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Supplementary Note 1. Landau-Lifshitz equations for honeycomb ferromagnetic monolayer.

Defining the vectors Sp/% = 5./ 2 — $/% § , we can re-write 7, (see expression in the main

text) as
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The current form of H,,, yields the effective fields HA/B on AIB sites in terms of the

magnetizations M3/4, namely
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Next, substituting in the Landau-Lifshitz (LL) equation of motion for the A —sublattice, atM’A =

M4 x H4, and keeping only linear terms implies



OMA(Ryt) = —3M,M{(Ry, t) + M, Z ME(R, + 64, t)
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M, denotes the constant z component of the magnetization. To proceed, plane wave solutions are
assumed for MB/A(7, 1),
MAB(F,6) = M]/P (7, t) + M2 = [M{/P (k)% + My/P (K)9] Vo) 4 M, 2

with frequency w. Substituting in the time dependent LL equations, we arrive at the momentum-
space equations of motion

iwM{ (k) = =3/M,M (k) + M, f (k)ME (k) + DM, f, (k)M (k)
iwM (k) = 3)M,ME (k) — JM,f (k)ME (k) + DM, f, (k)M (k)
with
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fD(E) =4isin (%kx) cos (@ ky) — 2 isin(k.a)



Multiply the first equation of motion by —i and summing it with the second equation implies
wM4 = [3]M, — iDM,f,]M* — M, f M®
In a similar way, the LL equation for the B-sublattice yields
wM?B = —]JM,f*M* + [3]M, + iDM,f,,]M?

We hence arrive at the momentum-space Hamiltonian for the ferromagnetic monolayer as

3 - iTDfD (E) —f(E)

Hy (k) = M, . o)
(k) - (®)  3+20(F)

Hy, () admits 2 eigenvalues, namely

0. (k) = ‘”;,\f) - 31 j P - (26®)

0, (k) correspond to the conduction-like and valence-like bands for magnons in the 2D
honeycomb ferromagnetic monolayer.



Supplementary Note 2. The Heisenberg Hamiltonian for tFBL in a less compact form.

Ho=—] ) $0(Rot).S%(Re, +84,6) =] ) §4 (R, t).5%(Rs, + 4,1)
Ryt Ryt

+ " B(Ray Ry + 7)) [ 54 Rapy ) x S5 (R, +73,0)]
Ra,7j

+ > D(Ry, Ro, + 7)) [8% Ry t) x 55 R, +71,0)]
ﬁBl:]_}j

+ " B(Ray Ry + 7)) [ 52 Rayy ) x %R, +73,0)]
Ra,7j

+ > D(Ry, Ro, + 7)) [8% Ry t) x $%2(Rg, +71,0)]

ﬁBZJ_}j
a z ]J‘ (ﬁAﬂ R)Az) §A1 (ﬁAl’ t)' §A2 (ﬁAz’ t) - z ]J- (§A1' I_?)Bz) §A1 (§A1’ t)' §BZ (R)Bz' t)
Ra,.Ra, Ra,.RB,
= D0 Ji(RoyRe,) 4R 0).5%(Rapst) = D Ju(Ro Re,) $51(Ro ). 5% (R, 1)
ﬁBl’ﬁAZ ﬁBl'ﬁBZ

Supplementary Note 3. Landau-Lifshitz equations in tFBL.

In the monolayer, the lattice basis vectors are d; = a G?) and d, = a(—1/2,v3/2) whereas
the basis vectors in momentum-space are b, = ;—Z(\/? 1) and b, = z—g(—\/g, 1). These can be

generalized to the tFBL as d;, and Bl,a respectively (¢ = A or B and [ =1 or 2). They can be
expressed as

dz,a = Ra/z(&a + 1?0)

- -
A1,q0 = R—H/Z %



Ry is a 2D anticlockwise rotation by 8. Next, the positions of the atoms on the four sublattices can
be generated by the vectors

with R, = nyd; 1 +nyd;; (ny,np € Z), Ty p = (0,0), Ty p = R_g/2(0,d), Toa = Rg ;2 [(0,—d) +
Tol, and 755 = Rg /2 To-

The twist generates a moiré superlattice, with reciprocal basis vectors

R N 8 sin(6/2)

_)In = b1,1 - b2,1 = —(1 \/—)
N o > 8msin(0/2
;n = b1,2 - bz,z # (1 ‘/_)

We recall the expression of the Heisenberg Hamiltonian # - for the tFBL,
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Similar to the monolayer case, we can write the DMI term in H as a scalar product,

S B(Ray R+ 7)-[59 (R ) x 5(Roy +7,0)] =
a,l,?i

> DR Ry +77)3 (R £)- 35 Ry +73,)
a,l,)7j



with S5t = Sy £ — St 9 .

We can now deduce the effective exchange fields Haw acting on the magnetization M

H%(Ry, t) = —]z M%(R,, + 88,t) + Z D,(Ryy Ra, + 7)) M5 (Ra, + 7, )

Yj
- ZJJ_(ﬁal; ﬁaz) Maz(ﬁaz; t) - Z]J_(ﬁal; ﬁﬁz) Mai(ﬁﬁy t)
Ra; Rz,

(S2)

where we have used the convention that if « = A then & = B and vice versa. Same convention
assumed for [ and I.

We assume harmonic time dependence (with frequency w) for the magnetizations. The x and y

components of the LL equations of motion, 0tﬁ"‘l =M% x Hu, yield 2 equations of motion for
each sublattice a;. Combining the x and y equations yield

wM%(Ry,) = [3/M, + M, Z ]l(Ral,Ral) + M, Z J1(Ray Rz ) M (Ry,)
I ap
—JM, Z M%(R,, + &68) — iM, Z D,(Ryy, Ray + 7 )MA(Ry, + 75, t)
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M, ZMRWR ) Me(Rey) = M, ZJL(RWR%) MRy

%l

(S3)
with M@ = M* + iM)".

We next expand the magnetization amplitudes in terms of Bloch waves
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N, and Nj are the number of unit cells while El’ and El— are wave vectors in layers [ and [. We have
also defined

- 21 RA ikl 2 _~3a .1 > O\ *
fa(ky) = z e8! = "™7¥5 4 276 Kiy cos (%k{,x) = (felgc(kl,))

fi(ky) = z elk1¥j = 4sin (gkx) cos (\/% ky) — 2sin(kea) = —f2(k})
(S5)
Finally, we multiply equation S4 by e~ 1Fa and sum the whole equation over ﬁal to get
@ g, (kr) = [3M,] + M D5 (k) u, (K1) — M £ (Kt iz, (K:)

e, S (g, ) + 90 (s 1), ()
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with the interlayer coefficients defined as

aLa; P 1 —ik:.R = = ik;.Rg-
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while the intralayer coefficients read
(T T 1 —i(k;—k;).R
gl k) =5 e B Ry (R, Ry,
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The interlayer terms in the LL equations are qualitatively identical to those encountered in the
electronic theory of tBLG. The Bistritzer - MacDonald continuum approach yields the identities

S O R L R

(S9b)

We now consider the intralayer coefficients presented in equations S8a and S8b, absent in the
electronic theory of graphene. The starting point is the Fourier transform of J, (R, Ry,
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In the present case, both 751 and El’ are expanded near K;,
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Near K;, the vectors ¢; — ¢; in equations S10 are very small and match only moiré reciprocal lattice

vectors G™ = G, — G; = +(R_g,, G — Rg/, G). Here G =n,b; +n,b, is a reciprocal lattice
vector of the unrotated honeycomb monolayer. The summation in S10 hence reduces to a

summation over G of the unrotated lattice. For example,

— — 1 ~ - =4 =4 =1
AL A > >\ _ § —iG.(0,0) ,iG.[(0,~d . .
Jm 2(1(1 +q., K + CID =~ ]J-(lGl)e 16(00) gle 10D+l 6171—€7§,R—9/2 G—Rg/2 G
G
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In the summation present in equation 11, we only need to consider the most relevant contributions,

namely G=0, iEl, and + Ez. Consequently,

Jhvhz (E1 + Gy, Ky + ‘?i) =

j_L(\/§X|I?|)|: l(El?O—(p) N —1(1—51?0—(p) N ]
T A € 6&1—61'@” te 6‘71—‘_1)1'—6171

-|-jJ'(\/—3—X|I_()|) [ei(gz-?o_‘p)é'c_il_c_ii’é%n + e_i(EZ-?O_‘p)(S“_il_Eii‘_G»;n]
with ¢ = 2m/3, 5{” =R_g,2 131 — Rg2 51 and 55" =R_g)2 52 — Rg; 52. We have also used the
fact /, ([Ba]) = o ([B]) = J. (V3 x |Ry) = 1. (V3 x | ).

Before proceeding, we note that for the case 8 = 0, the summation in S11 becomes infinite and
J*% converges to J l(dab(,{z), where Ay denotes the distance between sites a; and az. This

perfectly reproduces the AA/AB stacking cases.

In van der Waals magnetic materials, the interlayer Fourier transform J, (k) is extremely sharp and
J1 (V3 x |K|) is negligible compared to ], (0). We hence arrive at the simple expressions

= 5 = N A a4 > =/ i (0)
Jal,a'l(Kl + 4, K, + ql’) ~ Jal'“l(Kl +q, K + QI) ~ lA 6‘71"75

(S12)
With this faithful approximation, the magnon theory is independent of 7, as in tBLG (we set 7, =

6). Substituting equations S9 and S12 in S6 then expanding fe‘;@(ﬁl’) and f5' near K; and Kj yields
the final expressions of the LL equations (equations 3 in the main text).
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Supplementary Note 4. Numerical results for magnon band reconstruction.
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Figure S1: Reconstruction of the K — valley magnon spectrum for selected values of /, and D.
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