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Supplemental Figure S1. (A) Comparison of Standard Intracellular Staining (ICS), MARIS, and High Salt 

(2M NaCl) protocol for the isolation of RNA from fixed and permeabilized samples. Data is represented as 

the RNA integrity number (RIN) after each of the major steps of the protocol: surface staining, fixation and 

permeabilization (using PFA 4% and saponin, 0.1%), intracellular staining (using 0.1% saponin), a 2-hour 

hold to approximate the time spent during transportation to, processing in, and transportation from the 

sorting facility. Approximately 2 million cells per healthy donor were sampled at each step, and the RNA was 

isolated using the Ambion FFPE Recover-All kit according to manufacturer’s instructions. The integrity of the 

isolated RNA was then determined on the Agilent 2100 Bioanalyzer. Data were analyzed using paired one-

way ANOVA assuming parametric data (n = 3). Considerable degradation of RNA occurring during the 

intracellular staining process and during the time needed for the process of sorting. While the MARIS 

protocol, which utilizes a significant quantity of RNAse inhibitor in each buffer at each step following fixation, 

performs adequately during initial sample processing, this protocol is time sensitive with variable 
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performance in RIN preservation. Alternatively, a high salt buffer provides significantly more adequate 

protection from RNase activity. (B) The effect of sodium chloride concentration on RNA integrity following 

processing of samples. Samples from three independent donors were prepared using different 

concentrations of sodium chloride in the buffers at each step following fixation and permeabilization. All 

samples underwent CD3-negative magnetic bead isolation (StemCell) prior to RNA isolation (Ambion). Data 

were analyzed by paired one-way ANOVA assuming parametric data (n = 3). As shown in the figure, there is 

a significant trend (p < 0.0001) toward increased RNA degradation as the NaCl concentration is dropped 

below 2M. There was no added benefit above the 2M concentration (not shown) and caused issues with 

stream charging during cell sorting. (C-D) Effect of Intracellular staining buffers containing RNase inhibitor 

(modified protocol) or 2M NaCl on intracellular target identification. Cryopreserved PBMCs from 2 

independent donors were thawed, and approximately 2x106 cells were used for each sample. BD 

Cytofix/Cytoperm buffer was used during fixation/permeabilization of samples undergoing cytokine staining, 

while Biolegend TrueNuclear buffer was used during preparation of samples undergoing transcription factor 

staining. Samples were processed using 2M NaCl in all buffers except during the intracellular staining step. 

For the control samples, cells underwent intracellular staining in the standard permeabilization buffer 

provided with these kits. For the RNase inhibitor samples, 1 unit per µL of RNasin plus (Promega) was 

added to the permeabilization buffer, and for the 2M NaCl samples the buffers were prepared in 2M NaCl 

solution rather than RNase-free water alone. Samples were then analyzed on a BDFortessa 18-parameter 

flow cytometer and analyzed using FlowJo software v9.9. Relative expression was gated, analyzed and the 

resulting population percentage was then expressed relative to the control sample. These ratios were then 

analyzed using multiple T-tests assuming paired parametric data. While the addition of an RNase inhibitor 

has no appreciable effect on staining efficiency of any of the cytokines tested, 2M NaCl significantly reduced 

the staining of TNFa and IL-2, while having variable effects on the staining of transcription factors. 

Therefore, we elected to utilize a modified protocol, adopting 2M NaCl buffers at all steps except for 

fixation/permeabilization and intracellular staining (n = 2). Statistical significance: (f, p < 0.005; *, p < 0.05).    

 
 

 
  



 
 

Supplemental Figure S2. (A) Effect of transcription factor fixation and permeabilization buffers on RNA 

quality. PBMCs from three donors were thawed, rested, surface stained, and subjected to the specified 

fixation and/or permeabilization protocols. Following fixation, permeabilization, and intracellular staining, 

cells isolated, and RNA was isolated using either the RNeasy mini kit (live cells) or the Ambion Recoverall 

FFPE kit (fixed or fixed/permeabilized). RNA quality was determined, and data were analyzed by paired one-

way ANOVA (n = 3).  The use of stronger permeabilization buffers designed for targeting transcription 

factors (e.g., eBioscience FoxP3 buffer, Biolegend TrueNuclear buffer) yields considerable RNA 

degradation. This may be an unavoidable consequence of the conditions necessary to effectively 

permeabilize the nuclear membrane, leading to increased RNA fragmentation. However, the modified 

protocol is able to maintain the DV200, an alternative measure of RNA quality used in samples with low RIN 

values, at much higher values than any commercial protocol1. Recent evidence suggests that in RNA 

samples with significant fragmentation and hence low RIN scores, highly reproducible and reliable RNAseq 

data may be obtained from samples with DV200 scores greater than 60-70%, while those with lower DV200 

scores are generally unreliable1. Statistical significance: (f, p < 0.005; *, p < 0.05). (B) Representative RNA 

electropherograms and cDNA libraries generated from these degraded samples. The libraries generated 

from these more significantly degraded RNA samples are predictably broad with respect to insert size, which 

may also negatively impact sequencing (Supplemental Figure S2B)2. The use of RNA, cDNA, or library 

size selection techniques may therefore be necessary to generate libraries with more homogenous lengths 

as dictated by the sequencing technology. Overall, the yield of RNA from samples treated with nuclear 

permeabilization reagents was not significantly different than that of more mild agents.  
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This arose despite the use of bead-based size selection during library preparation. Total RNAseq data from 

bulk CMV-specific CD8+ T cell functional subsets (e.g., monofunctional, polyfunctional), for all three healthy, 

normal donors is publicly available on GenBank Sequence Read Archive (SRA) under submission 

PRJNA613726. Single-cell RNAseq transcriptional data from CMV-specific CD8+ T cells from the two kidney 

transplant recipients is publicly available on GenBank Sequence Read Archive (SRA) under submission 

PRJNA613687. For other data included in this report, please direct inquires to the corresponding author. 

 

 

 
 
 
  



  
Supplemental Figure S3. (A) Sorting strategy for identification of non-functional, monofunctional, 

bifunctional, and polyfunctional CMV-specific CD8+ T cells. PBMCs are thawed, rested, and stimulated with 

overlapping CMV peptide as described for 6 hours in the presence of BFA and monensin. Cells were stained 

for viability and cell surface markers, then fixed and permeabilized (BD Cytofix/CytoPerm). Intracellular 

staining was then performed for cytokines or other targets and the cells examined on BDFortessa flow 

cytometer and analyzed using FlowJo v9.9. Aggregate cells are first excluded, and lymphocytes are then 

identified by scatter characteristics. Viable CD3+ T cells are then identified and CD4+ and CD8+ lineage 

subsets are identified. CD8+ T cells are then analyzed for IFNg and TNFa cytokine production, and 

IFNg+/TNFa+ cells are then examined for IL-2 expression. Five populations are identified (A – IFNg-/TNFa-

/IL-2-; B - A – IFNg+/TNFa-/IL-2-; C - A – IFNg-/TNFa+/IL-2-; D - A – IFNg+/TNFa+/IL-2-; E - A – IFNg-

/TNFa-/IL-2-). (B-C) Polyfunctional analysis of CMV-specific CD8+ CMV cells from three independent 

donors as performed in SPICE. (D) Maturation/differentiation status (CCR7, CD45RA) and markers of 

antigen experience (CD127, KLRG1) of each functional subset of CMV-specific CD8+ T cells. Populations: 

(A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg only/monofunctional (IFNg+/TNFa-/IL-2-); (C) TNFa 
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monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); and (E) polyfunctional 

(IFNg+/TNFa+/IL-2+). 

  



 
Supplemental Figure S4. Heatmap of sample-to-sample distances for the 14 individual RNA libraries. The 

key for the functional subsets and donors is provided on the right. Populations: (A) non-functional (IFNg-

/TNFa-/IL-2-); (B) IFNg only/monofunctional (IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-

2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); and (E) polyfunctional (IFNg+/TNFa+/IL-2+).  

 
  

A – L1, L6, L11
B – L2, L7, L12
C – L3, L8
D – L4, L9, L14
E – L5, L10, L15

Donor N11 – L1-L5
Donor N38 – L6-L10
Donor N39 – L11-L15



 
Supplemental Figure S5. Distribution of p-values along variance and expression quartiles (comparison: 

polyfunctional (pop. E) versus IFNg monofunctional (pop. B).  
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Supplemental Figure S6. Dispersion plot (comparions: polyfunctional (pop. E) versus IFNg monofunctional 

(pop. B). 

 
 
  



 
Supplemental Figure S7. Hierarchical clustering analysis (comparison: polyfunctional (pop. E) versus IFNg 

monofunctional (pop. B). 
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Supplemental Figure S8. (A) The number of coding and long non-coding (lnc) RNA transcripts that are 

significantly up- (red, top) or down- (blue, bottom) regulated between functional subsets of CMV-specific T 

cells. Differentially regulated genes were identified using DESeq2. A Venn diagram is provided in 

Supplemental Figure 9 that demonstrates the overlap of differentially expressed genes between these 

subsets. (B) Linear regression analysis to determine the distance between subsets (i.e., difference in 

number of cytokines expressed) was correlated with the number of differentially expressed genes. (C) 

Number of differentially-regulated KEGG pathways between functional subsets of CMV-specific CD8+ T 

cells (FDR < 0.10). Populations: (A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg only/monofunctional 

(IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); 

and (E) polyfunctional (IFNg+/TNFa+/IL-2+) 
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Supplemental Figure S9. Venn diagram for differentially expressed transcripts (both coding and lncRNA). 

Note again that the number of unique differentially expressed genes between functional subsets is inversely 

related to the functional distance between the two populations (i.e., EvA = difference of 3 cytokines; EvB and 

EvC = difference of 2 cytokines; EvD = difference of 1 cytokine). Populations: (A) non-functional (IFNg-

/TNFa-/IL-2-); (B) IFNg only/monofunctional (IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-

2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); and (E) polyfunctional (IFNg+/TNFa+/IL-2+).  
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Supplemental Figure S10. Correlation of transcriptional and cytokine/cytolysis molecule expression within 

functional subsets of CMV-specific T cells. (A) A comparison of intracellular protein and transcriptional 

expression and  of degranulation marker CD107a, cytolytic molecule Perforin-1 (PRF1), type 2 cytokine IL-4, 

and type 17 cytokine IL-17 within the functional subsets of CMV-specific T cells. For protein expression, data 

are expressed as the change in mean fluorescence intensity relative to nonfunctional cells (pop. A). For the 

transcriptional data, the data is presented in a heatmap and expressed as the fold-change (log2) relative to 

the non-functional cell population (pop. A). (B) Representative overlapping histograms for the individual 

markers of interest within the functional subsets of CMV-specific T cells. Statistical significance: (f, p < 

0.005; *, p < 0.05). Populations: (A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg only monofunctional 

(IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); 

and (E) polyfunctional (IFNg+/TNFa+/IL-2+) 
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Supplemental Figure S11. (A-B) Correlation of transcriptional and protein expression of maturation and 

antigen experience markers on CMV-specific CD8+ T cell functional subsets. For these experiments, which 

were performed with the survival and proliferation studies show in Figure 4D, PBMC were first labeled with 

proliferation dye, stimulated with CMV peptide for 24 hours, and incubated for and additional 5 days with IL-2 

(10 U/mL) added on day 3. On Day 6, the cells were re-stimulated with CMV peptide and stained for 

intracellular cytokines and surface markers as described. This had the effect of reducing naïve T cell 

contamination seen in the non-functional and to a lesser extent the IFNg monofunctional T cell populations 

seen in Supplemental Figure S3, leaving a predominantly effector memory population for each of the 

functional subsets of CMV-specific T cells. Representative maturational and antigen-experience plots for the 

functional subsets and corresponding overlapping histograms are shown in Supplemental Figure S11A. In 

S11B, protein expression data are expressed as the change in mean fluorescence intensity relative to 

nonfunctional cells (pop. A). For the transcriptional data, the data is presented in a heatmap and expressed as 

the fold-change (log2) relative to the non-functional cell population (pop. A). (C) Maturation analysis 

(CCR7/CD45RA) within pp65-*A0201 specific CD8+ T cells, confirming that at baseline, CMV-specific T cells 

occupy a predominantly effector phenotype (CCR7-/CD45RA-/int). (D-F) Transcriptional changes in common 

chain (gc) cytokine receptor (D), phenotypic markers and chemokine (E), and markers of activation across the 

functional subsets of CMV-specific T cells (F). (G) Comparison of CD69 and IFNg staining in CD3+CD8+ T 

cells following stimulation of overlapping CMV peptides, demonstrating that CD69 staining identifies cells that 

do not express type 1 cytokines. (H) Comparison of CD107a and IFNg staining in CD3+CD8+ T cells following 

stimulation of overlapping CMV peptides, demonstrating that CD107a provides heterogenous identification of 

CMV-specific T cells expressing type 1 cytokines, lacking specificity in some donors (Donor 1) and sensitivity 

in others (Donor 2). (I) Comparison of CD154 and IFNg staining in CD3+CD8+ T cells following stimulation of 

overlapping CMV peptides, demonstrating a significantly reduced sensitivity for CMV-specific T cells. (J) 

Demonstration that TNFSF8 staining does not reliably resolve polyfunctional T cells from their less functional 

counterparts. Populations: (A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg only/monofunctional (IFNg+/TNFa-

/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); and (E) 

polyfunctional (IFNg+/TNFa+/IL-2+). 

  



 

 
Supplemental Figure S12. KEGG metabolism, cell signaling, and cellular function analysis for CMV-specific 

polyfunctional CD8+ T cells. Populations: (A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg 

only/monofunctional (IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional 

(IFNg+/TNFa+/IL-2-); and (E) polyfunctional (IFNg+/TNFa+/IL-2+). 
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Supplemental Figure S13. (A) Transcriptional data and graphical representation of STAT5 signaling 

pathway generated in Pathview. (B) Upstream transcriptional regulators identified through Ingenuity Pathway 

Analysis (IPA; Qiagen). Populations: (A) non-functional (IFNg-/TNFa-/IL-2-); (B) IFNg only/monofunctional 

(IFNg+/TNFa-/IL-2-); (C) TNFa monofunctional (IFNg-/TNFa+/IL-2-); (D) bifunctional (IFNg+/TNFa+/IL-2-); 

and (E) polyfunctional (IFNg+/TNFa+/IL-2+). 
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Supplemental Figure S14. Single-cell sorting and comparative cytokine and maturation staining of CMV 

pp65-HLA-A*0201 CD8+ T cells from a transplant recipient with (248, blue) and without (249, teal) CMV 

reactivation in the post-transplant period. Cryopreserved PBMC samples from two recipients were obtained 

from the Duke IRB-approved Abdominal Transplant Repository (ATR) (Pro00035555). Kidney, liver, 

pancreas, and small intestine transplant recipients were recruited prospectively through the Abdominal 

Transplant clinic at Duke University Hospital and PBMC samples were collected longitudinally at pre-

specified time points prior to and following transplantation. One subject with and one matched control 

without CMV reactivation in the first 12 months following transplant were selected. The subjects were 

matched by age (50-55), HLA-A*0201 status (necessary for tetramer use; note: no other matching alleles 

were required), type of transplant (kidney), induction immunosuppression (none), donor-recipient CMV 

status (D-/R+), maintenance immunosuppression (prednisone, mycophenolate (MMF), and tacrolimus 

(FK506)), and CMV prophylaxis (none). PBMC samples were selected from the time point just prior to when 

CMV reactivation occurred in the case subject (i.e., 3 months post-transplant for both the case and control 

subject). Five million cells were stimulated with the pp65-HLA-A*0201 dextramer labeled with PE and anti-

CD28/anti-CD49 co-stimulation (1 µg/mL each). Following six hours of stimulation, cells were surface 

stained for viability, CD14, CD3, CD4, and CD8 and viable CD14-/CD3+/CD8+/pp65-HLA-A*0201 cells were 

sorted into a 96-well plate. Additionally, five million cells were stimulated in an analogous fashion, surface 

stained for phenotype, maturation, and antigen-exposure markers, then stained for cytokines via standard 
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intracellular staining protocol (BD CytoFix/CytoPerm). Despite drastic differences in cytokine expression and 

polyfunctionality between the two subjects, there was no difference in differentiation or antigen-exposure 

markers between the CMV-specific T cell populations.  

 
 
  



 
Supplemental Figure S15. PCA visualization of single cell data from the two transplant recipients. Absolute 

cytokine and chemokine (IFNg, CCL4, IL-2, PRF1, GZMB) mRNA expression within these cell populations. 
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Supplemental Figure S16. PCA visualization of single cell data demonstrating relationship of functional 

subsets to the expression of STAT5-related genes (STAT5, myc, miR155HG, IL-7R, Bcl-2, Bcl-xL, Mcl-1, 

PIM2, Cyclin D1, etc).  
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Supplemental Figure S17. Visual comparison of Miltenyi Cytokine Capture/Secretion assay and 

intracellular staining (ICS) of cytokines for quantification of CMV-specific functional subsets. In both the 

CD4+ and CD8+ populations, the Cytokine Capture assay using three independent cytokine targets yields 

reduced discrimination of polyfunctional T cells relative to ICS assay. Note the reduced resolution of 

bifunctional and polyfunctional T cell populations using the cytokine capture kit. This was difficult to further 

optimize due to manufacturer limitations regarding antibody-fluorophore conjugate availability for these kits. 

Additionally, the protocol requires that the cytokines of interest have a relatively similar expression profile 

(i.e., greater than or less than 5% of population) to allow for appropriate sample dilution during staining; 

while this prevents “bystander” staining, it can also lead to reduced staining efficacy for cytokines with low 

expression when paired with a highly-expressed cytokine. Finally, the cytokines must be simultaneously 

secreted during the same 45-minute period of time to ensure detection; current evidence suggests that 

cytokine secretion may in fact be sequential rather than simultaneous3. Additional information is provided in 

Supplemental Table 2.  
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SUPPLEMENTAL TABLES 
 
Table S1. Evidence supporting the role of antigen-specific 
polyfunctional T cells in immune response to pathogens, 
vaccination, and malignancy 
CMV reactivation and disease in:  
• allogenic stem cell transplantation 4-13; 
• solid organ transplant 14-18; 
• liver transplantation 19; 
• lung transplantation 20,21;  
• kidney transplantation 22; 
CMV in non-organ transplant immunocompromised subjects 23 
Vaccination 24-32. 
HIV 33-43 
HCV 44 
Leishmaniasis 
T. cruzi 45 
Toxoplasmosis 46 
A. fumigatus  
MTB 47-50 
Flu 51 
EBV 
BKV 52,53  
Cancer 54-60 

 
  



Table S2. Advantages and Disadvantages of Cytokine Secretion/Capture and Intracellular 
Staining Assays 
 Advantages Disadvantages 
Cytokine-
secretion 

• Allows for the isolation of living 
cells, which can then be used in 
a broad array of downstream 
assays, etc 

• Increased yield and quality of 
RNA 

• Reduced impact on 
downstream assays 

• Utilizes clinical-grade reagents 
• Cells may be isolated via 

magnetic-based techniques, 
which are more straightforward 
and cost-effective 

• Limited to secreted molecules, and 
therefore not useful for transcription 
factors, phosphoproteins, etc. 

• Risk of bystander labeling 
• Requires a priori knowledge of 

expected level of cytokine production, 
which may become complicated when 
staining for multiple cytokines with 
highly variable expression levels 

• Currently limited to one company, with 
limited number of fluorophores (FITC, 
APC, PE); therefore, only a limited 
number of cytokines may be assayed 
as one time. 

• Requires dilutional step for labeling 
which may significantly alter signaling 
due to changes in antigen 
concentration 

• Cells can’t be fixed, therefore changes 
in transcription/translation, etc may 
occur during the time taken to process 
the samples before sorting/isolation 

• When labeling multiple cytokines, they 
must be expressed simultaneously 

• Capture of cytokines may significantly 
reduce cytokine-induced signaling 

• Currently only available for cells 
expressing CD45 

Intracellular 
Staining 

• Allows for detection of cytokines 
as well as other intracellular 
proteins 

• Fixation prevents further cellular 
processes, thus allowing one to 
capture the state of cell at a 
specific moment in time 

• Ability to stain for numerous 
intracellular targets 
simultaneously (even up to 6 
phosphoprotein targets) 

• Does not require cytokines to 
be expressed simultaneously 
(although must be expressed 
within a 12-hour time-frame 
generally), nor to be expressed 
at relatively similar levels 

 
 

• Cytokine assays require the use of 
protein transport inhibitors (e.g., 
brefeldin-A, monensin), which can be 
cytotoxic in a time- and cell-dependent 
manner 

• Use of protein transport inhibitors also 
reduces cytokine secretion from the 
cell, potentially interfering with 
cytokine-induced signaling 

• Fixation and permeabilization are 
required, which are associated with 
reduced quality of RNA and DNA, and 
significantly limits the ability to use 
samples for downstream assays 

• Even with new, completely reversible 
methods of fixation, there is increased 
risk of loss of RNA and protein during 
permeabilization and cell labeling 
steps 

• Requires flow cytometry-based cell 
sorting, which is labor-intensive and 
requires experienced operators.  
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