Supplementary Information for:

Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster *Crassostrea gigas* carried by *Helentron* non-autonomous mobile elements

Tanja Vojvoda Zeljko, Martina Pavlek, Nevenka Meštrović, and Miroslav Plohl*

Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia

*Corresponding author: Miroslav Plohl (plohl@irb.hr; Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia; tel: +385 1 4564 083; fax: +385 1 4561 177)

This file includes Supplementary Figures S1 - S3 and Supplementary Tables S2 - S5.

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Phylogenetic relationships of monomers in four clusters of related *Cg_HINE* central TRs. Shown is maximum-likelihood dendrogram based on nucleotide sequences belonging to monomers from clusters CL1, CL2, CL10 and CL13. Only branch support for the nodes separating main clades are shown.

Supplementary Figure S2. Empty site analysis of 11 *Cg_HINE* elements. Chimeric constructs were made using 50 bp upstream and downstream from the determined *Cg_HINE* element ends and used as queries in a homology search through the *C. gigas* genome assembly. Only one representative result for each empty site is shown. In each alignment, upper sequence is query (with excluded *Cg_HINE* element insertion site presented in the figure), while lower is genomic scaffold with the relevant hit. Nucleotide positions are marked as in the genome assembly. For each query sequence, the exact *Cg_HINE* element position is presented, and its length is marked above the black lines marking the insertion sites. Only the 5' beginning of the element (including the subTIR part, green arrows) and the 3' end sequence (including the stem-loop structure, red lines) of a particular *Cg_HINE* element are shown.

1. chrA						8 Mpp 				
2. chrB			***	<u> </u>		·	→→→₩/→→}/	«─<mark></mark>	······	
3. chrC		<	-+++++++++++++++++++++++++++++++++		→					}
4. chrD		\ \\	┝╾╎╾╾┝╾┝╼┝╼╾┼┙╢┿╢╼╼╾┥╼╢┝╍╍╸┼╼╸	·/	━┫║━╽━╡━┥━┥━			-) -)	<mark>╎╾┥╾╴┥╸┥┥┝╸</mark> ╣ <mark>╴╸╡╵┿╸</mark> ╎	
5. chrE))+)) 								→ → → → → → → → → → → → → → → → → → →	·
6. chrF	- - - +	<	···	+ ++++++++++++++++++++++++++++++++)+))+)) -	{// }{}				━┿┫━シ━━━┿┼━┉╟━━
7. chrG)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~))()()())					
8. chrH							**			
9. chrl										
10. chrJ		· · · · · · · · · · · · ·					· · · · · · · · · · ·	o na - ana		1 10 10 10 10
14 Mbp	15 Mbp	16 Mbp 17 Mbp	18 Mbp	19 Mbp	20 Mbp 21 Mbp	22 Mbp	23 Mbp	24 Mbp 25 M	bp 26 Mbp	27 Mbp
1. chrA		- : - ::	━┥━━━╋━┼━╾┼╾┥╼┥━╫╢┣╾┿┿		────────────────────────────────────		- }};+);+)-+)+) +)+)+)+)+)+)+)+)+)+)+)+)+)+)+)+))))- (-)	─}───}
2. chrB	· · · · · · · · · · · · · · · · · · ·									
3. chrC	**************************************									
4. chrD										
5. chrE										
7 chrG										·····
8 chrH										·····
9. chrl			· · · · · · · · · · · · · · · · · · ·							
10. chrJ	······	*****								
28 Mbp	29 Mbp	30 Mbp	31 Mbp 32 Mbp	33 Mbp	34 Mbp 34	5 Mbp 36 Mbp	37 Mbp	38 Mbp	39 Mbp 40 Mbp	41,237,361
2 chrB		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
3. chrC										
4. chrD				,,,,,_,,_,,_,,	·	+++++				
5. chrE		(·	<u> </u>	}_;},,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,					
6. chrF										
7. chrG		* ************************************		━━┿━╬━━┼━━━┿┝━━						
8. chrH										
9. chrl										
10. chrJ										
	CL9 arrav									
CL 4 array	CL 10 array									
, CL5 array	CL11 array									
CL 6 array	CL12 array									
	CL13 array									

Supplementary Figure S3. Arrays from clusters CL1-13 mapped onto *C. gigas* pseudochromosomes. Arrangement of arrays is presented as an approximation of distribution of Cg_HINE elements. For this, a local database of CL1-13 arrays was used to map 100% identical sequences on the *C. gigas* pseudochromosomes⁵¹.

SUPPLEMENTARY TABLES

Supplementary Table S2. Substructures of *Crassostrea gigas Cg_HINE* elements depicted in this work, and number and similarities of sequences used to derive LF and RF consensus segments. From the left flanking of specific Cg_HINE element, subterminal inverted repeats (subTIRs), inverted repeats (IRs) and microsatellite sequences are presented. SubTIR in the Cg_HINE right flanking (RF) is coupled with palindromic sequence which has the potential of forming stem – loop structure. Mismatches in substructures (subTIR, IR and palindromes) are shown in *italic*. For the microsatellite sequences, the minimal and the maximal number of the repeat unit is shown. S= G or C; Y= C or T; B= C, G or T; K= T or G. Central loop nucleotides in palindromic sequences are shown in brackets. The percentage of left flanking region (LF) and RF sequences was calculated as the total number of LF and RF sequences used in the alignments divided by the total number of arrays downloaded from TRDB (see also Table 1).

Cg_HINE element	SatDNA-like TRs in Cg_HINE	Subterminal inverted repeat (subTIR) in LF	Partial inverted repeat (IR) in LF	Microsatellite in LF	Palindromic sequences in RF (stem – loops)	The total number and the percentage of sequences used to derive Cg_HINE_LF consensus	The total number and the percentage of sequences used to derive Cg_HINE_RF consensus	Similarity of sequences in LF module (up to the microsatellite)	Similarity of sequences in RF module (up to 60 bp)	Number of LF-RF chimeric sequences in the search for substruct ures
Cg_HINE_1	CL1	GETCACETEAGE	CCTCA ACTEACE	(GTCY) ₁₋₂₂	GTGGCCC(AT)GGGCCTC	820; 58.69%	916; 66%	83.8%	88.50%	1145
Cg_HINE_2	CL2	GETCACCTUAGE	GETCAAGTGAGE	(GTY) ₁₋₂₁	GTGGCCC(CT)GGGCCTC	772; 74.87%	691; 67%	83.5%	87.00%	934
Cg_HINE_3	CL3	ATACCCCCGCTC	GAGAGGGGGTAT	(GTCY) ₂₋₂₆	GTGAGC(ATTG)GCTCAC	581; 82.64%	619; 88%	72.9%	90.80%	637
Cg_HINE_4	CL4	GGTCACCTGAGT	ACTCAGGTGACC	(CGTCGTS)1-9	AGGCCA(AT)TGGCCT	460; 67.34%	493; 72%	77.4%	84.50%	643
Cg_HINE_5	CL5	AACCGG <i>G</i> TTTT <i>C</i>	AAAAATCCGGTT	(GGCG) ₁₋₁₀	GCTGTCA(CAT)TGACAG C	478; 74.33%	570; 89%	80.4%	87.20%	567
Cg_HINE_6	CL6	ATACCCCCCGC	<i>TG</i> GGGGGGTAT	(GTCY) ₁₋₂₁	TGTGAGC(TT)GCTCACA	480; 80.4%	502; 84%	74.6%	86.90%	564
Cg_HINE_7	CL7	AGCTCACCGAG	GG <i>G</i> GAGCT	(GGCGTC) ₁₋₁₀	GTAATC(TGT)GATTAC	515; 91.3%	385; 68%	74.5%	83.50%	505
Cg_HINE_8	CL8	T <i>TATG</i> CCCCCT	GGAGG <i>GCAT</i> A	(GTCK) ₁₋₁₈	TGTTT(CAC)AAACA	418; 85.65%	425; 87%	80.4%	82.30%	470
Cg_HINE_9	CL9	GTCCCCCGCCG	GGGGACA	(GTCCGTGB)1- 14	CAGGAAT(TCT)ATTC7TG	278; 90%	263; 85%	78.2%	87.80%	286
Ca HINE 10 12	CL10	GUTCACCTGAAC	GTTCAAGTGAGC		CTOCCOLLOCOCC	307: 84%	372.88%	88.5%	93.30%	324
Cg_11116_10_13	CL13	GETCACCTUAAC	GITCAAGTGAGC	(0101)1-25	GIGGECCAIGGGCCIC	507, 04%	322; 88%	71.0%		
Cg_HINE_11_12	CL11	TATACCCGCAC	GTTCGGGTATA	(GTCC) ₂₋₂₃	CTGTC(TAAT)GACAG	322; 87%	113; (31%)	85.4%	92.70%	307
	CL12									

Supplementary Table S3. Identity matrix of related satDNA-like repeats detected in this work and monomers of related "classical" satDNAs.

	Cg170_s at_Cons	HindIII_s at_Cons	CL1_Cons Rep_rev	CL2_Cons Rep_rev	CL10_Con sRep_rev	CL13_Con sRep_rev	CL4_Co nsRep
Cg170_sat							
_Cons		94.28%	93.71%	92.17%	66.67%	65.77%	50.29%
HindIII_s							
at_Cons			92.51%	90.06%	69.94%	66.96%	52.65%
CL1_Cons							
Rep_rev				89.82%	67.86%	65.48%	51.76%
CL2_Cons							
Rep_rev					68.26%	66.07%	47.65%
CL10_Con							
sRep_rev						70.41%	47.95%
CL13_Con							
sRep_rev							45.88%
CL4_Cons							
Rep							

Supplementary Table S4. Similarity of *Cg_HINE* modules with sequences deposited in Repbase. Consensus sequences of monomers (*"_*Cons_Rep") and consensus sequences of left and right flanking regions (*"_*Cons_LF"; *"_*Cons_RF") from clusters CL1-13 were separately queried through Repbase using CENSOR tool to align them against a reference collection of repeats. Base pairs which denote the exact beginning and end of a particular mobile element are shown in red. Similarity in the last column is calculated as Sim = match_count / (alignment_length - query_gap_length - subject_gap_length + gap_count).

Query name	From	То	Repbase library sequence name	From	То	Repeat class/sublass	Similarity between query and Repbase repeat fragment
CL1_Cons_LF	1	105	Helitron-N2_CGi	1	105	DNA/Helitron	0.9524
CL1_Cons_RF	1	60	Helitron-N2_CGi 225		2310	DNA/Helitron	1.0000
CL1_Cons_Rep	1	167	Helitron-N55_CGi 1013 847 DNA/Helitron		DNA/Helitron	1.0000	
CL2_Cons_LF	1	88	Helitron-N2d_CGi	1	91	DNA/Helitron	0.9888
CL2_Cons_RF	1	100	Helitron-N2d_CGi	2320	2419	DNA/Helitron	1.0000
CL2_Cons_Rep	1	166	SAT-1_CGi	323	157	Simple/Sat/SAT	0.9940
CL3_Cons_LF	1	50	Helitron-N16_CGi	1	50	DNA/Helitron	1.0000
CL3_Cons_RF	1	58	Helitron-N16_CGi	1400	1457	DNA/Helitron	1.0000
CL3_Cons_Rep	2	167	Helitron-N25_CGi	443	608	DNA/Helitron	0.9940
CL4_Cons_LF	1	55	Helitron-N2e_CGi	1	55	DNA/Helitron	1.0000
CL4_Cons_RF	1	60	Helitron-N2e_CGi	1461	1521	DNA/Helitron	0.9672

CL4_Cons_Rep	3	170	Helitron-N2e_CGi	454	621	DNA/Helitron	0.9881
CL5_Cons_LF	1	66	Helitron-N45_CGi	1	70	DNA/Helitron	0.9851
CL5_Cons_RF	1	60	Helitron-N45_CGi	841	900	DNA/Helitron	0.9833
CL5_Cons_Rep	1	181	Helitron-N45_CGi	760	580	DNA/Helitron	0.9834
CL6_Cons_LF	1	77	Helitron-27_CGi	1	77	DNA/Helitron	0.9870
CL6_Cons_RF	1	60	Helitron-N18_CGi	970	1029	DNA/Helitron	1.0000
CL6_Cons_Rep	2	147	Helitron-N18_CGi	Helitron-N18_CGi 486 341		DNA/Helitron	0.9932
CL7_Cons_LF	1	50	DNA4-4B_CGi	1392	1441	DNA	0.9400
CL7_Cons_RF	1	60	DNA4-4_CGi	3641	3700	DNA	0.9667
CL7_Cons_Rep	2	178	Helitron-N12_CGi	572	748	DNA/Helitron	0.9435
CL8_Cons_LF	1	63	Helitron-N9_CGi	1	63	DNA/Helitron	1.0000
CL8_Cons_RF	1	49	Helitron-N9_CGi	897	946	DNA/Helitron	0.9800
CL8_Cons_Rep	2	162	Helitron-N9_CGi	395	555	DNA/Helitron	1.0000
CL9_Cons_LF	1	80	Helitron-N23_CGi	1	76	DNA/Helitron	0.9744
CL9_Cons_RF	1	56	Helitron-N23_CGi	884	939	DNA/Helitron	1.0000
CL9_Cons_Rep	2	173	Helitron-N23_CGi	689	518	DNA/Helitron	1.0000
CL10_Cons_LF	1	91	Helitron-N2C_CGi	1	91	DNA/Helitron	0.9890
CL10_Cons_RF	1	60	Helitron-N2C_CGi	2574	2633	DNA/Helitron	1.0000
CL10_Cons_Rep	2	167	Helitron-N2C_CGi	513	348	DNA/Helitron	1.0000
CL11_Cons_LF	1	82	Helitron-N17B_CGi	1	82	DNA/Helitron	0.9756
CL11_Cons_RF	1	60	Helitron-N17_CGi	4390	4449	DNA/Helitron	1.0000
CL11_Cons_Rep	1	162	Helitron-N17_CGi	618	781	DNA/Helitron	0.9755
CL12_Cons_LF	1	82	Helitron-N17B_CGi	1	82	DNA/Helitron	0.9756
CL12_Cons_RF	1	60	Helitron-N17_CGi	4390	4449	DNA/Helitron	1.0000
CL12_Cons_Rep	2	138	Helitron-N17_CGi	1180	1046	DNA/Helitron	0.9416
CL13_Cons_LF	1	93	Helitron-N2C_CGi	1	93	DNA/Helitron	0.9785
CL13_Cons_RF	1	60	Helitron-N2C_CGi	2574	2633	DNA/Helitron	1.0000
CL13_Cons_Rep	2	168	Helitron-N37_CGi	2616	2451	DNA/Helitron	0.9048

Supplementary Table S5.

Detected *Crassostrea gigas* genes containing Cg_HINE elements or their deletion derivatives. For each gene, coordinates where similarities were found are listed. For the left (LF) and right (RF) flanking regions similarities (%) to the consensus sequences of the Cg_HINE elements are given. The presence or absence of a specific Cg_HINE part is indicated with + / - signs.

Gene name (GenBank number)	Gene function	Location of C <u>g_</u> HINE parts within gene	Left flanking region	5' subTIR	5' IR	5' microsa tellite	Internal tandem repeats	Right flanking region	3' subTIR	3' stem- loop
Ecsit	Evolutionarily conserved signalling intermediate in <i>Toll</i> nathways	1662 - 3169, bp	_	_	_	+	7 repeats (93% similiar with CL1 ConsRep)	+ (98 % similar	+	+
(95)11(22303311)	patiways	2401 - 4126. bp	+ (66% similar to CL4_Cons_LF))	_	_	-	8.7 repeats (76% similar to CL4_ConsRep)	-	-	
Bindin (gb EU307654.1)	In fertilization	12532 - 14723. bp	-	-	-	-	5.8 repeats (80% similar to CL1_ConsRep)	+ (90 % similar to CL1_Cons_RF)	+	+
		19257 - 21448. bp	-	-	-	-	5.8 repeats (81% similar to CL1_ConsRep)	+ (90 % similar to CL1_Cons_RF)	+	+
Bmpr 1 (emb AJ577293.1)	In early embryonic development	6952 - 9174. bp	+ (87% similar to CL1_Cons_LF)	+	+	+	2 repeats (80% similar to CL1_ConsRep)	+ (77% similar to CL1_Cons_RF)	+	+
Gigasin-2 (embIAJ582630.1)	Defensin-like antimicrobial peptide AMP- Gigasin 2	2180 - 2795. bp	+ (65% similar to CL6 Cons LF)	+	+	+	1.5 repeats (76% similar to CL6 ConsRep)	+ (82% similar to CL6 Cons RF)	+	+