a metric defined as the number of health-associated "present" (e.g., >10^-5 abundance) compare 

to the full-blown GHMI? 

 

Third, metrics that can reliably distinguish between health and disease would have a clinical 

application: continuous monitoring of an individual's stool's bacterial alpha diversity would "detect 

significant changes or abnormalities in comparison to his/her normal baseline measurements", 

triggering "additional diagnostic procedures and/or therapeutic interventions". (l. 71 ff.) 

 

Clinically, what is needed more than a generalized alarm bell are diagnostics. If a patient is having 

their stool routinely analyzed, it would be good to know what was wrong with them! That being 

said, there is some theoretical utility for a generalized alarm bell. If this were the main focus of the 

manuscript, then I would pose some testing questions: 

 

- If the goal is to develop an index that is usefully longitudinally, why use the cross-sectional data 

in this manuscript to develop the index? A timeseries approach would entail vastly different design 

and evaluation criteria. 

- If the goal is the detect changes in comparison to a patient's "normal baseline", why not simply 

compare today's sample against yesterday's? Each patient would serve as their own control? 

- How does the GHMI compare to alternatives? How much better is this metric, which requires 

fairly extensive parameterization, than alpha diversity? How much worse is it than ensemble 

methods (e.g., random forest) that are inscrutable but usually very accurate? 

- How much extra information does a longitudinal microbiome index add on top of other clinical 

markers? If the datastream from an Apple Watch gives me more information, I'll just use that 



rather than collecting and sequencing stool! 

 

I expect that a clearer focus on one of these rationales could improve the paper. For example, l. 

584 ff. mentions theoretical roles that the GHMI could play in FMT, both as a classifier for healthy 

donors (i.e., rationale #3?) and as a way to select probiotic cocktail communities (i.e., rationale 

#1). However, there is no discussion of the (lack of) literature about how microbiome screening 

could improve FMT donor quality, nor of the knowledge gaps in cocktail designs. By trying to 

address all three rationales at once, I fear that none of them are done any justice. 

 

# Methods 

 

As I understood, the GHMI requires two steps of parameterization. First, health- and disease-

associated bacteria are identified. Second, the thresholds θ_f and θ_d are selected. 

 

If this is accurate, then I have major reservations about many of the claims made in the 

manuscript about the accuracy of the index. If it was trained on this dataset, and health- and 

disease-associated bacteria defined using this dataset, it is no surprise that the index can 

distinguish between health and disease. (The larger surprise, that there is a cross-study and cross-

indication signal of disease, although a major focus of Duvallet et al.'s meta-analysis, is not much 

discussed here.) The typical approaches for investigating a classifier's accuracy, like cross-

validation and ROCs, are not used; instead the authors make the claim to accuracy based only on 

a small validation data set. 

 

# Minor points 

 

- Fig 2b, etc.: Why a PCA rather than an MDS, if the goal is to look for separation? 

- Fig 2b: Is the PERMANOVA significant when accounting for studies or indiciations? MiRKAT is a 

tool that can test for separation while accounting for covariates. 

- Fig 4c: Does Shannon diversity separate cases and controls within individual studies? This is akin 

to what's shown in Fig 5b, but I wonder if lumping all studies together makes Shannon look a 

worse classifier than it is. 

- Claims about "core" microbiome (l. 153) should be introduced by what's known in that literature 

- l. 204: A major weakness in the microbiome literature is poor characterization of effect sizes. 

With the large sample sizes used in this study, a difference in microbiome composition could easily 

be statistically significant without being scientifically interesting or clinically meaningful. 

- l. 212: This approach seems very ad hoc. Why this particular formulation, and not one of dozens 

of others? What are the design criteria? 

- l. 233: I think it's confusing to the reader to show a difficult equation and say to look in the 

Supplement for an explanation. If the GHMI is the centerpiece of the paper, its development, 

rationale, and form should be a key part of the text. 

- From Supp Table 3, it looks like the classifier's accuracy is not very sensitive to the choices of the 

threshold parameters. How sensitive are the results to the choice of health- and disease-

associated species, and to the threshold parameters? 

- l. 295: I found this confusing: doesn't the GHMI have two thresholds and ~100 selections of 

species as health- or disease-associated? Why is that not "arbitrary"? 

- l. 300: The use of the word "potential" implies that the microbiome is causative in disease. This 

is generally not known. 

- l. 312: Why was this one result on sphingolipids the one discussed? It feels like cherry-picking. 

- l. 344: Is 71% good? How much better is it than alpha diversity? How much worse is it than a 

random forest classifier, which is inscrutable but usually a better predictor? 

- l. 375 ff. This should be the first Results section! If the claim is that alpha diversity is insufficient, 

the first Results should substantiate that claim. Many, many studies have claimed that alpha 

diversity is associated with health. This isn't to say they are right and you are wrong, but it does 

mean that, if you want to claim they are all wrong, you need to back up the claim! 



 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Based on a large cohort of >4K samples, the authors derive a novel species prevalence metric that separates                  
healthy metagenome samples from non-healthy ones. The metric was designed to rely on species prevalence               
rather than abundances which makes it robust against batch effects and some common confounding.              
Validation with an additional test set of about 600 individuals demonstrates that the metric is robust even when                  
applied to diseases not present in the training data set. 
 
The question of what constitutes a healthy microbiome is one of the unsolved key problems in the field right                   
now and the manuscript shows a novel and creative way to get closer to an answer. The major strength of the                     
novel microbiome health index presented here is that the authors took a lot of care to circumvent some of the                    
common problems in designing a score based on samples from heterogeneous studies and protocols. In               
particular, I found the strategy to use a prevalence-based score rather than an abundance score quite                
appealing. I do have some doubts about using species abundance rather than other taxonomic ranks or gene                 
abundances. Also it should be mentioned that the score classifies absence of diagnosed disease rather than                
actual health status and that there may be geographical/cultural biases since the training dataset is mostly (but                 
not exclusively) composed of samples from the US, Europe and Asia. Nevertheless the manuscript takes a                
good first step at defining health through the microbiome and will be of interest to a wide readership and the                    
medical community. The manuscript is well written and provides a clear path from motivation to results. 
 
Authors’ response: ​We very much thank the reviewer for this summary, and for taking her/his valuable time                 
to carefully understand the purpose of our work and its strengths. Before addressing in depth the Reviewer’s                 
specific comments, we first provide our thoughts on the valid points mentioned above: 
 

● “I do have some doubts about using species abundance rather than other taxonomic ranks or gene                
abundances.” 

● As detailed in our response to ​Major Comment #2​, we've applied our analytical strategy (from               
the derivation of GMHI to the evaluation of its classification performance) on all taxonomic              
clades and metagenomic functional profiles. 
 

● “Also it should be mentioned that the score classifies absence of diagnosed disease rather than actual                
health status and that there may be geographical/cultural biases since the training dataset is mostly               
(but not exclusively) composed of samples from the US, Europe and Asia.” 

● Despite there being no universally-recognized definition of “healthy”, we strongly agree that it is              
important to be clear and precise. Thus, in consideration of the Reviewer's suggestion, we've              
mentioned throughout our manuscript that GMHI is technically a measure of “known disease             
absence” or “presence/absence of diagnosed disease”, rather than a scale of actual health             
status. Please see lines 30, 50, 66, 154, 182, 558, and 565 of the revised manuscript. 

● While we definitely tried to be as inclusive as possible (during our dataset search) of various                
geographies, ethnicities/races, and cultures, we do acknowledge that complete elimination of           
biases is practically impossible. This is, in part, due to the paucity of high-quality shotgun               
metagenomic data across diverse populations in comparison to 16s rRNA amplicon datasets            
(which come with their own limitations, such as widespread use of different hypervariable             
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regions, and inability to survey the Eukaryota domain of life; PMCID: PMC3979728). In light of               
the Reviewer's suggestion, we've mentioned this point in our manuscript (please see lines             
625–630 of the revised manuscript). Certainly, for future works, we plan to iteratively expand our               
application to reach an even broader range of geographies, ethnicities/races, and cultures. 

 
Next, we address all of the reviewer’s suggestions below: 
 
Suggested major changes 
 
1) The paper develops a novel microbiome health index but I feel like the “health” part would require some                   
additional validation. The index itself is designed to separate disease samples from their controls and samples                
with abnormal BMI. However, it is unclear whether those controls are indeed healthy individuals as the only                 
thing one knows for sure is that they did not show symptoms severe enough to be classified as diseased in the                     
particular study. In order to validate that the microbiome index indeed quantifies health I would like to see at                   
least a validation with a data set that contains a detailed clinical characterization of the cohort to check whether                   
individuals with the highest health index do indeed show better clinical labs, higher indices of self-reported                
well-being or less ambulant treatments than individuals with a lower index. The authors own RA cohort may be                  
helpful here. Alternatively, the authors could train a genus-level score (as suggested below) and validate the                
health status on the American Gut data set (https://doi.org/10.1128/mSystems.00031-18) which includes a            
wide array of health measures and self-evaluations. 
 
Authors’ response: ​We agree with the reviewer's concern on whether we are appropriately associating GMHI               
with actual health. Indeed, this is a tricky endeavor, as the definition of “healthy” is not standardized. To                  
address the concern of whether GMHI can objectively quantify certain aspects of health, we looked for                
statistical associations between GMHI and well-recognized components of physiological wellness from clinical            
lab tests (as the reviewer suggests). More specifically, we searched for correlations with GMHI and the                
following, as reported in their original studies: circulating blood concentrations of fasting blood glucose (from               
785 subjects), triglycerides (from 915 subjects), cholesterol (from 521 subjects), low-density lipoprotein            
cholesterol (LDLC; from 848 subjects), and high-density lipoprotein cholesterol (HDLC; from 841 subjects). Of              
note, self-reported well-being, treatment regimens, and other questionnaire data were either not provided at all               
or too sparsely collected to have any practical or statistical significance.  
 
When selecting for moderate correlations or better, i.e., |Spearman’s ​ρ​| ​≥ 0.3 (​P < 0.001), we identified HDLC                  
as the only feature that was significantly associated with GMHI (​ρ = 0.34, ​P < 2.2 x 10​-16​); in addition, we                     
identified significantly higher abundances of HDLC in subjects with positive GMHI compared to those with               
negative GMHI (Mann-Whitney ​U​ test; ​P​ < 2.0 x 10​-16​): 
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This moderately positive correlation is encouraging for linking GMHI to actual health, as HDLC in the                
bloodstream is commonly considered as “good” cholesterol, and could be protective against heart attack and               
stroke, according to the American Heart Association (​www.heart.org​). We view these findings to be of high                
importance, as it not only demonstrates integration of clinical data with gut microbiome, but also hints at the                  
possibility of GMHI serving as an effective and reliable predictor of cardiovascular health. Thus, we’ve included                
descriptions of this analysis and its results in the revised manuscript (please see ​Figure 2 ​and lines 293–318                  
of the revised manuscript). In contrast, fasting blood glucose (​ρ = -0.06), triglycerides (​ρ = -0.13), cholesterol (​ρ                  
= 0.15), and LDLC (​ρ​ = 0.09) were noted to have only weak and/or insignificant correlations with GMHI. 
 
The reviewer suggested the possibility of training a genus-level score (performed below) to validate on the                
American Gut dataset, which is a fascinating study in its own right. Although this suggestion looks reasonable                 
on the surface, we refrained due to the following: 

● The American Gut dataset is mostly 16s rRNA gene amplicon data. Directly comparing taxonomic              
abundances between metagenomic data and 16s data is generally not advised due to several reasons,               
including differences in their clade (or OTU) detection techniques; and technical biases from             
sequencing different hypervariable regions in the 16s rRNA gene. However, for future efforts, we              
encourage the development of a complementary GMHI using 16s rRNA gene sequencing data. 

● After a close examination, we found that the “wide array of health measures and self-evaluations” from                
the American Gut study are not focused on specific health measures (e.g., clinical laboratory tests on                
blood or urine); rather, most of the self-evaluations were in regards to diet/nutrition/alcohol             
consumption, BMI, exercise habits, food allergies, and other criteria that, in our view, are not clear and                 
objective measures of health. 

 
2) I was surprised the authors chose species as the summary rank for their health index. If one wanted to                    
design a score specifically for metagenome samples better performance would probably be achieved by using               
bacterial gene abundances directly as this is much closer to a functional analysis. The authors claim                
themselves that one would expect less functional heterogeneity than taxonomic heterogeneity and show that              
the identified species share similar genes. I do think that basing an index on taxon abundances is still valuable                   
but would probably be more useful on the genus-level as this opens up validation with many more 16S                  
amplicon sequencing data sets (where reliable taxonomic classification is usually only achieved down to the               
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genus-level). At the very least I would like to see a comparison of accuracies on various taxonomic ranks to                   
show that the species level does indeed show better performance than other ranks. 
 
Authors’ response: ​Thank you for this concern. Before we provide details on how we addressed this                
suggestion, let us first explain why we specifically chose species-level information—rather than genus-level or              
functional (i.e., gene or pathway) abundances—as the ideal search space of features for GMHI: 
 

● All authors of this manuscript share the vision that the most transformative impact human microbiome               
research can have on the clinical practice for complex, chronic disease is in the creation of robust                 
probiotic therapies. These future therapies, once conceived, will most likely be composed of a small set                
of microbes (either naturally occurring or synthetically engineered) designed to be delivered inside or              
onto the patient. (there is a very promising avenue of research on gut microbiome-derived              
pharmaceuticals, but this lies outside the scope of this study.) Now, in order for these probiotic                
communities to be formulated, one would need to know precisely which ​strain(s) to use, as the delivery                 
of an entire phylum, order, or genus doesn't make much practical sense. However, in our view, current                 
computational techniques for comprehensive, strain-level detection in complex microbial communities          
still have much to improve. Therefore, given the level of taxonomic precision required to realize this                
vision, as well as the potential to advise and inspire similar future efforts, we decided to conduct our                  
study—from designing the feature selection criteria, to training/validating the classification model, and            
to comparing classification performances against other predictors (e.g., Shannon diversity, richness,           
80% abundance coverage)—entirely upon species-level taxonomy information. We clarify this in lines            
107–109, 600–606 of the revised manuscript. 

 
With this being said, we do agree that investigating accuracies of GMHIs derived from all taxonomic ranks, as                  
well as from functional annotations, is a worthwhile endeavor. To this end, we applied our GMHI identification                 
pipeline on abundances of all other taxonomic ranks, as well as on abundances of MetaCyc metabolic                
pathways obtained through HUMAnN2 (Franzosa ​et al​. Nature Methods (2018), PMCID: PMC6235447). Of             
note, to get as much functional insight into the gut microbiota as possible, we chose to query annotated                  
biochemical (MetaCyc) ​pathways​ rather than bacterial gene abundances. 
 
The highest ‘average classification accuracy’ (defined as ​χ ​in our manuscript) for each of these were found to                   
be the following: Phylum, 42.1%; Class, 60.1%; Order, 62.4%; Family, 67.2%; Genus, 68.2%; Species, 69.7%               
(as originally described in our manuscript); and MetaCyc pathways, 59.4%. ​As evidenced by these results,               
GMHI based on taxonomic species shows the best classification performance, providing further support to our               
original findings. Interestingly, a GMHI based on MetaCyc pathway abundances showed second-to-worst            
performance. We mention this analysis in lines 220–223 of the revised manuscript, and include these data in                 
Supplementary Table 4​. 
 
3) The index will naturally depend on the training set and may not extend well to cohorts different from the                    
training data. Even though the authors tried to generate a diverse data set it still included very few samples                   
that are not from developed countries. There are only a handful of samples not from the US, Europe or Asia,                    
and it looks like the health index does not perform well for data sets from different cohorts. For instance see                    
the study from Obregon-Tito et. al. (Peru) in Figure 2 but also several studies from China where the healthy                   
cohorts are primarily classified as “less healthy” (lower index). This limitation should be mentioned in the text                 

4 



 
as its misinterpretation in a potential clinical setting could have negative consequences for underrepresented              
groups. 
 
Authors’ response: ​Certainly, we agree with the reviewer’s first point that the capability of any               
statistically-inferred prediction model to perform well on a validation cohort will depend on the scale and                
breadth of the training dataset. Indeed, shortcomings to either criterion are known to limit the robustness of                 
biomarkers in the clinical setting (PMCID: PMC3418428); and this can be a concerning issue for those in                 
under-represented populations. ​This is why, during the very early stages of this study, we paid close attention                 
to collecting as many high-quality metagenome samples as possible, and as broadly/diversely as possible. 
 
Despite our earnest efforts, we do acknowledge that there are very few studies and samples from                
under-developed countries and minority ethnicities/races, or not from the USA, Europe, or China (as the               
reviewer points out). The datasets we report in our study were all of what we could find at the time of sample                      
collection (March 2018). One probable reason for this is the relative paucity in shotgun metagenomic datasets                
from less-recognized communities; this reflects the current state of human microbiome research, and ​highlights              
an important area where the scientific community can improve​. We hope that our study, which was conducted                 
primarily on a massive collection of “crowd-sourced” data, can initiate serious discussions regarding the              
broader inclusion of subjects from under-developed countries and minority ethnicities/races. As suggested by             
the reviewer, we mention this discussion in lines ​625–630​ of the revised manuscript. 
 
It does appear in Obregon-Tito ​et al​. (Peru) and in several studies from China (Qin ​et al​., Zhang ​et al​., Jie ​et                      
al​., Feng ​et al​., Liu ​et al​., and He ​et al​.) that “the health index does not perform well”, i.e., “​the healthy cohorts                       
are primarily classified as “less healthy” (lower index)​”. ​However, we would like to respectfully clarify that only                 
statistically significant differences (Mann-Whitney ​U ​test, ​P ​< 0.05) in health index distributions should be               
considered for further interpretation (marked with a * or *** if GMHI performed as expected; marked with a Ψ or                    
ΨΨΨ if GMHI performed opposite to expectations). A closer inspection shows that from a total of 28 possible                  
non-healthy phenotype vs. healthy comparisons across different cohorts, GMHI performed as expected, i.e.,             
supporting our original claim of higher GMHIs in healthy groups, in a total of 11 times; whereas GMHI                  
performed opposite to expectations 2 times. In contrast, the other metrics performed as expected in the                
following number of non-healthy phenotype vs. healthy comparisons: 2 for Shannon diversity; 4 for 80%               
abundance coverage; and 3 for species richness. We clarify this in lines 444–447 of the revised manuscript,                 
with the hope to avoid any potential misunderstandings regarding the robustness of our health index. 
 
Suggested minor changes 
 
4) Some studies are missing in Figure 2. For instance the study from Sankaranarayanan et. al. The figure                  
caption should explain why studies were omitted here. 
 
Authors’ response: ​We thank the reviewer for pointing this out. Our criteria for selecting which cohorts to                 
perform intra-study, case-control comparisons is to have ​both groups be composed of at least 10 samples,                
which we deemed as reasonably sufficient sample size. Thus, in ​Figure 5 (mentioned by the reviewer as                 
Figure 2​), we show only the 12 independent studies that satisfy this sample size cut-off. As suggested, we've                  
clarified this point in lines ​405–409 of the revised manuscript, as follows: “Specifically, in each of the twelve                  
studies (out of 34 total) wherein at least 10 stool metagenome samples from both case (i.e., disease or                  
abnormal bodyweight conditions) and control (i.e., healthy) subjects were available, we compared GMHI,             
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Shannon diversity, 80% abundance coverage, and species richness between healthy and non-healthy            
phenotype(s).”. ​In addition, we removed Obregon-Tito ​et al. (20 samples of Healthy vs. 9 samples of                
Overweight) and Karlsson ​et al. (8 samples of Healthy vs. 14 of Symptomatic atherosclerosis), which were                
mistakenly included in the original analysis. We also updated ​Figure 5​ to reflect this change. 
 
5) ​The gene copy number number analysis presented in Figure 3 seemed a bit inaccurate since it only used                   
data from reference strains which are probably not representative of the actual strains in the samples.                
Metagenome data allows to quantify gene copy number directly from the sequencing data. This can b achieved                 
by metagenomic assembly and de novo gene prediction. Metagenomic binning should still allow to connect               
gene abundances back to the Metaphlan marker genes. This would be much more representative of shared                
functions than some arbitrary reference strains. 
 
Authors’ response: ​We sincerely thank the reviewer for catching this. We definitely see your point. Certainly,                
we want to avoid making spurious claims regarding the functional potential of our Health-prevalent and               
Health-scarce species from arbitrarily-chosen reference strains. We agree that there is a better way, in               
particular by taking into consideration the gene abundances in the metagenomic sequencing data, as              
suggested by the reviewer. Rather than using genomes of reference strains, we've addressed this concern               
accordingly: 
 

● We used a metagenomic binning approach to construct KEGG gene copy number profiles for all 50                
Health-prevalent and Health-scarce species. More specifically, gene families (annotated through          
UniRef90 identifiers) were identified in each metagenome sample of our meta-dataset using HUMAnN2             
(Ref. 54) with default parameters. HUMAnN2, which can identify a gene family’s total abundance              
broken down into the contributions from individual species, was used to generate ​organism-specific,             
gene abundance profiles for all samples​. Next, abundance profiles of only the genes that mapped to a                 
particular Health-prevalent or Health-scarce species were retained (202,826 of ~1.7 million genes from             
all 4,347 metagenome samples). Then, organism-specific gene abundances were summed together           
across all samples, and then normalized to Copies Per Million (CPMs); this results in cumulative copy                
number abundances per gene and per species. Afterwards, ​protein sequences of gene families were              
downloaded from the UniProt database (​https://www.uniprot.org/​) and ​were mapped onto the Kyoto            
Encyclopedia of Genes and Genomes (KEGG) database (KEGG Release 94.0, April 1, 2020) to              
determine their functional KEGG orthologs (​27,312 of the total 202,826 genes mapped to 4,714 KEGG               
functional orthologs)​. ​Finally, gene (KEGG ortholog) copy number profiles were constructed for all 50              
Health-prevalent and Health-scarce species​.  

● We revised a subsection of the ​Methods section to document these steps. Please see lines 802–815 of                 
the revised manuscript. 

 
With this new strategy of quantifying gene copy number directly from sequencing data (as suggested by the                 
reviewer), we performed gene copy number variation analysis to identify potential metabolic functions specific              
to Health-prevalent species. Our results are described as follows, and included in lines 243–258 of the revised                 
manuscript: 

● To uncover genes that could explain differences in functional potential between the Health-prevalent (n              
= 7) and Health-scarce (n = 43) species, we constructed KEGG gene copy number profiles of all 50                  
species using a metagenomic binning approach (see ​Methods​). In ​Supplementary ​Fig. 5 ​(shown in              
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the heatmap below), we show the 193 KEGG functional orthologs that were identified to have               
significant differences in copy number between the Health-prevalent and Health-scarce species (​q <             
0.05, Mann-Whitney ​U​ test with Benjamini-Hochberg FDR correction; ​Supplementary Table 7​).  

 

● Hierarchical clustering of gene copy number profiles revealed that six of the seven Health-prevalent              
species (​Alistipes senegalensis​, ​Bacteroides bacterium-ph8​, ​Bifidobacterium adolescentis​,       
Bifidobacterium angulatum​, ​Bifidobacterium catenulatum​, and ​Sutterella wadsworthensis​) clustered        
together, reflecting their functional similarities. Interestingly, all 193 genes were found to have, on              
average, higher copy numbers in Health-prevalent species than in Health-scarce species. In particular,             
these genes include enzymes involved in the metabolism of sugars and polysaccharides (e.g.,             
α-amylase, α,α-trehalase, Fructose-bisphosphate aldolase, D-xylulose reductase, Xylan       
1,4-β-xylosidase) and lipids (e.g., Long-chain acyl-CoA synthetase, Enoyl-acyl carrier protein          
reductase). Furthermore, through KEGG pathway enrichment analysis, we found that these genes with             
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differential copy number were over-represented in KEGG pathway modules related to amino acid             
metabolism (e.g., Arginine biosynthesis, Isoleucine biosynthesis, Leucine biosynthesis, and Urea          
Cycle), nucleotide biosynthesis (e.g., Nucleotide sugar biosynthesis and Guanine ribonucleotide          
biosynthesis), and Lipid A biosynthesis (Kdo​2​-lipid A biosynthesis, Raetz pathway) (​P < 0.05,             
hypergeometric test; ​Supplementary Table 8​). Although it yet remains unclear regarding how, and in              
which context, these genes and over-represented pathways are utilized by Health-prevalent species,            
our findings nonetheless shed further light on the underlying functional potential of microbes prevalent              
in the gut of healthy individuals. 

In order to address Reviewer #2's request to better streamline the text and delivery of the main message, we                   
have moved the figure pertaining to this analysis into the supplementary. 
 
6) I feel like the formula for the health index (h) should be motivated and explained a bit better. The description                     
in the supplement does describe *how* the index is calculated but I would have liked to read *why* the authors                    
chose that particular formula. For instance, the weighting with the Shannon diversity makes sense to me as it                  
prefers samples with a high diversity of health-related microbes, but the description is a bit complicated and                 
may not be accessible to a wide readership - especially one that is not familiar with alpha diversity or the                    
Shannon index. 
 
Authors’ response: ​We emphatically agree to any suggestion regarding how the clarity of our work can be                 
improved. Moreover, this particular area of focus was also mentioned by Reviewer #2. We revised the                
manuscript accordingly: 

● To provide more clarity behind the *why* of our formula (as the reviewer pointed out), we made an                  
effort to better explain the overall motivation of its conceptual design, as well as the logical rationale of                  
each major step. Please see lines ​144–155 and 260–277 of the revised manuscript. 

● We've moved much of the technical jargon into the ​Methods section of the main text. Please see lines                  
707–800 of the revised manuscript. 

 
We sincerely hope these efforts have made the text more accessible to a wide readership. 
 
7) The authors claim that their measure is robust against batch effects but this is not demonstrated. The                  
authors should show that the distribution of the index for healthy individuals does not vary between studies and                  
does not depend on library size. 
 
Authors’ response: ​We would like to kindly note that the results of our analyses in ​Figure 5 (“GMHI generally                   
outperforms other microbiome ecological characteristics in distinguishing case and control across multiple            
study-specific comparisons.”) and in ​Figure 6 (“GMHI demonstrates strong reproducibility on validation            
datasets and outperforms Shannon diversity.”) were to specifically address this robustness and batch effects              
issue. However, we agree that further demonstration of robustness against batch effects is warranted. To               
address the reviewer’s two suggestions, we performed the following: 
 

● We tested the hypothesis that library size (i.e., read count) of a sample is significantly correlated with its                  
GMHI. First, we visualized this relationship for all metagenome samples in the following scatter-plot: 
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In our view, we did not observe a strong trend between the two parameters. In addition, we modeled                  
GMHI using a mixed-effects linear regression model (‘lmer’ function in the R package ‘lme4’), wherein               
model covariates consisted of read count and study of origin (the latter as a random effect to                 
accommodate for intra-study variance). ​Our model found no significant association between library size             
and GMHI (​P = 0.45). Based on these results, we were not able to reject the null hypothesis, and                   
conclude that GMHI does not depend on library size​. We mention this analysis in lines 289–290 of the                  
revised manuscript, and show our results in ​Supplementary Figure 6​. 

 
● We checked to see whether or not the distributions of the indices for healthy individuals vary between                 

studies. Among the 34 studies used in our training dataset (as referenced in ​Table 2​), 31 studies were                  
initially chosen for a closer analysis, as each of these studies contain gut microbiome samples from                
healthy subjects. We note that Sankaranarayanan ​et al. was not considered, as it has only a single                 
sample from healthy; in addition, we merged the two HMP1 studies, i.e., Huttenhower ​et al. ​(HMP1)                
and Lloyd-Price ​et al. ​(HMP1-II). Below, we show the distribution of GMHIs of every sample from the 29                  
independent sources (i.e., studies): 
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As is often the case for outputs from statistically-inferred models, we observed wide variation among the GMHI                 
distributions from study to study. ​Among all pairwise comparisons between study groups, we found only one                
pair of cohorts whose distributions were significantly different from each other (Dwass-Steel-Critchlow-Fligner            
test followed by Holm-Bonferroni method to control for family-wise error rate). This shows that, by and large,                 
the distributions of the index for healthy individuals do not vary much between studies. Furthermore, we found                 
that most healthy cohorts (22 of the 29 independent sources) show positive GMHI distributions based on their                 
medians. We mention this analysis in lines 290–291 of the revised manuscript, and show our results in                 
Supplementary Figure 7​. 
 
8) I would appreciate if some more of the source code is provided to reproduce the study. For now the authors                     
include a script that calculates the health index but do not provide materials that would allow running the                  
Metaphlan analysis on the full data set used in the study. The provided SRA accession for the authors' data                   
does not seem to be exist (may still be under embargo). 
 
Authors’ response: ​Absolutely! We definitely value the importance of assisting the community in reproducing              
our work. For all of our results shown in the main figures, we provide our original R scripts in our laboratory’s                     
GitHub link. The data required to run our scripts are also in this online directory. As such, we changed the text                     
in our ​Methods​ section accordingly: 
 

● (prior) “​Code availability. An R script on how to calculate GMHI for a given stool metagenome sample                 
is available at ​https://github.com/jaeyunsung/GMHI_2020​.” 

● (now) “​Code availability. R scripts demonstrating how to reproduce all of our findings shown in the                
main figures, as well as how to calculate GMHI for a given stool metagenome sample, are available at                  
https://github.com/jaeyunsung/GMHI_2020​.” 

 
And yes, the SRA accession to download the raw sequence files of our Rheumatoid Arthritis gut microbiome                 
data will not work until we’ve granted permission (the PRJNA accession # is correctly provided in the                 
manuscript). We will lift the embargo to download the data once our manuscript has been accepted for                 
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publication. However, for this review process, we grant the reviewer temporary access to view our submission                
status at this non-traceable link: 
https://dataview.ncbi.nlm.nih.gov/object/PRJNA598446?reviewer=tn9eo9v66meg2rjpqv6hvf8lt7​. 
 
 
Reviewer #2 (Remarks to the Author): 
 
In their manuscript, Gupta and colleagues posit a functional form for a microbiome index, parameterize the                
index using a large dataset of cross-sectional microbiome studies, then investigate the metagenomic meaning              
of the index and compare its performance in classifying cases vs. controls in the dataset of microbiome                 
studies. 
 
I have serious concerns about the validity and utility of this approach. I was confused by the rationale for the                    
work and the organization of the manuscript. My approach will be to re-construct the authors' argument and                 
key claims, noting what I think are the key issues in each case. 
 
Authors’ response: ​Thank you, Dr. Oleson, for your careful and astute critique of our work. We can tell that                   
you’ve put a lot of time into finding how we can improve the paper, which is our ultimate goal. We also                     
commend your choice to having a transparent review process; we need more of this in academia. 
 
We are truly sorry to hear that we were unable to clearly and precisely articulate the rationale, validity, and                   
utility of our work in the original draft. Surprisingly, this assessment is in stark contrast to Reviewer #1’s                  
comments, which are as follows: 

● “​The major strength of the novel microbiome health index presented here is that the authors took a lot                  
of care to circumvent some of the common problems in designing a score based on samples from                 
heterogeneous studies and protocols. In particular, I found the strategy to use a prevalence-based              
score rather than an abundance score quite appealing.​”;  

● “​Nevertheless the manuscript takes a good first step at defining health through the microbiome and will                
be of interest to a wide readership and the medical community.​”; 

● “​The manuscript is well written and provides a clear path from motivation to results.​”. 
 
Nevertheless, we’ve tried our best to address all of your concerns and suggestions. We expect that most (and                  
hopefully all) satisfy your standards of excellence; and for where we fail, we hope to be given another                  
opportunity to put even more effort to improve. 
 
# Rationale 
 
As I understood, this work is motivat​ed by three rationales. 
 
Authors’ response: ​We respect the reviewer’s viewpoint that the motivation of our work was not made                
precisely clear. In brief, our work was motivated by a single primary rationale, as our title suggests: ​To create a                    
simple measure to quantify the degree of general health status (i.e., presence/absence of diagnosed disease)               
based on the microbiome of a stool specimen. (currently, there is no reliable metric for monitoring and                 
predicting general health based on stool metagenomic profiling alone.) In other words, our mission was to be in                  
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a position to answer the following: “Does my gut microbiome reflect more of a healthy or non-healthy state, and                   
to what degree?”. 
 
In order to build our index, we must first find solutions to the following critical problems. We suspect that, in our                     
earnest attempt to address these issues simultaneously, the delivery of our narrative may have been perceived                
as convoluted and confusing. 
 

● Q1: Upon what biological basis should we formulate the mathematical formula of our index? 
○ We envision that the most intuitive way to determine how closely one’s microbiome resembles              

that of a healthy (or non-healthy) population is to quantify the balance between             
health-associated microbes ​relative to disease-associated microbes. Therefore, our index is a           
rational equation between two sets of microbial species: those that are ​more frequently             
observed in healthy compared to non-healthy populations (i.e., ‘Health-prevalent’ species) vs.           
those that are ​less frequently observed in Healthy compared to Non-healthy populations (i.e.,             
‘Health-scarce’ species). 

● Q2: Then how can we identify ‘Health-prevalent’ and ‘Health-scarce’ species? 
○ One would need a large-enough sample size to truly identify robust signals. In order to obtain                

the largest collection of stool metagenomic data, we ​pooled together the enormous            
compendium of publicly-available datasets, which were derived from healthy and non-healthy           
human subjects. As detailed in the main manuscript, we used these data to identify two sets of                 
species associated with healthy gut microbiomes: 7 and 43 species more (‘Health-prevalent’)            
and less (‘Health-scarce’) frequently observed, respectively, in healthy compared to non-healthy           
groups of people. This discovery alone advances our understanding of the composition of a              
healthy gut microbiome that has been long sought after. Finally, with these two sets of species,                
we went on to tune the parameters of a predefined formula, as well as to test its classification                  
performance. 

● Q3: In regards to classification performance, to which metrics should we compare our index? 
○ For this, we chose to compare our index with Shannon diversity and other ecological properties.               

Furthermore, the application of our index is designed to be independent of whether one chooses               
to analyze her/his microbiome at a single time-point or longitudinally. 

 
We hope this clarification makes sense, and creates a clearer picture for the reviewer as he proceeds with                  
reviewing our responses below. And to address the reviewer’s serious concerns regarding focus and clarity,               
we’ve done some major restructuring of the manuscript to get the aforementioned points across better. Mainly,                
we’ve included these main points upfront, and moved some technical jargon to the ​Methods section. However,                
we still kept most of the math (either in the main text or the supplementary) for our more                  
mathematically-inclined readers. Below, we provide further details on how we revised the manuscript based on               
each and every comment. 
 
First, there are barriers to understanding the role of the microbiome in health and disease when using                 
individu​al studies (line 76 and following). Therefore, meta-analyses comparing health and disease across             
studies, populations, and diseases is important to microbiome science. Table 2 and Figure 3 seem to be the                  
fulfillment of this meta-analysis rationale, but the results are presented through the lens of the creation of the                  
novel index, which makes it difficult to interpret the results as a meta-analysis per se. 
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Authors’ response: ​We were incorrect in our use of the term “meta-analysis”. Here, we are certain that the                  
reviewer considers a meta-analysis to be, in general, a comparative investigation of findings across various               
studies—which are independent of each other but address the same scientific question—in order to derive               
conclusions about a particular body of research. This is ​not our original intention nor what was performed;                 
rather, ​we performed a ‘pooled analysis’ by combining samples from multiple studies to re-analyze in               
aggregate​. Thereby, we are taking advantage of stool metagenomic datasets abundantly available to the              
public. This was described throughout our manuscript, as shown in the following excerpts: 
 

● “​A meta-dataset of human stool metagenomes integrated across 34 independent published           
studies. An overview of our multi-study integration approach, wherein we acquired 4,347 raw shotgun              
stool metagenomes (2,636 and 1,711 metagenomes from healthy and non-healthy individuals,           
respectively) from 34 independent published studies, is depicted in Fig. 1.” 

● “Herein, we address this challenge accordingly: i) by integrating massive amounts of publicly available              
data (4,347 publicly-available, shotgun metagenomic data of gut microbiomes from 34 published            
studies), we identified a small consortium of 50 microbial species associated with human health.” 

● “In the long term, in order to find robust gut microbiome-based diagnostic or predictive markers, we                
envision integrating even larger data repositories to take into consideration more sources of             
heterogeneity.” 

● “Our efforts to curtail these batch effects include: i) consensus preprocessing, i.e., downloading all raw               
shotgun metagenomes (.fastq files) and re-processing each sample uniformly using identical           
bioinformatics methods;” 

● Multi-study integration of human stool metagenomes​ section in ​Methods​. 
 
We do recognize the value of being clear on the semantics. Therefore, we've replaced all mentions of                 
“meta-analysis” in our manuscript to “pooled analysis”. 

 
If a meta-analysis were the focus of the paper, I would have expected the authors to carefully survey previous                   
meta-analyses and make a clear advancement over them in terms of dataset, methodology, or interpretation. It                
was not clear to me how the novel index was a methodological advance in the identification of health- and                   
disease-associated species. 
 
Authors’ response: ​We agree that, if a meta-analysis were the focus of our study, there is no excuse for not                    
having done a careful survey of previous meta-analyses, especially in regards to what has been done; what                 
were the conclusions; what were the limitations. Fortunately, our study is not a meta-analysis, but a pooled                 
analysis by combining samples from multiple studies to re-analyze in aggregate (as noted above). We've               
replaced all mentions of “meta-analysis” in our manuscript to “pooled analysis”. Lastly, we address the               
reviewer’s last remark: The biological basis of the index itself is ​to quantify the balance between                
health-associated microbes and disease-associated microbes (see lines: 67, 146, 561, and 567); and not a               
methodology to identify health- and disease-associated species per se. We clarify this in lines 144–155 of the                 
revised manuscript. 
 
Second, a common analysis in microbiome studies comparing cases and controls is bacterial alpha diversity,               
with the expectation that health individuals will have higher diversity than ill ones. However, alpha diversity is                 
not a "reliable and accurate" metric (l. 67), and new metrics must be developed to "provide a significant                  
advancement in current microbiome science" (l. 70). The authors therefore developed a novel index, the GHMI.                
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I was confused why a novel metric will advance microbiome science, and I found the Introduction's explanation                 
vague. The authors themselves cite Shade's "Diversity is the question, not the answer", which I think posits the                  
question that the authors do not answer here: how does the novel metric explain something previously                
unknown about the microbiome? 
 
Authors’ response: ​We respectfully clarify the following: 

● The primary goal of this study is not to make novel discoveries on the human gut microbiome per se,                   
e.g., host interactions, ecological dynamics. Rather, ​our main objective is to develop, demonstrate, and              
validate a novel translational application of the gut microbiome. 

● The specific application is for distinguishing human subjects who are healthy from those who are not.                
Primarily, we asked ourselves the following: If we can create a marker for health that is better than                  
alpha diversity (in regards to accuracy ​and interpretability), ​how is this not an advancement in human                
microbiome research pertaining to health​? 

 
Put another way, if alpha diversity analyses are themselves misguided, why is it good to have an index that is                    
more accurate than alpha diversity? 
 
Authors’ response: ​We are a bit puzzled by the premise of this question. We have not stated anywhere in the                    
manuscript that “alpha diversity analyses are themselves misguided”; to clarify, we state that, ​in the context of                 
distinguishing health from disease​, GMHI not only generally outperforms other microbiome ecological            
characteristics, but also demonstrates stronger reproducibility on validation datasets (as evidenced by our             
data). In other words, our primary objective was to provide a better alternative to alpha diversity (in regards to                   
classification accuracy and biological interpretation), but this does not necessarily mean that “alpha diversity              
analyses are themselves misguided”. 
 
To my mind, a microbiome index has two important features, accuracy and interpretability. "Accuracy" means               
that the index must accurately separate cases and controls. "Interpretabilit​y" means that the index's separation               
of cases and controls must lead to some biological hypothesis, as per Shade. The author's index appears more                  
accurate, but I found its mathematical formulation confusing. 
 
Authors’ response: ​We emphatically agree to any suggestion regarding how the clarity of our work can be                 
improved. Moreover, this particular area of focus was also mentioned by Reviewer #1. We revised the                
manuscript accordingly: 

● To provide more clarity behind the *why* of our formula (as the reviewer pointed out), we made an                  
effort to better explain the overall motivation of its conceptual design, as well as the logical rationale of                  
each major step. Please see lines ​144–155 and 260–277 of the revised manuscript. 

● We've moved much of the technical jargon into the ​Methods section of the main text. Please see lines                  
707–800 of the revised manuscript. 

 
We sincerely hope these efforts have made the text more accessible and less confusing. 
 
The identification of health- and disease-associated species, the first step in the index's parameterization, is               
interpretable, but that brings me back to the meta-analysis rationale above.  
 
Authors’ response: ​We kindly note that a meta-analysis of various gut microbiome studies was not our goal. 
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Furthermore, if the twin goals are accuracy and interpretability, I would be curious whether simpler, more                
interpretable functional forms of the index achieve similar accuracy. How does, say, a metric defined as the                 
number of health-associated "present" (e.g., >10^-5 abundance) compare to the full-blown GHMI? 
 
Authors’ response: ​We envision that the most intuitive way to determine how closely one’s microbiome               
resembles that of a healthy (or non-healthy) population is to quantify the balance between health-associated               
microbes ​relative to disease-associated microbes. Therefore, our index is a ​rational equation between two sets               
of microbial species: those that are ​more frequently observed in healthy compared to non-healthy populations               
(i.e., ‘Health-prevalent’ species) vs. those that are ​less frequently observed in Healthy compared to              
Non-healthy populations (i.e., ‘Health-scarce’ species). 
 
In our view, quantifying the presence of only the health-associated microbes has three major limitations: 

● Generally in supervised classification, it is common practice to take into consideration the features that               
are associated with ​both phenotypes​ when building a classifier. 

● The health-associated microbes, despite being found to have higher prevalence in healthy subjects, are              
not totally absent in subjects with disease. This emphasizes the importance of weighing both sets of                
microbes against each other. 

● If our metric is to be defined purely by the count of health-associated microbial species that are present,                  
then defining the appropriate threshold for future predictions is not a trivial endeavor. And even if we did                  
determine a threshold, say from an internal cross-validation procedure, we don’t strongly feel that the               
answer to the question of “Why that particular number?” would be straightforward. In contrast, given               
that our index is a logarithm of a fold-change ratio, a positive and negative value signifies more and                  
less of health-associated microbes compared to disease-associated microbes, respectively. 

 
Nonetheless, we performed the following analysis of using only the health-associated microbes, as requested              
by the reviewer: 

● Since there are 7 microbial species identified as ‘Health-prevalent’, we classified each of the 4,347               
metagenome samples in the training dataset as healthy if at least 1 of the 7 Health-prevalent species                 
was present. This led to an average classification accuracy of 54.9%. Analogously, we classified each               
sample as healthy if at least 2 of the 7 Health-prevalent species were present (average classification                
accuracy: 61.3%). Continuing in an iterative manner, we obtained an average classification accuracy of              
65.3%, ​66.3%​, 61.1%, 54.5%, and 51.4% when the minimally required count of present             
Health-prevalent species was set to 3, 4, 5, 6, and 7, respectively. 

 
● Next, we used this approach on the 679 metagenome samples of the independent validation dataset;               

for this, we set 4 as the minimally required count of present Health-prevalent species (for a sample to                  
be classified as healthy), as this threshold gave the best results with the training data. The average                 
classification accuracy on the validation dataset resulted in 59.3%. In stark contrast, GMHI displayed              
far better classification performance by achieving an average classification accuracy of 69.7% and             
73.7% in the training and validation datasets, respectively.  
 

A summary of these methods and results are provided in lines 470–476 of the revised manuscript and in                  
Supplementary Table 12​. 
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Third, metrics that can reliably distinguish between health and disease would have a clinical application:               
continuous monitoring of an individual's stool's bacterial alpha diversity would "detect significant changes or              
abno​rmalities in comparison to his/her normal baseline measurements", triggering "additional diagnostic           
procedures and/or therapeutic interventions". (l. 71 ff.) 
 
Authors’ response: ​Some clarification is necessary prior to our addressing the next question. We are not at                 
all advocating for the “continuous monitoring of an individual’s stool's bacterial alpha diversity”, as the reviewer                
implies above. ​Rather, we are advocating for a “simple and biologically interpretable metric” composed of gut                
microbiome information that is a more “reliable and accurate measure to explain variations in health traits” than                 
alpha diversity. Now, once this method is developed (hence, the goal of this study), we can then possibly use it                    
to “detect significant changes or abnormalities in comparison to her/his normal baseline measurements”; and if               
a certain anomaly is detected, “additional diagnostic procedures and/or therapeutic interventions” can possibly             
be employed. 
 
We were simply introducing an exciting, yet hypothetical, scenario of how our index may be applied as                 
clinically-actionable information. Yet, we realize that several questions have been raised by the reviewer              
(below) based on this purely hypothetical scenario. To avoid further possible confusion, we’ve moved this part                
to the ​Discussion​ section in lines 631–641 of the revised manuscript. 
 
Clinically, what is needed more than a generalized alarm bell are diagnostics. If a patient is having their stool                   
routinely analyzed, it would be good to know what was wrong with them! That being said, there is some                   
theoretical utility for a generalized alarm bell. 
 
Authors’ response: ​All co-authors, including a clinical team composed of Dr. John M. Davis III (Associate                
Professor of Medicine, Division of Rheumatology, Department of Medicine, Mayo Clinic), Dr. Konstantinos N.              
Lazaridis (Professor of Medicine, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo             
Clinic), and Dr. Heidi Nelson (Emeritus Professor of Surgery, former Chair of Department of Surgery, Mayo                
Clinic), have discussed this particular comment with great interest. Our collective response is as follows: 
 

● Understanding what constitutes a deviation from “normal” health, and learning how to rapidly and              
robustly detect such deviations, are highly important areas of study in academic medicine today.              
Without a doubt, precisely addressing these challenges will help accelerate the development of new              
technologies for detecting early signs of disease ​prior to the occurrence of specific, diagnosable              
symptoms. ​Therefore, the creation of algorithm-driven markers that can infer one’s general health state,              
especially from biospecimens that can be collected regularly and non-invasively, is a very promising              
avenue forward. Furthermore, with further development, our gut microbiome-based predictor could           
serve as an appealing contribution towards comprehensive medical and preventive health screening            
programs. Results from such tests can then serve as an entry point for follow-up tests and procedures.                 
In this sense, “generalized alarm bells” goes beyond merely having “some theoretical utility”, and are               
just as in need as novel diagnostics designed for a particular disease. Both goals are not mutually                 
exclusive and should be pursued together. And yes, identifying the specific malady is crucial once               
symptoms arise, but that is not what is being sought after in this study (that would be the next step). In                     
our view, we demonstrate unequivocally the proof-of-concept that our health index—based on a             
snapshot of the gut microbiome—could have practical merit in the clinical setting, and we fully stand by                 
the results and conclusions of this study. 
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Let’s consider an example regarding credit scores. Say, after a long steady period of having a good credit                  
score (750+), one suddenly receives a report of 590. Assuming this person is a financially-responsible being,                
this precipitous drop in score would certainly lead one to check her/his latest bank statements, credit card bills,                  
mortgage payments, etc. ​Hence, although the cause for a significant drop in credit score is initially unclear, it                  
would nonetheless spur action to find out the why and what to do next. Analogously in the case of maintaining                    
wellness and preventing disease, our hope is that GMHI may one day serve as a tool for turning microbiome                   
data into actionable information. 
 
If this were the main focus of the manuscript, then I would pose some testing questions: 
- If the goal is to develop an index that is usefully longitudinally, why use the cross-sectional data in this                    
manuscript to develop the index? A timeseries approach would entail vastly different design and evaluation               
criteria. 
 
Authors’ response: ​We respectfully clarify that our primary motivation is ​not to “develop an index that is                 
usefully longitudinally”; the application of our index is designed to be independent of whether one chooses to                 
analyze her/his microbiome at a single time-point or longitudinally. If we create a health metric that works                 
today, then of course we should make it useful tomorrow, a week from now, a month later, or after a major                     
perturbation (e.g., antibiotic consumption, recovery from food poisoning). This is analogous to the routine use               
of a cholesterol test to evaluate cardiovascular health; a credit score (which has its own field of complex                  
algorithms) for one’s financial health; and so forth. ​Hence, our index is a metric that can be used at any point in                      
time, and as frequently as one wishes. No complicated dynamic modeling approaches were involved nor               
deemed necessary. 
 
- If the goal is the detect changes in comparison to a patient's "normal baseline", why not simply compare                   
today's sample against yesterday's? Each patient would serve as their own control?  
 
Authors’ response: ​We thank the reviewer for these questions. Our multi-faceted answer is as follows: 

● Absolutely, but how? Detect changes ​in exactly what ​between today’s and yesterday’s samples? And              
why? — these were some of the main questions we had during the inception of this study. 

● If we aim to have a general predictor of health status, it makes sense to use a metric ​specifically                   
designed for evaluating health status by using actual metagenomic data spanning a wide range of               
healthy and non-healthy phenotypes. This is in contrast to ecological properties (e.g., Shannon             
diversity, richness), which were originally designed for studying ecology per se. 

● When we used the term “normal baseline”, we were actually loosely alluding to a general time-point in                 
the past (which includes yesterday!) when the subject was in an asymptomatic state and feeling well. 

● Yes, we’re totally on board with each patient serving as her/his own control. We would like to note that                   
our current ongoing efforts involve this strategy so that we may perform this suggested analysis in                
future studies. Although tempted, we felt expanding on this lies a bit outside the scope of this study. 

 
- How does the GHMI compare to alternatives? How much better is this metric, which requires fairly extensive                  
parameterization, than alpha diversity? How much worse is it than ensemble methods (e.g., random forest)               
that are inscrutable but usually very accurate? 
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Authors’ response: ​The reviewer brings up a good point in regards to comparing the classification               
performance of GMHI to that of a fairly simple metric (Shannon diversity) and to that of a more intricate                   
classification algorithm (Random Forest). Our analysis is as follows: 
 

● First, we examined how well Shannon diversity can distinguish healthy from non-healthy groups. As              
Shannon diversity doesn’t have a clear cut-off value to serve as a threshold for discriminating the two                 
groups (in contrast, a sample with a positive and negative GMHI value is classified as healthy and                 
non-healthy, respectively), we decided to apply three different thresholds and evaluate their            
performances separately: among the Shannon diversity measurements from all 4,347 samples of the             
training dataset, we selected: i) the 1​st quartile (=2.50); ii) the median (=2.85); and iii) the 3​rd quartile                  
(=3.11). More specifically, any sample with a Shannon diversity equal to or greater than each threshold                
is classified as healthy; otherwise, as non-healthy. ​The average classification accuracy on the training              
dataset (4,347 samples) when using a threshold of Q​1​, median, and Q​3 was found to be 52.9%, 53.6%,                  
and 53.5%, respectively. Furthermore, on the independent validation dataset (679 samples), the            
average classification accuracy when using a threshold of Q​1​, median, and Q​3 was found to be 43.0%,                 
47.0%, and 48.5%, respectively. In stark contrast, GMHI displayed far better classification performance             
by achieving an average classification accuracy of 69.7% and 73.7% in the training and validation               
datasets, respectively. Clearly, GMHI outperforms Shannon diversity. We’ve mentioned this analysis in            
lines 470–476 of the revised manuscript and in ​Supplementary Table 13​. 
 

● Next, we performed a similar analysis using a Random Forest classifier (‘scikit-learn’ Python package              
version 0.23.1; data curation and model implementation was performed in Python version 3.6.4) trained              
and tested upon our dataset of 4,347 metagenome samples. ​The model achieved a remarkable              
average classification accuracy of ​98.5​%—however, building complex decision rules entails the risk of             
over-fitting. Surely enough, this nearly perfect accuracy was mostly in part a result of outstanding               
over-fitting, evidenced by the poor performance of 52.3% (average classification accuracy) on the 679              
samples of the validation dataset. Our results show that building more complex classifiers can entail a                
great risk of over-fitting onto the training data, and thus can lead to poor generalization onto unseen                 
cases. We’ve mentioned this analysis in lines 476–480 of the revised manuscript.  

 
- How much extra information does a longitudinal microbiome index add on top of other clinical markers? If the                   
datastream from an Apple Watch gives me more information, I'll just use that rather than collecting and                 
sequencing stool! 
 
Authors’ response: ​We respectfully clarify that GMHI was not designed to supersede well-established clinical              
health parameters. Simply put, Gut Microbiome Health Index (GMHI) provides insight into the             
presence/absence of diagnosed disease using the gut microbiome’s balance between health-associated (i.e.,            
Health-prevalent) and disease-associated (i.e., Health-scarce) species. We envision that it may be used to              
complement widely-applied clinical measures of health, such as circulating HDL cholesterol, triglycerides,            
c-reactive protein (CRP), fasting blood glucose level, auto-antibodies, etc. If one chooses to weigh more               
interest in sleep patterns, heart rate, number of steps taken, and other parameters that can be gauged by an                   
Apple Watch, then that is certainly her/his choice. 
 
I expect that a clearer focus on one of these rationales could improve the paper. For example, l. 584 ff.                    
mentions theoretical roles that the GHMI could play in FMT, both as a classifier for healthy donors (i.e.,                  
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rationale #3?) and as a way to select probiotic cocktail communities (i.e., rationale #1). However, there is no                  
discussion of the (lack of) literature about how microbiome screening could improve FMT donor quality, nor of                 
the knowledge gaps in cocktail designs. By trying to address all three rationales at once, I fear that none of                    
them are done any justice. 
 
Authors’ response: We removed the speculation regarding FMT and probiotic cocktail design from the              
Discussion section. We were simply presenting a hypothetical scenario of an application, but we see how it                 
could be a distraction to the delivery of our main point. We no longer feel it is in the manuscript’s best interest                      
to include these discussions, as our algorithm was not specifically designed for these specific purposes. 
 
# Methods 
 
As I understood, the GHMI requires two steps of parameterization. First, health- and disease-associated              
bacteria are identified. Second, the thresholds θ_f and θ_d are selected. If this is accurate, then I have major                   
reservations about many of the claims made in the manuscript about the accuracy of the index. If it was trained                    
on this dataset, and health- and disease-associated bacteria defined using this dataset, it is no surprise that                 
the index can distinguish between health and disease. 
 
Authors’ response: ​This is an incorrect understanding of our algorithm, and we regret not having been                
clearer. To clarify, there are three major steps in our computational pipeline: 

1. For every possible pairwise combination of the prevalence fold-change threshold (​θ​f​) and the             
prevalence difference threshold (​θ​d​) (further details on the definitions of ​θ​f and ​θ​d can be found in lines                  
164–167 of the revised manuscript), Health-prevalent (​M​H​) and Health-scarce (​M​N​) species that            
simultaneously satisfy both thresholds in the training dataset (composed of 4,347 stool metagenome             
samples) are obtained. Thus, each pair of thresholds leads to its respective set of Health-prevalent and                
Health-scarce species. 

2. Then, each set of Health-prevalent (​M​H​) and Health-scarce (​M​N​) species are used to find their ‘collective                
abundance’ in sample ​i (​Ψ​M_H,i and ​Ψ​M_N,i​, respectively). In turn, ​h​i,M_H,M_N​, which is the log-ratio of ​Ψ​M_H,i                 
to ​Ψ​M_N,i​, is used to classify that sample ​i as healthy (​h​i,M_H,M_N > 0), non-healthy (​h​i,M_H,M_N < 0), or neither                    
(​h​i,M_H,M_N = 0). Accordingly, the average classification accuracy (​χ​M_H,M_N​), defined as the average of the               
proportion of 2,636 healthy and of 1,711 non-healthy samples (from our training dataset) that were               
correctly classified, is found. Thus, each set of ​M​H​ and ​M​N​ species leads to its respective ​χ​M_H,M_N​. 

3. Finally, the classification model ​h​i,M_H,M_N (along with its inputs ​M​H and ​M​N​) that results in the highest                 
average classification accuracy on the original training data is chosen as our final model, i.e., the Gut                 
Microbiome Health Index. 

 
Technically, parameterization of the classification model is only necessary when finding ​Ψ​M_H,i and ​Ψ​M_N,i​, as               
each is dependent on the species’ identities of ​M​H and ​M​N​, respectively. But fundamentally, our entire                
automated computational pipeline begins with the choice of the two prevalence thresholds during the              
comprehensive, pairwise screening process. Of note, we chose to simultaneously test two thresholds, rather              
than one, in order to increase our confidence in the robustness of ​M​H and ​M​N​, as well as to overcome                    
limitations/biases that can occur from using only one type of threshold. 
 
We are not exactly sure what the reviewer meant by his premise “If it was trained on this dataset, and health-                     
and disease-associated bacteria defined using this dataset, ...”. We hope the following clarification helps: In               
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our study, we first used the ‘apparent accuracy’, i.e., classification performance of a model when tested on the                  
training data from which it was derived, to see whether it was worth pursuing further validation in                 
cross-validation (discussed below) and/or on an external validation dataset. There would be little motivation to               
pursue further with our classification model if the apparent accuracy came out to be quite poor. The resulting                  
average classification accuracy of 69.7% was high enough, in our view, to warrant downstream analyses. 
 
We hope these explanations satisfy the reviewer, and possibly correct, any misunderstanding of the GMHI               
derivation process. To provide more clarity behind the *why* of our formula, we made an effort to better explain                   
the overall motivation of its conceptual design, as well as the logical rationale of each major step. Please see                   
lines ​144–155 and 260–277 of the revised manuscript​. Furthermore, step-by-step protocols of all major steps               
are now included in the ​Methods​ section (see lines 707–800). 
 
(The larger surprise, that there is a cross-study and cross-indication signal of disease, although a major focus                 
of Duvallet et al.'s meta-analysis, is not much discussed here.)  
 
Authors’ response: ​We agree with the reviewer’s comment! One reason why GMHI’s classification             
performance extends reasonably well onto the independent validation dataset may indeed be due to our metric                
reliably capturing cross-study and cross-indication signals of disease (as well as cross-study signals of health).               
Please see lines 493–498 of our revised manuscript on how we included Duvallet ​et al​.’s meta-analysis study                 
in the interpretation of our own results: 
 

“​Overall, the remarkable reproducibility of GMHI implies that the highly diverse and complex features of               
gut microbiome dysbiosis implicated in pathogenesis were reasonably well captured during the dataset             
integration and original formulation of GMHI. Thereby, our results support previous findings by Duvallet              
et al. in regards to the presence of a generalized disease-associated gut microbial signature, which was                
observed to be shared across multiple studies and pathologies​17​.​” 

 
The typical approaches for investigating a classifier's accuracy, like cross-validation and ROCs, are not used;               
instead the authors make the claim to accuracy based only on a small validation set. 
 
Authors’ response: ​Actually, it is widely accepted in the biomarker discovery community that the best               
standard to investigate the robustness of a classification model is to demonstrate its reproducibility on an                
independent external validation dataset. (the senior author of this study has solid scientific training in using                
computational algorithms for biomarker discovery, as evidenced in his publications; PMCID: PMC3723500,            
PMC4201588, PMC3418428, PMC2921829, and PMC3315840). Cross-validation and ROCs are typically          
performed on samples from the same cohort (although technically the training data and test data               
samples/observations do not overlap), and this can lead to biases and high variance in classification               
performances. ​Perhaps related to this point, only a miniscule proportion of all predictive models claiming high                
cross-validation accuracies or high AUCs have successfully translated into actual clinical practice; so this is               
basically why an independent validation dataset was sought after, and demonstrated upon, in our study. 
 
Despite the higher value we place on using a truly independent validation dataset for evaluating classification                
performance, we’ve performed 10-fold cross-validation, per the reviewer’s request. Remarkably, 10-fold           
cross-validation resulted in an accuracy of 69.6% (please see ​Supplementary Table 5​), which is nearly               
identical to the average classification accuracy of 69.7% achieved on our original training dataset. These               
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cross-validation results, as well as the performance on the validation dataset, demonstrates the power of               
integrating existing samples across various sources and health conditions to identify truly robust signals and               
insight. We discuss this analysis in lines 224–227 of the revised manuscript. 
 
Lastly, we would like to know on what objective basis the reviewer considers an independent external                
validation dataset composed of 679 shotgun metagenome samples to be “small”. We would certainly like to                
know which studies successfully demonstrate robustness of a gut microbiome signal on an independent              
dataset of ~680 shotgun metagenome samples or more. Of course, we know that having more and more                 
samples is always better; however, given the relative paucity of high-quality metagenome samples relative to               
16S rRNA gene amplicon data, what we currently have is all that we could find in the literature at the time of                      
our study. Also, we’ve sequenced our own cohort of patients with Rheumatoid Arthritis to add more credibility                 
to our validation results. 
 
# Minor points 
 
- Fig 2b, etc.: Why a PCA rather than an MDS, if the goal is to look for separation? 
 
Authors’ response: ​We thank the reviewer for bringing this to our attention. Actually, in the legend of original                  
Fig. 2 ​(now ​Fig. 1​), and in the ​Results section, as well as in the ​Methods section, we stated that ​Figs. 2b                      
(now ​Fig. 1c​) and ​2C ​(now ​Fig. 1d​) are Principal Coordinates Analysis (PCoA) plots (PCoA is a version of                   
MDS). To avoid possible confusion, we’ve changed the x-/y-axis labels of ​Figs. 1c and ​1d from “PC” to “PCo”                   
(for Principal Coordinate). 
 
- Fig 2b: Is the PERMANOVA significant when accounting for studies or indiciations? MiRKAT is a tool that can                   
test for separation while accounting for covariates. 
 
Authors’ response: ​We re-ran our PERMANOVA analysis in ​Fig. 1c to see whether the two populations (i.e.,                 
Healthy and Non-healthy) were significantly different from each other while adjusting for each sample’s study               
origin. More specifically, PERMANOVA on the Bray-Curtis distance matrix between samples (based on relative              
abundances of microbial species) was performed with 999 permutations (‘adonis2’ function in the R ‘Vegan’               
package version 2.5.6), while random permutations were constrained within studies by using the ‘strata’ option.               
After accounting for studies, we still identified a significant difference between the distributions of these two                
groups (R​2 ​= 0.017, ​P < 0.05). We mention this addition to the PERMANOVA analysis in the legend of ​Fig. 1                     
and in the ​Methods​ section (see lines 139–140 and 699) of the revised manuscript. 
 
- Fig 4c: Does Shannon diversity separate cases and controls within individual studies? This is akin to what's                  
shown in Fig 5b, but I wonder if lumping all studies together makes Shannon look a worse classifier than it is.  
 
Authors’ response: ​Great question. To address whether cases can be separated from controls within              
individual studies, we performed the following analysis: 

● Analogous to what is shown in ​Fig. 5 (wherein healthy was compared to each separate non-healthy                
phenotype within individual studies), we compared healthy against a general non-healthy phenotype, in             
which all disease samples were lumped together, when applicable. Importantly, comparisons were still             
made within individual studies. Our criterion for selecting which cohorts to perform intra-study,             
case-control comparisons was to have both groups to be composed of at least 10 samples, which we                 
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deemed as reasonably sufficient sample size; in this case, there were only 12 studies (i.e., cohorts) that                 
satisfied this sample size cut-off. 

● We found that there were statistically significant differences in GMHI between cases and controls ​(P <                
0.05, Mann-Whitney ​U ​test) in 6 of the 12 studies. In contrast, we found statistically significant                
differences in Shannon diversity, richness, and 80% abundance coverage between cases and controls             
in 2, 3, and 3 (of 12) studies, respectively. 

 
In summary, Shannon diversity (defined at the species-level) does not robustly separate cases and controls               
within individual studies; in addition, GMHI outperforms the other metrics even when cases are grouped               
together. This analysis is mentioned in lines 470–476 of the revised manuscript and in ​Supplementary Table                
13​. 
 
- Claims about "core" microbiome (l. 153) should be introduced by what's known in that literature. 
 
Authors’ response: ​This is a good catch. In order to be clear and objective when interpreting our findings, and                   
to avoid using terminology that does not have a precise and/or universal definition, we felt it would be better to                    
remove the clause “suggesting species-level members of a 'core' human gut microbiome”. Moreover, this              
finding is of relatively small significance compared to our major findings. 
 
- l. 204: A major weakness in the microbiome literature is poor characterization of effect sizes. With the large                   
sample sizes used in this study, a difference in microbiome composition could easily be statistically significant                
without being scientifically interesting or clinically meaningful. 
 
Authors’ response: ​We emphatically agree with the reviewer’s comment encouraging the use of effect size               
measures. Adding this information is good practice, especially in cases where differences (between two              
groups) are found to be statistically significant even though population means/medians look nearly identical. To               
accommodate, we’ve shown the Cliff’s Delta effect size (​d​) in all figures wherein healthy and non-healthy                
groups are compared against each other, i.e., Figs. 2b, 3a–d, 6a, 6c, 6e, and 6g. 
 
Of note, Cliff’s delta is a non-parametric effect size measure that quantifies the amount of difference between                 
two groups of observations. Briefly, the delta statistic measures how often one value in one distribution is                 
higher than the values in the second distribution; it is a difference between probabilities (and not between                 
means), and thus ranges from -1 to +1. Crucially, it does not require any assumptions about the shape or                   
spread of the two distributions, and is therefore a very useful complementary analysis for the Mann-Whitney ​U                 
test. 
 
- l. 212: This approach seems very ad hoc. Why this particular formulation, and not one of dozens of others?                    
What are the design criteria? 
 
Authors’ response: ​We kindly note that the motivation and design criteria underlying the formation of ​Ψ​M_H ​, its                  
basic assumptions, and overview of its derivation, are now explained in lines 144–155 of the revised                
manuscript. 
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- l. 233: I think it's confusing to the reader to show a difficult equation and say to look in the Supplement for an                        
explanation. If the GHMI is the centerpiece of the paper, its development, rationale, and form should be a key                   
part of the text. 
 
Authors’ response: ​We emphatically agree to any suggestion regarding how the clarity of our work can be                 
improved. Moreover, this particular area of focus was also mentioned by Reviewer #1. We revised the                
manuscript accordingly: 

● To provide more clarity behind the *why* of our formula (as the reviewer pointed out), we made an                  
effort to better explain the overall motivation of its conceptual design, as well as the logical rationale of                  
each major step. Please see lines ​144–155 and 260–277 of the revised manuscript. 

● We've moved much of the technical jargon into the ​Methods section of the main text. Please see lines                  
707–800 of the revised manuscript. 

 
- From Supp Table 3, it looks like the classifier's accuracy is not very sensitive to the choices of the threshold                     
parameters. How sensitive are the results to the choice of health- and disease-associated species, and to the                 
threshold parameters? 
 
Authors’ response: ​Indeed, as the reviewer points out in ​Supplementary Table 3​, there is not much variance                 
amongst the top average classification accuracies despite differences in the two prevalence thresholds ​θ​d and               
θ​f​. (on the other hand, the identities of the Health-prevalent and Health-scarce species, which are determined                
by the two thresholds as noted above, seem to widely vary depending on the choice of thresholds.) This is not                    
a fault or a disadvantage per se; however, we certainly do see the value in doing a basic sensitivity analysis of                     
classification performance (i.e., average classification accuracy) with respect to one threshold, while keeping             
the other constant. Our findings can be summarized as follows: 
 

● Classification performance and prevalence difference generally portray an inverse correlation: 
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● Classification performance displays a very weak but positive correlation for smaller values of             

prevalence fold-change, but then follows an inverse correlation for higher values of prevalence             
fold-change: 

 
 

This analysis is mentioned in lines 229–231 in the revised manuscript and in ​Supplementary Fig. 2​. In                 
addition, as we clarified above that the choice of thresholds directly determines the identities of               
Health-prevalent and Health-scarce species, we decided to omit a sensitivity analysis between classification             
performance and the two sets of species as we feel it would not be practically meaningful to do so. 
 
- l. 295: I found this confusing: doesn't the GHMI have two thresholds and ~100 selections of species as                   
health- or disease-associated? Why is that not "arbitrary"? 
 
Authors’ response: ​Here, the reviewer is referring to the sentence: “Importantly, our metric requires very little                
parameter-tuning and foregoes the use of arbitrary thresholds, e.g., ‘low’ or ‘high’ alpha-diversity”. When we               
wrote the word “arbitrary” here, we were referring to loosely concocted narratives (mainly put forth by lay media                  
sources) along the lines of: “high diversity being good for health, and low diversity being a sign of bad health”.                    
Clearly, this is an oversimplification of reported statistically significant associations between gut diversity and              
health. We are not disputing these findings; rather, we ask what precisely is “low”?; And what is meant by                   
“high”?; and can we build a classifier? In this sense, ​we simply believe that having more quantitative precision                  
is needed in today’s clinically-driven microbiome research. And in order to avoid possible confusion, we’ve               
changed the term “arbitrary thresholds” in our original draft to “qualitative assessments”. Please see line 288 of                 
the revised manuscript. 
 
As explained in our response to a previous comment, each pair of thresholds (that are first comprehensively                 
screened) leads to its respective set of Health-prevalent (​M​H​) and Health-scarce species (​M​N​); these species               
are not chosen arbitrarily. Furthermore, our choice to simultaneously test two types of prevalence thresholds,               
rather than one, was in order to increase our confidence in the robustness of ​M​H and ​M​N​, as well as to                     
overcome limitations/biases that can occur from using only one type of threshold. Now, if the reviewer is                 
wondering why not three thresholds or more, that’s simply because we didn't want to constrain our selection of                  
features too rigidly. 
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- l. 300: The use of the word "potential" implies that the microbiome is causative in disease. This is generally                    
not known. 
 
Authors’ response: ​Our use of the word “potential” characterizes the functional possibilities from only genetic               
content. Although we do not have gene expression data, protein abundance data, or data from metabolic                
assays for the detection of a biochemical function actually occurring, gene-level analyses can still provide               
significant clues into the possibilities that can occur. Hence, this is why we deliberately chose our wording (in                  
the main text) as follows: “...potential metabolic functions specific to Health-prevalent species.”, “...differences             
in functional potential between...”, and “..analyzing both taxonomic composition and functional potential are             
both...”. Furthermore, this is common practice in genome/meta-genome analysis papers, as provided in the              
references below: 

● https://www.nature.com/articles/ismej20143  
○ “To validate the inferred functions determined by PICRUSt, we performed WMS sequencing –             

the conventional means of assessing microbiome ​functional potential – on a subset of banked              
stool samples from anti-TNF-α-treated mice (n=6)” 

● https://www.cell.com/trends/microbiology/fulltext/S0966-842X(17)30251-2  
○ “Recent large-scale metagenomic studies have provided insights into its structure and ​functional            

potential​.” 
● https://www.nature.com/articles/s41564-017-0084-4 

○ “The present study has provided an overview of the fecal metatranscriptome in a prospective,              
large-scale cohort of elderly males; identified core and variably transcribed pathways;           
delineated how these differ from ​metagenomic functional potential​; and ascribed them to            
specific contributing organisms.” 

○ “This indicates that, as in a single organism’s genome, only a subset of fecal ​functional potential                
is active under the circumstances captured by a typical sample.” 

● https://www.nature.com/articles/ismej201041  
○ “...but no comprehensive study has yet addressed their composition and ​functional potential in             

permafrost.” 
 
In addition, we respectfully clarify that we were in no way shape or form implying that, due to these biochemical                    
functions, “the microbiome is causative in disease”. More specifically, we wrote that these metabolic functions               
are specific to the Health-prevalent species, and not to health or to any disease. 
 
- l. 312: Why was this one result on sphingolipids the one discussed? It feels like cherry-picking. 
 
Authors’ response: ​We thank the reviewer for this concern. Actually, the analysis pertaining to this comment                
was entirely modified in light of an excellent suggestion from Reviewer #1. We describe our modified strategy                 
of using a metagenomic binning approach to identify enriched functional genes and modules pertaining to the                
Health-prevalent species in the ​Methods ​section of the revised manuscript (see lines 802–815), and show the                
results of our new analysis in ​Supplementary Fig. 5 and ​Supplementary Tables 7 ​and 8​. This time, we                  
avoided any seemingly biased analysis on a particular feature of interest. 
 
- l. 344: Is 71% good? How much better is it than alpha diversity? ​How much worse is it than a random forest                       
classifier, which is inscrutable but usually a better predictor? 
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Authors’ response: ​Please see our response to both questions above. 
 
- l. 375 ff. This should be the first Results sectio​n! If the claim is that alpha diversity is insufficient, the first                      
Results should substantiate that claim. Many, many studies have claimed that alpha diversity is associated               
with health. This isn't to say they are right and you are wrong, but it does mean that, if you want to claim they                        
are all wrong, you need to back up the claim! 
 
Scott Olesen, PhD 
OpenBiome 
 
Authors’ response: ​We thank the reviewer for this suggestion. As mentioned above, we have done some                
major restructuring of the manuscript to get the aforementioned points across more directly. In regards to the                 
narrative structure of our manuscript, we feel that the following outline—focused around the main figures and                
tables—makes the most logical sense: 
 

1. We introduce our multi-dataset integration pipeline (​Fig. 1a​) and some basic properties of the training               
data (i.e., the meta-dataset of 4,347 stool metagenome samples, ​Table 1​, ​and ​Fig. 1b–d​), upon which                
our index was built and tested. 

2. We present the Health-prevalent and Health-scarce species that were found during the derivation of the               
GMHI formula (​Table 2​). 

3. By showing that there is a moderately positive and significant correlation between GMHI and              
high-density lipoprotein cholesterol (​Fig. 2​), we were able to: i) associate GMHI with a key parameter of                 
cardiovascular health; and ii) better establish the clinical relevance of GMHI. 

4. Using the vast collection of samples in our training data, we present the classification performances of                
GMHI, Shannon diversity, 80% abundance coverage, and species richness all together (​Fig. 3​). Thus,              
we have placed our most important figures as early as we could, as suggested by the reviewer. 

5. Building off the results in the previous figure, we take a closer look at changes in group proportions                  
across the full range of GMHI values (​Fig. 4a​); and a direct head-to-head comparison of GMHI vs.                 
Shannon diversity (​Fig. 4b​) to illustrate which metric better distinguishes healthy and non-healthy             
groups. 

6. To identify the best metric after removing inter-study variation (which is a major source of batch                
effects), we perform case-control comparisons within individual studies to see which metric is the most               
robust and consistent (​Fig. 5​). 

7. On an independent external validation dataset of 679 samples, we show that GMHI best stratifies               
healthy and non-healthy groups compared to the other three metrics (​Fig. 6​). 

 
We respectfully clarify that ​never in our manuscript did we question or doubt the statistical association between                 
alpha diversity and health. This has been reported in the scientific literature numerous times (interestingly               
enough, the effect sizes are rarely shown with the corresponding P​-value). However, we do question its utility                 
as a ​classifier and/or predictor of health. The main message of our manuscript is to provide a better                  
quantitative marker by thinking a little differently. Our data throughout the manuscript clearly show that GMHI is                 
a more accurate, robust, and clinically-relevant classifier for distinguishing the presence/absence of diagnosed             
disease. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I thank the authors for their thorough reply to my comments. At this point I feel that my concerns 

have been addressed. The authors now provide a more nuanced description of the index and 

associated biases and specifically note that it rather quantifies the absence of a diagnosis/observed 

disease rather than a healthy state. They also repeated their analyses on all major taxonomic 

ranks and provide a functional analysis that now uses the metagenomic data rather than relying 

on reference strains. I recommend some minor additions to connect the biomarker and functional 

metagenomics results. 

 

The authors now found that HDLC is associated with a higher health index. At the same time they 

observe that the microbial genes most associated with the predicted index are either involved in 

amino acid or starch metabolism. This seems to indicate that the index is tightly connected to the 

metabolic state of the host. I wasn’t surprised to see HDLC pop up here since host cholesterol 

levels do interact with the gut microbiome through bile acids and their receptors such as TGR5 and 

FXR. Increased starch breakdown by the gut microbiota has been associated with higher weight 

and body fat in mice (https://doi.org/10.1038/nature05414 and https://doi.org/10.1038/s41564-

019-0569-4). However, the authors observe the opposite trend from their functional metagenomic 

analysis. Obesity is a risk factor or comorbidity for many diseases which might explain the 

observed results. Thus, I feel that summarizing those results in a few phrases in the discussion will 

help to form a hypothesis which physiological feature of the host is actually captured by the 

derived index. 

 

Christian Diener 

Institute for Systems Biology 

 

 

 

Reviewer #2: 

Remarks to the Author: 

First and foremost, I appreciate the authors’ patience and care in responding to my comments. 

This paper clearly involved a lot of work and careful thought, and that should be the first line of 

any review. In such a technical and data-rich work, there was plenty of opportunity for us to 

misunderstand one another! 

 

Overall, I think the manuscript is much improved. My major concerns about scope and framing 

were resolved; the authors should consider my remaining remarks on those topics as hopefully-

constructive suggestions. 

 

I do have some remaining reservations about some points of terminology and methodology, 

marked as “strong suggestions”. 

 

# STRONG SUGGESTIONS 

 

## Meaning of θd 

 

On a second reading, it struck me that θd actually sets a minimum prevalence. E.g., θd = 10% 

means that a health-prevalent species, say, can be 0% prevalent in the cases but must be at least 

10% prevalent in controls. 

 

Define instead θmin, which is the minimum prevalence of a health-prevalent species in controls (or 

-scare species in cases). Then θd = θmin * (1 - θf), so it seems these two parameterizations are 

equivalent? 



 

My guess is the θd is more important for setting a minimum prevalence, and θf mostly controls the 

difference between the prevalences in the cases and controls. If that’s true, then θmin & θf might 

be a more interpretable parameterization than θd & θf. 

 

## Characterization of “performance” 

 

The quantitative comparison of the index against richness, diversity, number of healthy species 

present, and random forest classifiers, as well as comparison of the index trained on species 

versus other taxonomic levels, greatly enhanced the paper. 

 

My remaining concern here is about the use of the word “performance”. I think the authors are in 

the right for saying that the species-trained index performs better than the phylum-trained index, 

because “performance” is equated with accuracy. But when I hear “performance” it makes me 

think also about model fit. Insofar as the species-trained model has many more degrees of 

freedom (i.e., each taxon is one of “good”, “bad”, or neither) than the phylum-trained model, it is 

no surprise that the species-trained model performs better than the phylum-trained model. Does it 

perform better _given_ the greater number of degrees of freedom? 

 

Because I do not believe the authors want to get into model fit and numbers of parameters, I 

suggest replacing “performance” with “accuracy”. 

 

 

# OTHER SUGGESTIONS / COMMENTS 

 

## Overall framing 

 

I appreciate the authors’ changes to the text, which I think much more clearly motivates the work: 

this index is designed to be accurate (in a way that Shannon’s diversity isn’t) and robust (in a way 

that random forests aren’t). It is a proof-of-concept for a clinically translatable tool. 

 

I still think that the Introduction and Discussion could more actively engage with what seem like 

the two major theoretical underpinnings of the index’s design: first, that “balance” between 

health-prevalent (I’ll just say “good”) and health-scarce (I’ll just say “bad”) bacteria reflects health 

status better than diversity; second, that the same “balance” applies across multiple disease 

states. These ideas are not unsupported by the literature, but they are also not uncontroversial. 

My suggestion is to make it clear in the Introduction that these are the two guiding inspirations for 

the formulation of the index, and rather than arguing that they are definitely true, saying that the 

intent was merely to determine if they were _useful_ when designing a new index. 

 

As an aside: I have a personal quibble with the word “balance” in microbiome literature. Normally 

“balance” is a good thing. The typical example is a “balance” between pro- and anti-inflammatory 

bacteria: you don’t want a wholly pro- or anti-inflammatory state, somewhere in the middle is 

best. But interesting, in this manuscript, “balance” is actually _not_ good: you want to be all the 

way on the “good” bacteria side. So maybe “balance” isn’t the right word? Or maybe it is, and the 

other use of “balance” is bad? Or is this all just too much semantics? 

 

And even if your motivation is translational, scientifically-motivated readers like me will definitely 

view the results through the lens of a hypothesis: it’s like you hypothesized that “balance” is more 

important than diversity and that health vs. disease “looks the same” across diseases, and you 

found that that idea works when classifying bacteria. So reading this one way, it feels like a 

potentially profound statement about ecology. 

 

## Explanation of the functional form of ψ 

 



This manuscript makes a clear argument for why the index h should be a ratio, and the log seems 

to make good sense given the data. However, I am still a bit puzzled by certains point around the 

functional form of ψ. (As a note, these questions might have arisen because I didn’t understand 

what was already well-written and -explained!) 

 

- Why is the constant cMH needed? How was its value determined? 

- Why are both richness RMHi and abundance nji needed? Why are they multiplied together? What 

happens if you just used one or the other? 

- Why not a simpler form, like the average abundance (sum over healthy species j of nji, divided 

by sum of nji for all species j)? The Methods makes a good argument for why you would want to 

use a geometric mean, but what happens if you don’t? 

- The presence of n log n in ψ is interesting, because it means that ψ is something about the 

Shannon diversity of the sample, but only when considering particular species. I’m not sure 

exactly what implications that has. 

 

## Small points 

 

- l. 36 “remarkable”: Quantify rather than claim “remarkable”? 

- l. 95 “age”: Are results confounded by age? In other words, what if the index merely predicts 

age, which in turn predicts disease state? 

- l. 110 “viruses”: An interesting feature of the index is that it need not be specific to bacteria; one 

could imagine applying it to health-prevalent vs. -scare viruses or fungi. 

- l. 124 “homogeneously dispersed”: Statistical test to support this claim? 

- Figure 1 “outliers”: How were outliers defined? 

- l. 173 “ensemble-averaged”: I think this is true, but it required me thinking about it fairly 

carefully after two careful readings of this manuscript. So it might be something to explain a bit 

more. 

- l. 210: I think this is technically the definition for _balanced_ accuracy, rather than just 

“accuracy”. 

- l. 222: Why does phylum fitting have a classification accuracy less than 50%? Is this because 

balanced accuracy is the metric? If this were plain old accuracy, I would expect a completely 

random classifier to have 50% accuracy. 

- l. 222: I actually think it’s pretty interesting that the family-level index performs just about as 

well as the species-level index. Given the greater number of parameters at the species level, it 

seems like using families or something similar might be more “robust”, especially since species 

names change? 

- l. 234: It seems to me that it should follow from the definition of h and the training of the 

classifier that h>0 implies greater relative abundance of health-prevalent species. Does that logic 

only hold if increased prevalence is correlated with increased abundance? My point is that this 

might be more of a “sanity check” than a “result”. 

- l. 262: Prevalence is an important part of the algorithm, but I never saw (I might have missed 

it!) how “present” was defined. Does just 1 read from a species make the species “present”? Does 

changing that threshold change the behavior of the model? If tweaking that threshold makes 

accuracy change, does that mean the current model is overfitted, or that it’s taking advantage of 

deep sequencing? 

- I found it difficult to interpret the cholesterol results. Is the fact that LDL level is correlated with 

the index mean something about biology (LDL is closely associated with the microbiome?) or about 

the metric (LDL is controlled by "balance" in the microbiome?) or about the data (only LDL has a 

strong enough signal to be detected?)? 

- l. 304: Estimates of Spearman’s ρ should have confidence intervals. 

- Figure 2: I think this is the same data in the two plots? Is there a way to rotate or align them so 

I can see that (b) is the marginal distribution of the points in (a)? 

- l. 323: Cliff’s delta is a great metric here! I think this makes a big improvement to the 

interpretability. But I do think Cliff’s delta is likely unfamiliar to most readers; it could be good to 

include a one-sentence explanation of what it means (+1 means 100% of A points are greater 



than B points; 0 means 50%; -1 means 0%?). 

- l. 333: Are there other metrics other than richness, Shannon, and 80% coverage considered? 

- Figure 3: Does the index’s improved performance in any particular indication “drive” its improved 

performance? Like, if you removed disease X from the training set, would the index’s predictive 

ability decline more than you would expect simply because you shrunk the training set? 

- l. 369-371: I didn’t understand this sentence 

- l. 401 “the most”: Implies it is more than _any_ predictor of health status, when it fact the claim 

is just about the other 3 metrics the index was compared to 

- l. 445 “in 6 of 12”: multiple hypothesis correction required? 

- l. 473: I found it very surprising that random forest, which is a highly flexible algorithm with 

access to the same information as the index (e.g., the species names are not “blinded” in the way 

they are with richness or other diversity metric), performed worse than the index. I think this has 

some implications about how random forest, essentially a set of decision trees, doesn’t have the 

same format as the rational equation approach of the index, and that’s what gave improved 

performance to the index over random forests? 

- l. 478: Rather than classification accuracy, the random forest’s out of bag (OOB) error should be 

reported, since that is the value that accounts for overfitting. 

- l. 485: effect size? 

- l. 558 "clinical need": I appreciate that the authors, who are actually doctors, know better than I 

do about what the clinical need is! I would, however, appreciate a citation to that effect for the 

benefit of other readers. 

- l. 630: This could use a citation too. I’m sure there are many, but this one comes to mind: 

https://pubmed.ncbi.nlm.nih.gov/31683111/ 

- l. 636-641: I think this is a very clear articulation of the paper’s motivation, and I would have 

preferred to read it in the Introduction! 

 

 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I thank the authors for their thorough reply to my comments. At this point I feel that my concerns have been                     
addressed. The authors now provide a more nuanced description of the index and associated biases and                
specifically note that it rather quantifies the absence of a diagnosis/observed disease rather than a healthy                
state. They also repeated their analyses on all major taxonomic ranks and provide a functional analysis that                 
now uses the metagenomic data rather than relying on reference strains. I recommend some minor additions                
to connect the biomarker and functional metagenomics results. 
 
Authors’ response: ​We very much thank the reviewer for all constructive feedback for our manuscript. We are                 
pleased to hear that the original concerns have been adequately addressed. 
 
The authors now found that HDLC is associated with a higher health index. At the same time they observe that                    
the microbial genes most associated with the predicted index are either involved in amino acid or starch                 
metabolism. This seems to indicate that the index is tightly connected to the metabolic state of the host. I                   
wasn’t surprised to see HDLC pop up here since host cholesterol levels do interact with the gut microbiome                  
through bile acids and their receptors such as TGR5 and FXR. Increased starch breakdown by the gut                 
microbiota has been associated with higher weight and body fat in mice (​https://doi.org/10.1038/nature05414             
and ​https://doi.org/10.1038/s41564-019-0569-4​). However, the authors observe the opposite trend from their           
functional metagenomic analysis. Obesity is a risk factor or comorbidity for many diseases which might explain                
the observed results. Thus, I feel that summarizing those results in a few phrases in the discussion will help to                    
form a hypothesis which physiological feature of the host is actually captured by the derived index. 
 
Christian Diener 
Institute for Systems Biology 
 
Authors’ response: ​The reviewer brings to our attention an interesting question that we ourselves had               
overlooked: What is the tripartite relationship amongst (host) metabolism, gut microbiome metabolic function,             
and our gut health index? Certainly, this appeal is driven by our findings that: i) GMHI is correlated with serum                    
high-density lipoprotein cholesterol (HDLC) concentrations; and ii) genes of the health-prevalent species were             
found to be enriched (in the metagenomes) for enzymes contributing to the metabolism of simple sugars                
(fructose, xylulose), glucose compounds (trehalose and starch), and more complex biochemical structures            
(xylan and Lipid A). Certainly, there is a plethora of literature evidence demonstrating a mechanistic link                
between the gut microbiome, host metabolism, and metabolic syndrome (such as obesity), including the              
famous Turnbaugh ​et al.​ Nature 2006 study mentioned by the reviewer. 
 
Despite this interesting link, we’ve elected to exercise a bit of caution in formulating certain hypotheses without                 
a clear, unequivocal understanding behind the observations mentioned above. For example, high HDLC levels              
in serum may be a reflection of various factors (e.g., genetics, dietary habits, lifestyle) other than gut                 
microbiome; and enriched genes within the microbiome (which have been shown to be sensitive to host diet)                 
still reflect functional potential, and not active function. Therefore, as tempting as it may be to entertain                 
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possible hypotheses regarding all the reviewer’s aforementioned points, we prefer to be more on the               
conservative end and refrain from delving too far into statistical associations. We sincerely hope our viewpoint                
sounds fair and reasonable. 
 
With that being said, we certainly wanted to respect the reviewer’s suggestion to have a bit more reflection on                   
the implications of our findings. Rather than speculating on complex relationships, we decided to further               
comment on our HDLC results only. In a very recent study published in Cell Host & Microbe (2020)                  
https://pubmed.ncbi.nlm.nih.gov/32544460/​, Kenny ​et al. found that host serum cholesterol levels (LDLC and            
HDLC) are influenced by gut bacteria through ​ismA​, which is a microbial cholesterol dehydrogenase. By               
integrating paired metagenomics and metabolomics data from geographically diverse human cohorts, the            
authors identified a group of ​ismA genes in uncultured gut microorganisms, and found that these genes                
encode enzymes that convert cholesterol to coprostanol. Moreover, individuals harboring gut microbes with             
ismA genes were found to have significantly lower serum cholesterol levels (LDLC and HDLC). These findings                
are relevant to our own results regarding a gut microbiome and HDLC connection. 

 
We’ve introduced this point in lines 317–322 of the revised manuscript, as follows: “In relevance to this point, a                   
recent study by Kenny ​et al​. showed that cholesterol metabolism by gut microbes may impact cardiovascular                
health by influencing serum cholesterol concentrations. Specifically, the investigators discovered that gut            
microbes can metabolize cholesterol into coprostanol through enzymes encoded by ​ismA (a cholesterol             
dehydrogenase); and that individuals harboring gut microbes with ​ismA genes have significantly lower serum              
total cholesterol levels​27​.” 
 
Also, we’ve slightly modified our wording in line 303: 

● (previous) “In order to validate whether GMHI can indeed quantify certain aspects of health,” 
● (now) “In order to validate whether GMHI can indeed capture certain physiological features of health,” 

 
Reviewer #2 (Remarks to the Author): 
 
First and foremost, I appreciate the authors’ patience and care in responding to my comments. This paper                 
clearly involved a lot of work and careful thought, and that should be the first line of any review. In such a                      
technical and data-rich work, there was plenty of opportunity for us to misunderstand one another! 
 
Overall, I think the manuscript is much improved. My major concerns about scope and framing were resolved;                 
the authors should consider my remaining remarks on those topics as hopefully-constructive suggestions. 
 
I do have some remaining reservations about some points of terminology and methodology, marked as “strong                
suggestions”. 
 
Authors’ response: ​We would like to extend our gratitude to the reviewer, as all comments were                
indispensable for improving the clarity and readability of our manuscript. Moreover, we are much pleased to                
hear that the original concerns have been resolved, and we welcome the opportunity to further improve our                 
work, as we demonstrate below. 
 

2 

https://pubmed.ncbi.nlm.nih.gov/32544460/


# STRONG SUGGESTIONS 
 
## Meaning of θd 
 
On a second reading, it struck me that θd actually sets a minimum prevalence. E.g., θd = 10% means that a                     
health-prevalent species, say, can be 0% prevalent in the cases but must be at least 10% prevalent in controls. 
 
Define instead θmin, which is the minimum prevalence of a health-prevalent species in controls (or -scare                
species in cases). Then θd = θmin * (1 - θf), so it seems these two parameterizations are equivalent? My                    
guess is the θd is more important for setting a minimum prevalence, and θf mostly controls the difference                  
between the prevalences in the cases and controls. If that’s true, then θmin & θf might be a more interpretable                    
parameterization than θd & θf. 
 
Authors’ response: ​Unfortunately, we are a bit puzzled by the premise of this suggestion. The minimum                
prevalence of a particular species (in either group) is not particularly relevant to our overarching goal of                 
identifying the Health-prevalent (i.e., higher frequency in Healthy) and Health-scarce (i.e., lower frequency in              
Healthy) species. In fact, it was never considered. Let us try to clarify, with the hope of reaching a mutual                    
understanding: 
 

● To be clear, ​θ​f and ​θ​d have been defined as minimum thresholds for prevalence fold change (​p​H​/p​N​) and                  
prevalence difference (​p​H​ – p​N​), respectively.  

● Yes, ​θ​d *can* suggest the minimum prevalence, but it would make more sense to just find what that                  
prevalence is directly from the microbiome samples. However, these values serve really no practical              
purpose in our methodology. 

● In regards to ease of interpretation behind our parameters: As authors of this manuscript, we believe                
that our prevalence thresholds (​θ​f and ​θ​d​)—as currently defined—make the most intuitive sense when              
comparing the magnitudes of the two prevalences. Specifically, all we’re doing is determining the              
difference (subtraction) and fold-change (division) in prevalences to find microbes with considerable            
effect size between Healthy and Non-healthy. 

● Detailed information on our prevalence-based strategy to identify microbial species associated with            
healthy human gut microbiomes, along with the motivation underlying our two thresholds, can be found               
in lines 155–188. We kindly suggest another read to confirm that both parties are on the same page.  

○ Perhaps we may clarify our text a bit further? Or perhaps the reviewer can word the question a                  
bit differently? (we genuinely would like to understand where the reviewer is coming from.)              
Otherwise, perhaps we’ve clarified enough in the points above? 

 
And last but not least, the proposed situation of 0% prevalence doesn’t occur in any of the 313 species used in                     
our study for GMHI formulation. If so, the fold-change could not have been derived. 
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## Characterization of “performance” 
 
The quantitative comparison of the index against richness, diversity, number of healthy species present, and               
random forest classifiers, as well as comparison of the index trained on species versus other taxonomic levels,                 
greatly enhanced the paper. 
 
Authors’ response: ​We are pleased to hear this! 
 
My remaining concern here is about the use of the word “performance”. I think the authors are in the right for                     
saying that the species-trained index performs better than the phylum-trained index, because “​performance” is              
equated with accuracy. But when I hear “performance” it makes me think also about model fit. Insofar as the                   
species-trained model has many more degrees of freedom (i.e., each taxon is one of “good”, “bad”, or neither)                  
than the phylum-trained model, it is no surprise that the species-trained model performs better than the                
phylum-trained model. Does it perform better _given_ the greater number of degrees of freedom? 
 
Authors’ response: ​This is an interesting topic to ponder upon. We agree that a larger feature set can indeed                   
lead to a more accurately tuned model more often than not; however, there can be considerable exceptions                 
involving the following: 

● Having more features does not necessarily result in higher signal-to-noise. The possibility that more              
noise comes with an expanded feature-set is certainly not negligible. 

● Many of the species are correlated with one another, or at least much more "so than amongst individual                  
phyla. A consequence of having a lot of features demonstrating high(er) covariance is high(er) signal               
redundancy, i.e., highly repetitive patterns. 

● Species’ abundances are, in theory, a subset of phyla’ abundances; in other words, higher abundances               
of Bacteroidetes should lead to higher abundances of at least some species within this phylum. Thus, a                 
non-trivial portion of the variance captured at the phylum-level can also be captured at the               
species-level, and we question the practical significance of further head-to-head comparisons. 

● Most importantly, a GMHI built upon MetaCyc pathways (# of pathways = 405) resulted in a much                 
worse classifier performance (57.3% balanced accuracy) than an index from species (# of species =               
313) information (69.7% balanced accuracy). ​Therefore, merely having greater degrees of freedom            
(i.e., higher number of features) is not necessarily predictive of better classification accuracy. 
 

Our point is that, prior to making general assumptions, careful consideration of the properties of the features                 
should be made. For us, we certainly did not sense any guarantee that species were going to give better                   
classification accuracy than phyla. 
 
To answer the question of “Does it perform better _given_ the greater number of degrees of freedom?”, a                  
Monte carlo random sampling approach, while keeping the number of selected features consistent for both               
taxonomic clades, would be one way (of many) to test this hypothesis. ​However, we strongly feel that this                  
analysis (and its results) is far outside the main message of our manuscript. We would like to firmly establish                   
the proof-of-concept first, and then, in future studies, optimize the model, learn its advantages and weaknesses                
in great detail, etc. 
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Because I do not believe the authors want to get into model fit and numbers of parameters, I suggest replacing                    
“performance” with “accuracy”. 
 
Authors’ response: ​We do recognize the value of being clear on the semantics, and thus we agree with the                   
reviewer’s viewpoint. Please see all highlighted areas throughout the revised manuscript (lines 83, 163, 223,               
233, 486, 587, and 599) where we’ve replaced “classification performance” with “classification accuracy”. 
 
 
# O​THER SUGGESTIONS / COMMENTS 
 
## Overall framing 
 
I appreciate the authors’ changes to the text, which I think much more clearly motivates the work: this index is                    
designed to b​e accurate (in a way that Shannon’s diversity isn’t) and robust (in a way that random forests                   
aren’t). It is a proof-of-concept for a clinically translatable tool. 
 
Authors’ response: ​We are pleased to hear this! 
 
I still think that the Introduction and Discussion could more actively engage with what seem like the two major                   
theoretical underpinnings of the index’s design: first, that “balance” between health-prevalent (I’ll just say              
“good”) and health-scarce (I’ll just say “bad”) bacteria reflects health status better than diversity; second, that                
the same “balance” applies across multiple disease states. These ideas are not unsupported by the literature,                
but they are also not uncontroversial. ​My suggestion is to make it clear in the Introduction that these are the                    
two guiding inspirations for the formulation of the index, and rather than arguing that they are definitely true,                  
saying that the intent was merely to determine if they were _useful_ when designing a new index. 
 
Authors’ response: ​We very much thank the reviewer for this comment. In fact, the whole subsection in the                  
Results section titled “Motivation underlying the design of a gut microbiome-based health index” is dedicated to                
articulate the underlying rationale behind GMHI. However, we do agree with the reviewer that we can be more                  
engaging and direct. (we kindly clarify that we’ve toned down our narrative against alpha-diversity as a health                 
measure.) To address the reviewer’s comment without writing entirely new subsections, we’ve added the              
following brief statements in the main text: 

● lines 75–77: “GMHI determines the likelihood of having a disease, irrespective of the diagnosis. This is                
done so by comparing the relative abundances of two sets of microbial species associated with good                
and adverse health conditions, ...” 

● line 79: “...various disease states.” 
● lines 577–580: “In this study, we provide a simple and biologically-interpretable measure to quantify the               

degree of presence/absence of diagnosed disease from a gut microbiome (stool metagenome) sample.             
Specifically, i) we envisioned that the most intuitive way to determine how closely one’s microbiome               
resembles that of a healthy (or non-healthy) population is to compare the relative abundances of two                
sets of microbes; ... ” 
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As an aside: I have a personal quibble with the word “balance” in microbiome literature. Normally “balance” is a                   
good thing. The typical example is a “balance” between pro- and anti-inflammatory bacteria: you don’t want a                 
wholly pro- or anti-inflammatory state, somewhere in the middle is best. But interesting, in this manuscript,                
“balance” is actually _not_ good: you want to be all the way on the “good” bacteria side. So maybe “balance”                    
isn’t the right word? Or maybe it is, and the other use of “balance” is bad? Or is this all just too much                       
semantics? 
 
Authors’ response: ​As previously mentioned, we strive to be crystal clear on the semantics. If one working                 
definition of “balance” is to have near evenly distributed weights or abundances among Health-prevalent and               
Health-scarce species, then indeed, “balance” does not lead to “healthy” (but to be clear, we did not suggest                  
this anywhere in the text); rather, it is desirable to have more Health-prevalent species relative to                
Health-scarce species to be seen as absent of diagnosed disease. To prevent any possible confusion that may                 
arise from our use of “balance”, we’ve modified the main text accordingly: 
 

● Introduction, lines 75–77: 
○ (previous) “GMHI is designed to evaluate the balance between two sets of microbial species              

associated with good and adverse health conditions,” 
○ (now) “GMHI determines the likelihood of having a disease, irrespective of the diagnosis. This is               

done so by comparing the relative abundances of two sets of microbial species associated with               
good and adverse health conditions,” 

● Motivation underlying the design of a gut microbiome-based health index, lines 158–159: 
○ (previous) “Therefore, we propose an index in the form of a rational equation between two sets                

of microbial species:” 
○ (now) “Therefore, we propose an index in the form of a rational equation ​(and thereby yielding a                 

dimensionless quantity)​ between two sets of microbial species:” 
● Discussion, lines 580: 

○ (previous) “we envisioned that the most intuitive way to determine how closely one’s microbiome              
resembles that of a healthy (or non-healthy) population is to ​quantify the balance between two               
sets of microbes;” 

○ (now) “we envisioned that the most intuitive way to determine how closely one’s microbiome              
resembles that of a healthy (or non-healthy) population is to ​compare the relative abundances of               
two sets of microbes;” 

● Discussion, lines 585–587: 
○ (previous) “GMHI is a biologically-interpretable, quantitative metric formulated based on ​the           

balance​ between the collective abundances of Health-prevalent and of Health-scarce species.” 
○ (now) “GMHI is a biologically-interpretable, quantitative metric formulated based on ​a ratio            

between the collective abundances of Health-prevalent and of Health-scarce species.” 
 
Two other areas were left unchanged (lines 157, 207, and 292), as we felt that the word “balance” was actually                    
used appropriately in these cases. We hope these modifications address the reviewer’s concern. 
 
And even if your motivation is translational, scientifically-motivated readers like me will definitely view the               
results through the lens of a hypothesis: it’s like you hypothesized that “balance” is more important than                 
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diversity and that health vs. disease “looks the same” across diseases, and you found that that idea works                  
when classifying bacteria. So reading this one way, it feels like a potentially profound statement about ecology. 
 
Authors’ response: ​It’s definitely thought-provoking that the same data can be viewed and interpreted from so                
many different angles! Certainly, these points (as well as many others throughout the manuscript) can be                
analyzed much more meticulously in follow-up analyses, especially after seeing how the scientific and medical               
communities judge our study once out in print. We hope to keep in touch after the dust settles. 
 
## Explanation of the functional form of ψ 
 
This manuscript makes a clear argument for why the index h should be a ratio, and the log seems to make                     
good sense given the data. However, I am still a bit puzzled by certains point around the functional form of ψ.                     
(As a note, these questions might have arisen because I didn’t understand what was already well-written and                 
-explained!) 
 
- Why is the constant cMH needed? How was its value determined? 
 
Authors’ response: ​C​MH and ​C​MN were originally used to approximate the mathematical relationship between              

ψ and . The exact values of ​C​MH and ​C​MN were never required, as ​C​MH​/​C​MN was modeled to be                   
close enough to 1 for simplicity of the analysis. Although the individual values of ​C​MH and ​C​MN were not                   
necessary to conduct our analysis, we cannot ignore the possibility that these two parameters may introduce                
confusion (as the reviewer points out). In the interest of clarity, we’ve removed all mentioning of ​C​MH and ​C​MN                   

throughout the manuscript, and defined ​ψ as instead. Notably, this change does             
not affect any of the results in our study. 
 
- Why are both richness RMHi and abundance nji needed? Why are they multiplied together? What happens if                  
you just used one or the other?  
 
Authors’ response: ​After identifying the Health-prevalent and Health-scarce species, we needed a            
mathematical formula to best approximate the ‘collective abundance’ ​ψ​. Of course, we can consider many               
different microbial/ecological properties, which can then be formulated into almost infinite combinations of             
linear or non-linear equations. As detailed in lines 738–754, we considered both species’ richness and also                
their (geometric) mean relative abundances, as it seemed to make just plain sense to us (we believe the                  
authors should have the freedom to derive any equation they want, as long as there are no inherent flaws in                    
the mathematical presentation or underlying biological assumptions). 
 
Given that we’ve defined ​ψ to be positively correlated with richness and with n​ji​, a neat trick for using these                    
variables simultaneously is to simply multiply them (we expect future versions of the model to be a bit more                   
complicated once certain constraints are added to the formula). Here, the product is strongly preferred over the                 
summation due to the wide difference in scales. 
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In regards to what would happen if we were to just use one or the other, this was partially addressed in the                      
previous review round during our analysis with the count of Health-prevalent species. With respect, we would                
like to decline carrying out additional analyses to deconstruct and understand all the intricacies behind our                
equation, as we feel this may distract readers from the main storyline of our work. We are definitely open to                    
follow-up analyses involving tinkering this and that to gain insight into which parameters are most impactful;                
and which can be ignored or treated approximately. 
 
- Why not a simpler form, like the average abundance (sum over healthy species j of nji, divided by sum of nji                      
for all species j)? The Methods makes a good argument for why you would want to use a geometric mean, but                     
what happens if you don’t? 
 
Authors’ response: ​We thank the reviewer for these questions. Although our equation for ​ψ may look a little                  
daunting at first, ​ψ is just built on the richness and mean abundances of a particular set of microbial species.                    
Thus, despite the seemingly complicated structure of the equation, the underlying assumptions are rather              
straightforward (in our view), and more importantly, the equation captures the parameters that we deem as                
essential for characterizing the ‘collective abundance’ of a group of species. 
 
Indeed, there is a lot of interesting insight that can be learned if we were to tinker here and there. As stated in                       
our previous response, ​all the intricacies of our equation need not be completely resolved in this original work.                  
As a somewhat related example, consider the popularity of deep-learning-based, neural network algorithms, of              
which the physics of how these approaches actually make decisions are currently still being worked out by labs                  
around the world. 
 
- The presence of n log n in ψ is interesting, because it means that ψ is something about the Shannon diversity                      
of the sample, but only when considering particular species. I’m not sure exactly what implications that has. 
 
Authors’ response: ​We appreciate this observation about our formula. To clarify, we were not specifically               
looking to use the Shannon diversity while constructing our formula; rather, the equation for Shannon diversity                
just so happened to closely resemble the mean abundance of the species set of interest (we briefly mention in                   
lines 748–753 the reason for using the geometric mean over the arithmetic mean). Although we agree that it is                   
an interesting coincidence, we feel that there will not be a significant improvement to the manuscript from                 
further speculation. 
 
## Small points 
 
Authors’ response: ​In regards to all points below, we tremendously appreciate the meticulous effort and               
dedication put forth by the reviewer to help improve our manuscript! 
 
- l. 36 “remarkable”: Quantify rather than claim “remarkable”? 
 
Authors’ response: ​Thank you for pointing this out. We agree that it’s best to back-up subjective claims with                  
real numbers! We’ve changed the text accordingly: 
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● line 36 
○ (previous) “... resulted in remarkable reproducibility in distinguishing ... ” 
○ (now) “... resulted in a balanced accuracy of 73.7% in distinguishing ... ” 

 
- l. 95 “age”: Are results confounded by age? In other words, what if the index merely predicts age, which in                     
turn predicts disease state? 
 
Authors’ response: ​Thank you for bringing this important matter to our attention. To address whether our                
results are confounded by age, we sought the correlation between this potential covariate (as reported in the                 
original studies) and GMHI. Of note, 1,997 of 4,347 samples in our training set report the subjects’ age.  
 

 
As shown above (left), our analysis shows that age and GMHI hardly demonstrate any meaningful relationship,                
i.e., ​Spearman’s ​ρ ​= 0.034 (​P = 0.13). In addition (right), no significant difference in age was observed between                   
subjects with positive GMHI (n = 762) and those with negative GMHI (n = 1,208) (Mann-Whitney ​U ​test; ​P =                    
0.17). ​In summary, we conclude that age is not a considerable confounder of our study’s results. We’ve                 
mentioned this in lines 326–327, as follows: “... and even age (​ρ = 0.03, 95% CI: [-0.01, 0.08]) were noted to                     
have only weak or no meaningful correlations with GMHI.” 
 
- l. 110 “viruses”: An interesting feature of the index is that it need not be specific to bacteria; one could                     
imagine applying it to health-prevalent vs. -scare viruses or fungi. 
 
Authors’ response: ​We definitely agree. Although we decided to keep things relatively simple and stick to the                 
three domains of life (Archaea, Bacteria, and Eukarya), one item on our bucket-list is to do an equivalent study                   
with viruses. Fungi were considered in our study, but just didn’t show up as part of the Health-prevalent or                   
Health-scarce species sets. 
 
- l. 124 “homogeneously dispersed”: Statistical test to support this claim? 
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Authors’ response: ​Although our original claim here was intended to be only a brief and qualitative summary,                 
we agree with the reviewer that a description based on statistics would provide more accurate and objective                 
insight. For this, we used the Analysis of group similarities (ANOSIM), which is a non-parametric procedure                
based on a permutation test of among- and within-group similarities. ANOSIM is widely used in the ecology                 
literature for testing the null hypothesis of ‘no difference between two or more groups of entities’ (the original                  
paper by K. R. Clark in the Australian Journal of Ecology (1993) has been cited 7,000+ times;                 
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9993.1993.tb00438.x​). Importantly, ANOSIM tests    
whether groups are significantly different from each other by using a dissimilarity matrix, and hence goes well                 
with our PCoA plot based on Bray-Curtis distances. 
 
The ANOSIM test statistic R (an index of relative within-group dissimilarity) is interpreted as a correlation                
coefficient and can be viewed as a measure of effect size. ANOSIM on the 13 total groups (1 healthy and 12                     
non-healthy phenotypes) resulted in an R of 0.21 (​P = 0.001), allowing us to conclude that the groups differ                   
only weakly, i.e., among- and within-group dissimilarities are not that much different for the most part. We’ve                 
modified the main text in lines 132–134 accordingly: 

● (previous) “In the same PCoA plot in which the healthy and twelve non-healthy phenotypes were               
presented simultaneously, ​we found that the various phenotypes were homogeneously dispersed           
without any apparent sub-clusters (​Fig. 1d​).​” 

● (now) “In the same PCoA plot in which the healthy and twelve non-healthy phenotypes were presented                
simultaneously ​(​Fig. 1d​), we identified no clearly distinguishable sub-clusters and found that, for the              
most part, only a weak difference amongst groups was observed (ANOSIM R = 0.21, P = 0.001).​” 

 
In addition, we’ve added the following to the last line of the legend in ​Figure 1​: “Among- and within-group                   
dissimilarities differ only weakly (ANOSIM R = 0.21, P = 0.001).” 
 
- Figure 1 “outliers”: How were outliers defined? 
 
Authors’ response: ​This was originally mentioned in lines 691–694 (‘​Sample-filtering based on taxonomic             
profiles​’ subsection in ​Methods​): “A sample was considered as an outlier, and thereby removed from further                
analysis, when its dissimilarity exceeded the upper and inner fence (i.e., > 1.5 times outside of the interquartile                  
range above the upper quartile and below the lower quartile) amongst all dissimilarities. This process removed                
67 metagenome samples.” 
 
In order for us to more easily point this out to the reader, we’ve included “... (see ​Methods​).” in the legend of                      
Figure 1​ (see lines 142–143). 
 
- l. 173 “ensemble-averaged”: I think this is true, but it required me thinking about it fairly carefully after two                    
careful readings of this manuscript. So it might be something to explain a bit more. 
 
Authors’ response: ​We thank the reviewer for pointing to us another area wherein we could be more clear.                  
We’ve slightly modified the text in lines 182–185, with the hope that our change has made the sentence more                   
straightforward: 
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● (previously) “An important strength of our prevalence-based strategy for identifying microbial           
associations is that it does not compare ​ensemble-averaged measurements between the two groups​,             
which is challenging to justify when biological and technical heterogeneity (batch effects) could vary              
greatly across various independent studies.” 

● (now) “An important strength of our prevalence-based strategy for identifying microbial associations is             
that it does not compare ​averages of measurements taken from various sources​, which is challenging               
to justify when biological and technical heterogeneity (batch effects) could vary greatly across             
independent studies.” 

 
- l. 210: I think this is technically the definition for _balanced_ accuracy, rather than just “accuracy”. 
 
Authors’ response: We agree with the reviewer that the correct technical term is “balanced accuracy”, which                
is often used for evaluating machine-learning processes with skewed class distributions (not to confuse with               
“overall accuracy”, which is another term with a different working definition). Throughout the text, we’ve               
replaced all instances of “average classification accuracy” with “balanced accuracy” (see highlighted areas). 
 
- l. 222: Why does phylum fitting have a classification accuracy less than 50%? Is this because balanced                  
accuracy is the metric? If this were plain old accuracy, I would expect a completely random classifier to have                   
50% accuracy. 
 
Authors’ response: That is correct. Phylum achieved a balanced accuracy of 42.1% (Healthy: 61.7%;              
Non-healthy: 22.5%; the average: 42.1%). 
 
- l. 222: I actually think it’s pretty interesting that the family-level index performs just about as well as the                    
species-level index. Given the greater number of parameters at the species level, it seems like using families                 
or something similar might be more “robust”, especially since species names change? 
 
Authors’ response: We appreciate and understand the reviewer’s perspective. It is not incorrect. However,              
we view things slightly differently for the following reasons: 

● As we’ve elaborated in the previous round, we very much value the ability to be as precise as possible                   
when calling taxonomic clades. For example, if we were to use family-level features in our pipeline, and                 
we were to identify a particular family as either ‘Health-prevalent’ or ‘Health-scarce’, is it reasonable to                
generalize this finding for all strains of that family? We certainly do not think so. Thus, if all things were                    
considered equal (or highly similar), we’d like to be as close to strain-level analyses as practically                
possible. This is why, from the beginning, we chose to perform species-level analyses, and we were                
fortunate to find that species (amongst all taxonomic clades) gives the best balanced accuracy. 

● We understand that robustness of a classifier depends upon how frequently the same features are               
selected when given more or different datasets to train upon; however, we prefer to have a classifier                 
with high accuracy, as we believe that, with more and more datasets and samples, the identity of the                  
classifiers (i.e., Health-prevalent and Health-scarce species) will eventually converge. Thus, simply           
restricting the analytical pipeline towards having fewer features to train upon is not necessarily a great                
idea in the long-term. 
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● We are aware that species names can change (e.g., renaming, merging two or more species into one,                 
or splitting a single species into multiple ones). Obviously, these changes are done for scientifically               
valid reasons, and not out of whim. Thus, although the changing of species’ names can present a bit of                   
an inconvenience to future studies, we are totally ok with this and will acknowledge these changes into                 
future versions of our index. 

 
- l. 234: It seems to me that it should follow from the definition of h and the training of the classifier that h>0                        
implies greater relative abundance of health-prevalent species. Does that logic only hold if increased              
prevalence is correlated with increased abundance? My point is that this might be more of a “sanity check”                  
than a “result”. 
 
Authors’ response: We appreciate the reviewer's astute question, and sincerely apologize for the confusion              
arising from our use of the word “confirm”. We were not at all suggesting that there is a clear correlation                    
between prevalence and abundance of health-prevalent species in healthy samples (and analogously for             
health-scarce species in non-healthy samples). We’ve modified the wording in line 243 (originally line 234 in                
the previous version of our manuscript) accordingly: 

● (previous) “​We were able to confirm higher relative abundance levels of Health-prevalent and             
Health-scarce species in the healthy and non-healthy group, respectively (​Supplementary Fig. 3​).” 

● (now) “​Interestingly, we found higher relative abundance levels of Health-prevalent and Health-scarce            
species in the healthy and non-healthy group, respectively (​Supplementary Fig. 3​).” 

 
- l. 262: Prevalence is an important part of the algorithm, but I never saw (I might have missed it!) how                     
“present” was defined. Does just 1 read from a species make the species “present”? Does changing that                 
threshold change the behavior of the model? If tweaking that threshold makes accuracy change, does that                
mean the current model is overfitted, or that it’s taking advantage of deep sequencing? 
 
Authors’ response: The definition of ‘present’ has already been described in lines 172 and 719: “...‘present’                
(or relative abundance ≥ 1.0 x 10​-5​) ...”. Establishing a minimum threshold allows us to determine which relative                  
abundance we can use (or not use) in our pipeline; simply using all non-zero abundances is not a good idea,                    
as one can never know whether a very minuscule abundance (which often results in deep sequencing data)                 
actually reflects reality, or otherwise is simply attributed to noise in the detection software. Figuratively               
speaking, a line needs to be drawn somewhere in the sand. 

 
A rank-plot (left) was used to identify a minimum relative abundance           
for a species to be considered as ‘present’. Specifically, we plotted           
all non-zero relative abundances from species detected across all         
4,347 samples in our training dataset (there are a total of 369,073            
points plotted in decreasing order). For most of the points, we see a             
gradual decrease (in relative abundance) going from left to right, but           
then we see a precipitous drop once 1.0 x 10​-5 is passed, reflecting             
a transition in slope properties. Additionally, we do not see many           
points past 1.0 x 10​-5 (relative to the amount prior to this inflection             
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point). Hence, we consider this quantity to be a reasonable minimum threshold for ‘presence’. 
 
To answer the last two questions, we’ve found the model’s classification performance when the following               
‘presence’ thresholds were used: 0.001%, 0.01%, 0.1%, and 1% (there is no practical reason to use higher                 
thresholds, as we lose too much abundance data); the resulting balanced accuracies were: 69.7% (as reported                
in our manuscript), 70.5%, 67.5%, and 63.4%. In general, we see that increasing the ‘present’ threshold leads                 
to lower accuracy, which was somewhat expected due to the ensuing loss in abundance information. To us, it                  
would have been much more difficult to believe if there was no change in accuracy.  
 
In the biomarker discovery field, ‘overfitting’ is more relevant to the context wherein a great disparity exists                 
between classification performance on the training data and that on the validation data. Thus, we believe that a                  
discussion on ‘overfitting’ is not relevant here. 
 
- I found it difficult to interpret the cholesterol results. Is the fact that LDL level is correlated with the index mean                      
something about biology (LDL is closely associated with the microbiome?) or about the metric (LDL is                
controlled by "balance" in the microbiome?) or about the data (only LDL has a strong enough signal to be                   
detected?)? 
 
Authors’ response: This analysis was done in response to Reviewer #1’s suggestion to see whether there is                 
any connection between GMHI and objective measures of health. Accordingly, we looked for statistical              
associations between GMHI and well-recognized components of physiological wellness from clinical lab tests             
and health surveys, as reported in their original studies. As we have clearly reported, we found a moderately                  
positive correlation between GMHI and HDLC (we are not sure why the reviewer refers to LDL). We view these                   
findings to be of high importance, as it not only demonstrates the integration of clinical data with gut                  
microbiome, but also hints at the possibility of GMHI serving as an effective and reliable predictor of                 
cardiovascular health.  
 
We kindly note that these results do not—and were never intended to—suggest anything about host biology                
(beyond the statistical associations reported herein); about a mechanistic relationship between HDLC and the              
gut microbiome; or about detection limitations of the blood measurements. We would consider remarks              
regarding these issues to be valid only if confirmed via experiment. 
  
- l. 304: ​Estimates of Spearman’s ρ should have confidence intervals. 
 
Authors’ response: We appreciate this suggestion. We’ve included the 95% confidence intervals (CI) for              
every Spearman’s ​ρ ​mentioned in the manuscript. Please see lines 312, 324–326, 330, 409, 413–416 for the                 
upper and lower confidence limits of each ​ρ​. 
 
- Figure 2: I think this is the same data in the two plots? Is there a way to rotate or align them so I can see that                            
(b) is the marginal distribution of the points in (a)? 
 
Authors’ response: We appreciate this suggestion. Yes, the two plots in ​Figs. 2a and ​2b ​use the same data,                   
but tell slightly different messages: ​Fig. 2a shows the correlation between the two variables, while ​Fig. 2b                 
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shows that there is a significant difference in HDLC between the ‘GMHI-positive’ (i.e., classified as healthy)                
and ‘GMHI-negative’ (i.e., classified as non-healthy) groups. Since both plots are not necessarily meant to be                
viewed and analyzed in unison, we felt it best to leave the figure as-is. (actually after trying a few times, we                     
found that the figure looks a bit weird.) 
 
- l. 323: Cliff’s delta is a great metric here! I think this makes a big improvement to the interpretability. But I do                       
think Cliff’s delta is likely unfamiliar to most readers; it could be good to include a one-sentence explanation of                   
what it means (+1 means 100% of A points are greater than B points; 0 means 50%; -1 means 0%?). 
 
Authors’ response: ​We agree that providing a brief explanation would help readers who are unfamiliar with                
Cliff’s delta. In lines 339–341 (right after when Cliff’s delta was first mentioned), we’ve included the following: 
 

● “(Of note, Cliff’s Delta (​d​) is a non-parametric effect size measure that quantifies how often one value in                  
one distribution is higher than the values in the second distribution; it is a difference between                
probabilities, and thus ranges from -1 to +1)” 

 
- l. 333: Are there other metrics other than richness, Shannon, and 80% coverage considered? 
 
Authors’ response: ​No additional ecological characteristics were considered. We felt that these were enough              
to get our main message across while abiding by space constraints. 
 
- Figure 3: Does the index’s improved performance in any particular indication “drive” its improved               
performance? Like, if you removed disease X from the training set, would the index’s predictive ability decline                 
more than you would expect simply because you shrunk the training set? 
 
Authors’ response: ​We thank the reviewer for this interesting suggestion! Indeed, whether our Index’              
performance in separating healthy from non-healthy could be driven by a single non-healthy phenotype is               
important to know. We performed the suggested analysis, wherein we removed each phenotype one-by-one              
from the training data, and repeated our entire pipeline (from finding new sets of ​θ​f and ​θ​d​, to finding the                    
corresponding Health-prevalent and Health-scarce species, and then testing our tuned index to identify the              
balanced accuracies on the sample-reduced training data). As shown below, we plot all the accuracies when                
removing each of the twelve phenotypes. Note: the orange line corresponds to the original 69.7% accuracy                
when all healthy and non-healthy samples were considered. 
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Despite some minor discrepancies (min: 68.4%; max: 72.6%) from 69.7%, we did not observe any particularly                
notable decrease or increase in GMHI’s classification performance. Thus, we find little evidence to conclude               
that a particular non-healthy phenotype totally “drives” the classification performance to be higher than any               
other metric tested and discussed throughout our study. 
 
- l. 369-371: I didn’t understand this sentence 
 
Authors’ response: ​We thank the reviewer for pointing this out. To avoid further confusion, we thought it                 
would be better to simply omit this sentence rather than entirely reword a non-essential phrase. 
 
- l. 401 “the most”: Implies it is more than _any_ predictor of health status, when it fact the claim is just about                       
the other 3 metrics the index was compared to 
 
Authors’ response: ​We see the reviewer’s point. To clarify that we’re only considering four total metrics here,                 
we’ve modified lines 418 and 419 accordingly: 

● (previous) “Intra-study comparisons of stool metagenome ecological characteristics between healthy          
and non-healthy phenotypes show GMHI as the most robust and consistent predictor of general health               
status.” 

● (now) “Intra-study analyses show GMHI as the most robust and consistent predictor of general health               
status compared to other ecological characteristics.” 

 
- ​l. 445 “in 6 of 12”: ​multiple hypothesis correction required? 
 
Authors’ response: ​Multiple hypothesis correction is not required for this analysis. Here, we are not testing for                 
statistical associations of multiple features (i.e., hypotheses) simultaneously; rather, we are simply counting the              
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frequency of studies (among 12) whose case-control comparisons resulted in being significant. It would not               
make sense for us to treat each study as an independent feature or hypothesis. 
 
- l. 473: I found it very surprising that random forest, which is a highly flexible algorithm with access to the                     
same information as the index (e.g., the species name​s are not “blinded” in the way they are with richness or                    
other diversity metric), performed worse than the index. I think this has some implications about how random                 
forest, essentially a set of decision trees, doesn’t have the same format as the rational equation approach of                  
the index, and that’s what gave improved performance to the index over random forests? 
 
Authors’ response: ​We kindly note that, in the original lines 472–474 (now lines 488–490 in the revised                 
manuscript), wherein we write: “In regards to average classification accuracies on the training data, the               
classifiers based upon Health-prevalent species (χ = 66.3%) and Shannon diversity (χ = 53.6%) performed               
comparable to, or much worse than, GMHI (χ = 69.7%);”, we are clearly alluding to accuracies from using the                   
Health-prevalent species and Shannon diversity, as the reviewer had previously instructed. Actually, the             
Random Forests classifier achieves a 98.5% balanced accuracy, but does quite poorly on the validation set                
(53.3% balanced accuracy). Obviously this steep drop is a classic result of over-fitting, but investigating the                
manifold reasons as to why seems outside the scope of this manuscript. 
 
- l. 478: Rather than classification accuracy, the random forest’s out of bag (OOB) error should be reported,                  
since that is the value that accounts for overfitting. 
 
Authors’ response: We thank the reviewer for this suggestion. For the Random Forests classifier, there are                
indeed several methods to report model performance, including the OOB error/estimate. If this manuscript              
were to be solely about using Random Forests, we would certainly be open to using more sophisticated                 
methods than the balanced accuracy. However, given that we would like to compare apples-to-apples as much                
as possible, ​we think it’s best to remain consistent, and thus report the same type of accuracy for all classifiers                    
used throughout our manuscript (e.g., GMHI using all taxonomic clades, Shannon diversity, 80% coverage,              
richness, Health-prevalent species, Random Forests). 
 
- l. 485: effect size? 
 
Authors’ response: ​We thank the reviewer for spotting this. We’ve placed all effect sizes (Cliff’s Delta values)                 
into ​Supplementary Table 14​, as including them all in ​Figure 6​, or in the main text, makes things look                   
incredibly messy. Please see lines 501, 528, 565, and 571 in the revised manuscript. 
 
- l. 558 "clinical need": I appreciate that the authors, who are actually doctors, know better than I do about what                     
the clinical need is! I would, however, appreciate a citation to that effect for the benefit of other readers. 
 
Authors’ response: ​We thank the reviewer for pointing this out. We agree that providing relevant citations                
would help establish the importance of our claim. We’ve provided the following references that motivate the                
need for our type of study: 

● Allaband, C. et al. Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for              
Clinicians. Clin. Gastroenterol. Hepatol. 17, 218 (2019). 
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● Staley, C., Kaiser, T. & Khoruts, A. Clinician Guide to Microbiome Testing. Dig. Dis. Sci. 63, 3167–3177                 
(2018). 

● McBurney, M. I. et al. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the                
Science, Regulatory Considerations, and Future Directions. J. Nutr. 149, 1882–1895 (2019). 

● Hagerty, S. L., Hutchison, K. E., Lowry, C. A. & Bryan, A. D. An empirically derived method for                  
measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related           
outcomes among a human clinical sample. PLoS One 15, (2020). 
 

We felt that this part should be mentioned earlier, rather than being buried in the Discussion. Therefore, we’ve                  
moved the following text from the Discussion to the Introduction (see lines 45–48): 

● “As researchers uncover more details regarding which gut commensals may play a significant role in               
host health and disease, a promising translational application of this knowledge would be towards              
developing analytical tests or quantitative methods that provide indication of one’s health based upon a               
gut microbiome snapshot​9–12​.” 

 
- l. 630: This could use a citation too. I’m sure there are many, but this one comes to mind:                    
https://pubmed.ncbi.nlm.nih.gov/31683111/ 
 
Authors’ response: We thank the reviewer for this very suitable reference. We’ve modified the text in lines                 
647–650 as follows: 

● (previous) ​“Certainly, for future works, we plan to iteratively expand our application to encompass              
broader ranges of subjects, including those from under-developed countries and minority           
ethnicities/races.” 

● (now) ​“Certainly, for future works, we plan to iteratively expand our application to encompass broader               
ranges of subjects, including those from under-developed countries and minority ethnicities/races​, to            
better understand microbiome diversity and foster inclusion in microbiome research​64​.” 

 
- l. 636-641: I think this is a very clear articulation of the paper’s motivation, and I would have preferred to read                      
it in the Introduction! 
 
Authors’ response: ​As suggested, we’ve moved this section to the Introduction. Please see lines 50–59 in the                 
revised manuscript. 
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Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed my concerns. Apologies for asking questions that are already 

addressed in the text (e.g., the definition of "present"). 

 

As a final thought/suggestion, the relative performance (and I say "performance" rather than 

"accuracy") of the index is, to me, convincingly shown by the comparison of accuracy of the 

various classifiers on the training and validation data sets. Right now this information is in a few 

places in the text (mostly lines 486-496), and I made myself this little table: 

 

Classifier / Training accuracy / Validation accuracy 

GHMI / 69.7% / 77.1% 

Healthy / 66.3% / 59.3% 

Shannon / 53.6% / 47.0% 

Random / 98.5% / 52.3% 

forest 

 

It might be helpful to a reader to have all the different accuracies in one single (supplemental) 

table, to emphasize that GHMI performs best on the training set (with the exception of random 

forest) and is not subject to overfitting (which random forest definitely is, if the normal accuracy, 

rather than OOB error, is used). 

 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
None 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed my concerns. Apologies for asking questions that are already addressed in the                
text (e.g., the definition of "present"). 
 
Authors’ response: ​We very much thank the reviewer for each and every constructive feedback for our                
manuscript! We are pleased to hear that all concerns have been adequately addressed. 
 
As a final thought/suggestion, the relative performance (and I say "performance" rather than "accuracy") of the                
index is, to me, convincingly shown by the comparison of accuracy of the various classifiers on the training and                   
validation data sets. Right now this information is in a few places in the text (mostly lines 486-496), and I made                     
myself this little table: 
 
Classifier / Training accuracy / Validation accuracy 
GHMI / 69.7% / 77.1% 
Healthy / 66.3% / 59.3% 
Shannon / 53.6% / 47.0% 
Random forest / 98.5% / 52.3% 
 
It might be helpful to a reader to have all the different accuracies in one single (supplemental) table, to                   
emphasize that GHMI performs best on the training set (with the exception of random forest) and is not subject                   
to overfitting (which random forest definitely is, if the normal accuracy, rather than OOB error, is used). 
 
Authors’ response: ​We welcome any opportunity to improve the clarity and readability of our manuscript. In                
response to the reviewer’s final suggestion, we have provided ​Supplementary 8 as a way to summarize all                 
accuracies mentioned throughout the manuscript. Also, we introduce this table in lines 369–370 accordingly:              
“In ​Supplementary Table 8​, we provide a summary of all accuracies for classifying healthy vs. non-healthy by                 
the various classifiers reported in this study.” 
 


