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SUPPLEMENTARY FIGURES  

 

 

Supplementary Figure S1. Negative-stain TEM validation of the initial pre-formed amyloid fibril 

samples. Related to Figure 2. Initial human α-Syn, bovine milk β-Lac, and hen egg white Lyz amyloid 

fibril samples (all 120 µM monomer equivalent concentration) were deposited on glow-discharged, 

carbon coated Formvar copper grids and imaged using TEM after staining with 2% (w/v) uranyl acetate. 

Typical TEM images are shown with scale bar represents 500 nm in all images. 
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Supporting Figure S2. Fibril length and height distributions extracted from AFM images for 

fibrils undergoing fragmentation by mechanical stirring. Related to Figure 3. Typical experimental 

time course with normalized length (left plot of each sample) and height (right plot of each sample) 

distributions of fibril particles shown as violin plots. The width of the horizontal bars corresponds to 

the normalised frequencies observed at the length or height indicated by the x-axes. The bars for all 

samples are shown using the same length and height frequency scales, respectively, to facilitate 

comparison. The red crosses indicate mean values at each time point and the solid and dashed red lines 

for height plots indicate mean and standard deviation of all time points taken together, respectively. 
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Supporting Figure S3: Residual monomer assay before and after fibril fragmentation time 

courses. Related to Figure 3. For each fibril type, protein content in the non-pellatable fractions of the 

initial sample before and Final sample after extended mechanical perturbation were visualised on SDS-

PAGE gels together with loading standards of known protein concentrations. The difference in residual 

monomer concentration (difference between bands in the Initial and Final lanes) were less than 5 % in 

all cases. 
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Supporting Figure S4: The self-similar length distribution shape can be obtained from rescaling 

and averaging of the experimental normalised length distributions. Related to Figure 5. The 

resealed length distributions 𝑔(𝑥𝑔) calculated with Eq. (5) are shown for each fibril type. For each fibril 

type analysed, the histograms and bold solid lines are the average of length distributions obtained from 

AFM imaging analysis that have reached the self-similar length distribution shapes, i.e. distributions at 

the time points consistent with Eq. (2) in the portion of the experiments represented by the solid lines 

in Fig. 5. for each fibril type. The dashed lines represent distributions from early experimental time-

points where self-similarity has not been reached, demonstrating the large deviations from the self-

similar distribution shape represented by the bold lines. The lines represent distributions calculated 

using the kernel density method to reduce clutter and facilitate visualisation and comparison.  
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SUPPLEMENTARY TABLE  

 

Supporting Table S1: Sample, AFM imaging, and quantitative image analysis statistics. Related 

to Figure 2 and 3. Image analysis statistics for each sample and time point is shown. List of all raw 

fibril lengths is available upon request. 

 

Samples AFM Imaging Quantitative image Analysis 

Protein  
Fragmentation 

Time /s 

Number 

of 

Images 

Image 

size / 

pixels† 

Scan 

size / 

m† 

Mean 

Particle 

Length / 

nm 

Number of 

Fibril 

Particles◊ 

Mean 

Particle 

Height / 

nm 

Number 

of 

Pixels 

-Syn 300 6 2048 20 2075.8 653 6.8 49079 

 
7200 5 2048 20 2402.9 424 5.8 32066 

 
18900 3 2048 20 1311.6 679 7.0 43259 

 
78600 2 2048 20 598.9 1350 7.3 53512 

 
106800 2 2048 20 786.8 1512 6.1 63474 

 
175500 2 2048 20 406.2 3086 7.1 92632 

 
257100 2 2048 20 360.1 4087 6.8 110048 

 
340200 2 2048 20 330.6 4257 6.8 110024 

 
441900 2 2048 20 301.8 2723 7.0 67278 

 
530700 2 2048 20 244.7 5064 6.4 110431 

 
606300 2 2048 20 241.4 6104 6.8 129898 

 
780300 2 2048 20 208.9 6707 6.5 129581 

 
1042200 2 2048 20 185.6 6412 6.1 113509 

 
1293300 2 2048 20 173.6 5346 7.0 90832 

 
300 5 2048 20 2183.7 507 7.5 37725 

 
5400 5 2048 20 1756.2 394 7.0 24323 

 
18000 2 2048 20 1303.7 635 7.8 36938 

 
91800 2 2048 20 620.7 2293 7.2 87165 

 
107400 2 2048 20 568.5 2304 7.4 80443 
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195900 2 2048 20 439.7 2416 7.2 77497 

 
259200 2 2048 20 390.5 3264 7.1 93323 

 
430500 2 2048 20 276.7 4807 6.9 114822 

 
610200 2 2048 20 224.3 6253 7.1 128690 

 
691200 2 2048 20 205.2 7541 6.8 145181 

 
766200 2 2048 20 194.0 5705 6.4 106589 

 
863700 2 2048 20 181.7 8086 6.5 143206 

 
1119600 2 2048 20 172.0 9532 6.4 161606 

 
1219800 2 2048 20 163.6 9470 6.3 154357 

 
1380900 2 2048 20 158.3 8811 6.8 139488 

-Lac 300 2 2048 20 560.2 496 2.5 28968 

 
7200 2 2048 20 451.8 854 2.4 40389 

 
27000 1 2048 20 329.7 751 2.7 26125 

 
86400 1 2048 20 244.7 1023 2.6 26678 

 
172800 1 2048 20 200.8 1482 2.3 32010 

 
331200 2 2048 20 183.0 2637 2.4 52129 

 
370800 1 2048 20 186.0 1112 2.7 22330 

 
432000 2 2048 20 185.2 2180 3.1 43588 

 
520200 2 2048 20 181.1 2190 2.5 42867 

 
691200 2 2048 20 181.0 1945 3.5 38036 

 
867600 1 2048 20 163.2 922 3.7 16349 

 
1126800 1 2048 20 134.2 1138 3.7 16819 

 
1800 3 2048 20 680.8 898 2.0 63514 

 
3600 2 2048 20 495.8 977 2.9 50594 

 
87588 1 2048 20 304.6 2649 3.1 85313 

 
107712 2 2048 20 310.3 2761 2.9 90538 

 
182376 3 2048 20 254.9 4664 2.9 126499 

 
437688 3 2048 20 236.1 3379 3.2 85122 

 
519876 2 2048 20 233.7 1957 3.6 48815 

 
624276 4 2048 20 229.9 3511 3.4 86233 

 
693000 2 2048 20 234.0 1752 3.7 43764 

 
777312 2 2048 20 237.0 1809 3.7 45739 

 
1058400 2 2048 20 230.0 830 3.7 20388 

 
1218960 2 2048 20 213.2 1465 3.2 33468 
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1296000 3 2048 20 221.0 2109 3.5 49869 

Lyz 300 3 2048 20 1436.6 437 3.1 38771 
 

1800 2 2048 20 364.7 632 3.4 18882 
 

3600 2 2048 20 881.6 750 3.1 35831 
 

7200 2 2048 20 1273.2 610 3.0 41984 
 

14400 2 2048 20 1103.4 519 3.1 35986 
 

28800 2 2048 20 1014.9 713 3.0 45954 
 

86400 2 2048 20 612.0 1500 3.5 79606 
 

172800 2 2048 20 333.6 2007 2.8 65634 
 

346600 2 2048 20 242.5 2592 2.9 64844 
 

432000 2 2048 20 211.3 4020 2.7 88812 
 

604800 1 2048 20 172.9 4270 2.8 78168 
 

1123200 2 2048 20 92.5 3419 2.6 35582 
 

600 3 2048 20 959.5 1402 3.6 69144 
 

5400 2 2048 20 591.9 1019 3.4 42686 
 

18000 2 2048 20 720.0 1125 3.0 55008 
 

91800 1 2048 20 448.8 541 3.9 20366 
 

171000 2 2048 20 495.9 1934 2.8 79284 
 

264600 3 2048 20 439.9 3423 3.4 133898 
 

346500 3 2048 20 351.2 4049 3.1 133400 
 

432900 3 2048 20 315.0 4798 2.8 145233 
 

518400 2 2048 20 313.9 3263 3.5 100009 
 

610200 1 2048 20 275.7 1452 3.5 39803 
 

688500 1 2048 20 223.1 2100 3.7 47373 
 

783000 1 2048 20 207.7 2082 3.3 44558 
 

873000 1 2048 20 181.7 3059 2.0 57672 
 

1048500 1 2048 20 164.3 2865 3.2 49244 

2m* 540 16 1024 10 1002.0 468 5.9 36896 

 
3300 8 1024 10 746.8 515 5.4 29583 

 
8280 6 1024 10 616.2 650 5.5 29184 

 
16920 4 1024 10 506.6 603 5.7 22650 

 
39240 4 1024 10 380.2 859 4.6 25747 

 
84240 4 1024 10 301.7 1037 5.9 26177 

 
108000 4 1024 10 266.0 1298 4.8 28612 
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* Reanalysis of data from Xue and Radford, 2013 

† Indicating scan size in m x m and image size in pixels x pixels as image aspect ratio was 1 throughout. 

◊ Total number of fibril particles quantified for constructing the fibril length distributions. 

 Total number of pixel height values in the fibril height distributions for fibril width evaluations. 
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THEORY 

 

The self-similar division equation 

We first explain here the origins of Eq. (1) in the Main Text as well as the assumptions associated with 

this equation. Let us denote the fibril length distribution u(t, x) as the particle concentration of fibrils of 

length x > 0 at time t, B(x) ≥ 0 as the division rate constant for fibrils of length x (assumed to be 

independent of time), and (y, dx) the probability that a dividing fibril of length y gives rise to two 

fibrils of size x and y − x (Fig. 1b). The , often called fragmentation kernel, is nonnegative and satisfies 

the following properties:  

∫𝜅(𝑦, 𝑑𝑥)

𝑦

0

= 1, 𝜅(𝑦, 𝑥 > 𝑦) = 0, 𝜅(𝑦, 𝑥) = 𝜅(𝑦, 𝑦 − 𝑥) 

  Eq. (S1) 

The last property above is a symmetry property linked to the assumption that we consider only division 

into two daughter fibrils for each microscopic step, and the fibrils are isotropic along the axis of the 

filament so the division rate only depends on the length of the resulting two fibrils (Fig. 1c and 1d). 

The first two properties of Eq. (S1) express that (y, dx) is a normalised probability density function, 

and that daughter fibrils post-division are always shorter than their mother fibril. The time dependent 

concentration of fibrils u(t, x) then satisfies the following equation:  

𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) =  −𝐵(𝑥)𝑢(𝑡, 𝑥) +  2 ∫ 𝜅(𝑦, 𝑥)𝐵(𝑦)𝑢(𝑡, 𝑦)𝑑𝑦

∞

𝑦=𝑥

, 𝑢(0, 𝑥) = 𝑢0(𝑥) 

  Eq. (S2) 

where 𝑢0(𝑥)  is the initial length distribution of fibrils. Equation (S2) is the continuous division 

equation, which describes the evolution 
𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) of the fibril particle concentrations in the fibril length 
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distribution u(t, x) with respect to time t. It states that fibrils of a given length x in the sample distribution 

will be consumed with a rate B(x) when they divide into smaller daughter fibrils, and that fibrils of the 

same length x may also appear in the sample distribution each time a fibril of size y > x divides into 

two fibrils of size x and y − x. Let us denote the total initial mass of fibrils as 𝜌 = ∫ 𝑥𝑢0(𝑥)𝑑𝑥
∞

0
. Since 

the mass is conserved through time: ∫ 𝑥𝑢(𝑡, 𝑥)𝑑𝑥
∞

0
= 𝜌 . We also assume, in line with previous 

theoretical (Hill, 1983) and experimental results (Xue and Radford, 2013), that the division rate constant 

is given by a power law:  

𝐵(𝑥) = 𝛼0(𝛼𝑥)
𝛾 , 𝛼 > 0, 𝛾 > 0 

  Eq. (S3) 

and that the site where a fragmenting fibril of size y breaks down only depend on the relative 

position of its site along the mother fibril, defined by the ratio x/y where x is the length of one of the 

two daughter fibrils. This property is called a “self-similar” division and is translated mathematically 

with fragmentation kernel  as the following: 

𝜅(𝑦, 𝑥) ∶=
1

𝑦
𝜅0 (

𝑥

𝑦
) 

  Eq. (S4) 

where the properties described by Eq. (S1), when transferred to the probability density 0, and with 𝑧 =

(
𝑥

𝑦
), satisfies the following:  

∫𝜅0(𝑧)𝑑𝑧

1

0

= 1, 𝜅0(𝑧 > 1) = 0, 𝜅0(𝑧) = 𝜅0(1 − 𝑧) 

  Eq. (S5) 

Two important examples may be viewed as special cases of self-similar fragmentation kernels above. 

The first one is the case of division of uniform probability: the parent fibril can break at any site along 

its length with an equal probability, so that 𝜅0 (
𝑥

𝑦
∈ (0,1)) = 1. The second special division case is 
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sometimes referred to as the “equal mitosis case” from its roots in describing cellular divisions, where 

the parent fibril divides exactly at the middle, so that we have a Dirac delta function at 𝜅0 (
1

2
): 𝜅0 (

𝑥

𝑦
) =

𝛿𝑥
𝑦
=
1

2

. Using all of the properties and assumptions above, the continuous division equation Eq. (S2) then 

becomes: 

𝜕

𝜕𝑡
𝑢(𝑡, 𝑥) =  −𝛼0(𝛼𝑥)

𝛾𝑢(𝑡, 𝑥) +  2 ∫
1

𝑦
𝜅0 (

𝑥

𝑦
)𝛼0(𝛼𝑥)

𝛾𝑢(𝑡, 𝑦)𝑑𝑦

∞

𝑦=𝑥

 

  Eq. (S6) 

which is equation Eq. (1) in the Main text. 

 

Long-time behaviour of the continuous division equation 

For our continuous division equation Eq. (1) and (S6), it has been proven in (Escobedo et al., 2005) that 

for long times, there exists a unique probability density function g and a constant Cg > 0 such that: 

𝑢(𝑡, 𝑥)
𝑡→∞
→   𝐶𝑔𝑡

2
𝛾𝑔(𝑥𝑔), 𝑥𝑔 = 𝑥𝑡

1
𝛾 

  Eq. (S7) 

The constant Cg is introduced to ensure mass conservation, which holds for any time t. Eq. (S7) means 

that for large times, the probability density u tends towards a specific distribution shape g after variable 

rescaling. Moreover, the function g is defined as the unique solution to the following equation: 

𝑥𝑔
𝑑𝑔(𝑥𝑔)

𝑑𝑥𝑔
+ (2 + 𝛼𝛾𝑥𝑔

𝛾)𝑔(𝑥𝑔) = 2𝛼𝛾 ∫
1

𝑦𝑔
𝜅0 (

𝑥𝑔

𝑦𝑔
)𝑦𝑔

𝛾
𝑔(𝑦𝑔)𝑑𝑦𝑔

∞

𝑦𝑔=𝑥𝑔

, ∫ 𝑔(𝑦𝑔)𝑑𝑦𝑔

∞

0

= 1 

  Eq. (S8) 

We can then compute the constant Cg as the following: 
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∫ 𝑥𝑢(𝑡, 𝑥)𝑑𝑥

∞

0

= 𝜌 = 𝐶𝑔∫ 𝑡
2
𝛾𝑥𝑔(𝑥𝑡

1
𝛾)𝑑𝑥

∞

0

= 𝐶𝑔∫ 𝑥𝑔𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

   ⟹   𝐶𝑔 =
𝜌

∫ 𝑥𝑔𝑔(𝑥𝑔)𝑑𝑥𝑔
∞

0

 

  Eq. (S9) 

We then relate these results to our experimental measurements. First, since we measure at successive 

time points small aliquots taken from the fibril samples, these samplings may be viewed as 

measurements of the length distribution of the fibril sample at time points t. We also do not measure 

directly u(t, x), since the total number of fibrils is not known a priori for each time point. Instead, we 

measure the normalised length distribution f(t, x) as described below. Using Eq. (S7-S9), we then have 

the following: 

∫ 𝑢(𝑡, 𝑥)𝑑𝑥

∞

0
𝑡→∞
→   𝐶𝑔∫ 𝑡

2
𝛾𝑔(𝑥𝑡

1
𝛾)𝑑𝑥

∞

0

= 𝐶𝑔𝑡
1
𝛾∫ 𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

= 𝐶𝑔𝑡
1
𝛾 

  Eq. (S10) 

 

We can define 𝑓(𝑡, 𝑥)  as the normalised fibril length distribution that can be assessed using the 

experimental image data: 

𝑓(𝑡, 𝑥)  =  
𝑢(𝑡, 𝑥)

∫ 𝑢(𝑡, 𝑥)𝑑𝑥
∞

0

 

  Eq. (S11) 

 

Using this definition of f(t, x) from, we then have: 

𝑓(𝑡, 𝑥) 
𝑡→∞
→   

𝐶𝑔𝑡
2
𝛾𝑔(𝑥𝑔)

𝐶𝑔𝑡
1
𝛾

= 𝑡
1
𝛾𝑔(𝑥𝑔), 𝑥𝑔 = 𝑥𝑡

1
𝛾 

  Eq. (S12) 
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which is equation Eq. (3) of the main text. Next, defining the average length of fibrils μ(t) as the 

experimentally tractable time-dependent mean length of the fibril length distribution defined as: 

𝜇(𝑡)  =  ∫ 𝑥 · 𝑓(𝑡, 𝑥)𝑑𝑥

∞

0

 

  Eq. (S13) 

We have the following relationship: 

𝜇(𝑡) ∶= ∫ 𝑥𝑓(𝑡, 𝑥)𝑑𝑥

∞

0

 
𝑡→∞
→   ∫ 𝑥𝑡

1
𝛾𝑔(𝑥𝑡

1
𝛾)𝑑𝑥

∞

0

= 𝑡
−
1
𝛾∫ 𝑥𝑔𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

= 𝐶𝑡
−
1
𝛾 , 

  𝐶 = ∫ 𝑥𝑔𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

 

  Eq. (S14) 

which is the relationship between the average length of fibrils and time t in equation Eq. (2) of the main 

text. 

 

Estimating the division parameters α and γ 

We first estimate γ by fitting a modified version of Eq. (2) to the average lengths μ(t) estimated from 

the experimentally observed fibril length distributions for sufficiently long times (see Eq. S22 in 

Transparent Methods). Then, we estimate α from γ and g using Eq. (S8). Integration of Eq. (S8) yields:  

∫ 𝑥𝑔
𝑑𝑔(𝑥𝑔)

𝑑𝑥𝑔
𝑑𝑥𝑔

∞

0

+∫ 2𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

+ 𝛼𝛾∫ 𝑥𝑔
𝛾𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

= 2𝛼𝛾∫ ∫
1

𝑦𝑔
𝜅0 (

𝑥𝑔

𝑦𝑔
)𝑦𝑔

𝛾
𝑔(𝑦𝑔)𝑑𝑦𝑔

∞

𝑦𝑔=𝑥𝑔

𝑑𝑥𝑔

∞

0

 

  Eq. (S15) 

We can integrate Eq. (S15) by parts the first term, and we use Fubini's theorem to invert the integral 

order in the last term:  
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−∫ 𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

+∫ 2𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

+ 𝛼𝛾∫ 𝑥𝑔
𝛾𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

= 2𝛼𝛾∫ ∫
1

𝑦𝑔
𝜅0 (

𝑥𝑔

𝑦𝑔
)𝑦𝑔

𝛾
𝑔(𝑦𝑔)𝑑𝑥𝑔

𝑦𝑔

𝑥𝑔=0

𝑑𝑦𝑔

∞

0

 

  Eq. (S16) 

We then use the fact that g is normalised, ∫ 𝑔(𝑦𝑔)𝑑𝑦𝑔
∞

0
= 1, and change the variable xg to 𝑧 = (

𝑥𝑔

𝑦𝑔
) to 

obtain: 

1 + 𝛼𝛾∫ 𝑥𝑔
𝛾𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

= 2𝛼𝛾∫ ∫ 𝜅0(𝑧)𝑦𝑔
𝛾
𝑔(𝑦𝑔)𝑑𝑧

1

𝑧=0

𝑑𝑦𝑔

∞

0

 

  Eq. (S17) 

Using the property ∫ 𝜅0(𝑧)𝑑𝑧
1

0
= 1 from Eq. (S1), we obtain: 

1 = 𝛼𝛾∫ 𝑥𝑔
𝛾𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

 

  Eq. (S18) 

To relate α directly to the experimentally characterised f(t,x) rather than on g, we multiply the equation 

Eq. (S12), i.e. Eq. (3) of the main text,  by xγ and integrate it to obtain the following: 

∫ 𝑥𝛾𝑓(𝑡, 𝑥)𝑑𝑥 

∞

0
𝑡→∞
→  ∫ 𝑥𝛾𝑡

1
𝛾𝑔(𝑥𝑡

1
𝛾)𝑑𝑥

∞

0

= ∫ 𝑥𝑔
𝛾
𝑡−1𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0

 

  Eq. (S19) 

Rearranging Eq. (S18) and using Eq. (S19), we obtain: 

𝛼 =  
1

𝛾

1

∫ 𝑥𝑔
𝛾𝑔(𝑥𝑔)𝑑𝑥𝑔

∞

0
𝑡→∞
→   

1

𝛾

𝑡−1

∫ 𝑥𝛾𝑓(𝑡, 𝑥)𝑑𝑥
∞

0

 

  Eq. (S20) 

Therefore, we get the following relationship: 
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𝛼 ≈
1

𝛾

𝑡−1

∫ 𝑥𝛾𝑓(𝑡, 𝑥)𝑑𝑥
∞

0

, 𝑡 ≫ 𝑡0 

  Eq. (S21) 

which is used to estimate α from experimental data. For more details, we also refer the interested reader 

to Doumic et al., 2018, and more specifically to Lemma 1 and Eq. (3.3) in this reference.  
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TRANSPARENT METHODS 

 

Preparation of protein monomers 

Hen egg white Lyz and bovine β-Lac proteins were both purchased from Sigma-Aldrich and used with 

no further purification. Production and purification of human α-Syn monomers was achieved according 

to the method of Cappai et al (Cappai et al., 2005), with the addition of a stepped ammonium sulphate 

precipitation (30% to 50%) step prior to anion exchange chromatography. The protein was buffer 

exchanged using PD10 desalting column (GE Healthcare) prior to loading onto the anion exchange 

resin. 

 

In vitro formation of amyloid fibril samples 

The conversion of Lyz and β-Lac to amyloid fibres was achieved under acidic and heated conditions. 

Both proteins were dissolved in 10 mM HCl to a concentration of 15mg/ml and then incubated for 4 hr 

at 25 °C. The resulting solutions were filtered through a 0.2 µm syringe filter and diluted to a 

concentration of 10mg/ml (Lyz = 699 µM and β-Lac = 547 µM). 500 µl aliquots were then heated 

without agitation for differing periods of time, with Lyz heated at 60 °C for 2 days and β-Lac heated at 

90 °C for 5 hr. α-Syn fibrils were formed by buffer exchange of purified monomers into fibril forming 

buffer (20mM Sodium phosphate, pH7.5) using a PD-10 column (GE Healthcare). The resulting α-Syn 

solution was passed through a 0.2 µm syringe filter. Protein concentration was subsequently determined 

via absorbance at 280nm, and the sample solution were diluted to 300 µM and incubated at 37 °C in a 

shaking incubator with agitation set at 200 rpm for at least two weeks. 

 

Controlled fibril fragmentation through mechanical perturbation 
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Parent fibril solutions were diluted to 120 µM using the appropriate fibril forming buffer for each 

protein in a snap cap vial containing an 8 x 3 mm PTFE coated magnetic stirrer bar and then subjected 

to stirring at 1000 rpm on an IKA squid stirrer plate with digital speed display.  At appropriate time 

points, small aliquots of the fibril samples were removed, diluted with fibril forming buffer (deposition 

concentration for α-synuclein is 0.48 µM, β-lactoglobulin is 0.6 µM and Lyz is 6 µM), and 20 µl were 

immediately taken and incubated for 5 min on freshly cleaved mica surfaces (Agar Scientific F7013). 

The mica surfaces were subsequently washed with 1 ml of syringe filtered (0.2 µm) mQ H2O and dried 

under a gentle stream of N2(g).   

 

Determination of residual monomer concentration 

Residual monomer concentration for each fragmentation sample were measured using SDS-PAGE after 

centrifugation (75000 rpm, 15 min) with 100 µl of the 120 µM fragmentation reaction and 100 µl of 

120 µM non-fragmented parent fibrils samples. The top 10µl of the solutions were then removed and 

treated with 4x loading dye and boiled at 95 °C for 5 min (Lyz samples were heated to 65 °C and beta-

mercaptoethanol was not added due to decomposition of samples). The samples were then run against 

a serial dilution of monomeric protein standards on either a Tris-Tricine gel or a 15% Tris-Glycine gel 

at 180V and subsequently stained with Coomassie blue. Analysis of the protein bands was carried out 

by densitometry for comparison of bands to the serial dilution bands. 

 

AFM imaging and image analysis  

The fibril samples were imaged on a Bruker Multimode 8 scanning probe microscope with a Nanoscope 

V controller, using the ScanAsyst peak-force tapping imaging mode. Bruker ScanAsyst probes 

(Silicone nitride tip with tip height = 2.5-8 μm, nominal tip radius = 2 nm, nominal spring constant 0.4 

N/m and nominal resonant frequency 70 kHz) were used throughout. Multiple 20 µm x 20 µm areas of 

the surface were scanned at a resolution of 2048 x 2048 pixels. The images were then processed and 

flattened using Bruker Nanoscope Analysis software to remove tilt and bow. The images were then 
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imported into Matlab, where length of individual fibril particles was measured. The sample length and 

height distributions were obtained as previously described (Xue, 2013; Xue et al., 2009). For the fibril 

length distributions, any length-dependent bias in a deposition for imaging or during the fibril tracing 

step of image analysis was taken into account as previously described (Xue et al., 2009).  

 

Data analysis of fibril division properties 

The normalised length distribution of the fibril samples measured by AFM at time t, 𝑓(𝑡, 𝑥), is linked 

to the concentration of fibrils solution 𝑢(𝑡, 𝑥) in Eq. (1) by the relation in Eq. (SI.11). Mean lengths for 

each time point 𝜇(𝑡) were calculated from the experimental 𝑓(𝑡, 𝑥) distributions and Eq. (2) and (4) 

where used to first extract  from the datasets. Because some unknown number of experimentally 

measured length distributions at early time points in the experiments may not have sufficiently reached 

the self-similar distribution at the asymptotic line (i.e. where Eq. (2) does not apply), we fit the 

following equation Eq. (4) to the average length as function of time data instead of Eq. (2) directly in 

order to estimate the number of experimental time points consistent with the self-similar distribution 

shape objectively without human input: 

{
𝜇(𝑡) =  𝐶 · 𝑡−1/𝛾;    𝑡 > 𝑡𝑠 

 𝜇(𝑡) =  𝐶 · 𝑡𝑠
−1/𝛾;    𝑡 ≤ 𝑡𝑠 

 

  Eq. (S22) 

Eq. (4) was fit to the average length 𝜇(𝑡) as function of time t, with C and ts as parameters individual 

to each experimental dataset and  as a global parameter for datasets from the same fibril type. 

Subsequently, the 𝑔(𝑥𝑔) and  values were calculated with Eq. (3) and (SI.21), respectively, both using 

 calculated above and experimental normalised length distributions 𝑓(𝑡, 𝑥) where t > ts. For both the 

𝑔(𝑥𝑔)  distributions and  values, averages were obtained for each fibril type. The self-similar 

distribution shapes 𝑔(𝑥𝑔) were used to calculate length distribution at any time using the reverse of Eq. 

(3). The  and  values were used to calculate the division rate constant 𝐵(𝑥) = 𝛼0(𝛼𝑥)
𝛾 for fibrils of 
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any length x. Supplementary information section contains further information on the mathematical 

considerations of our division model. 

 

Direct numerical simulation of fibril division processes 

To validate the  and  values obtained from our analysis, direct numerical simulations to calculate the 

time evolution of the fibril length distributions were carried out by numerically solving the full ODE 

system describing the master equation mostly as described in Xue and Radford, 2013 but with a few 

modifications. Firstly, numerical integrations of the master equation were solved for fibril species 

containing up to 30,000 instead of 20,000 monomeric units in order to retain concentration errors 

introduced by numerical inaccuracy and truncation of larger species to <1%. Secondly, the number of 

division sites was assumed to be equal to the number of monomers-1 and the unit used for the length of 

fibrils was interconverted in the simulations from nanometres (x in [nm] units) to the number of 

monomers (i number of monomers) using the numbers of monomers per nm length unit Nl (Xue and 

Radford, 2013) as conversion factor. Subsequently, assuming that division sites along the fibrils operate 

independently, the microscopic rate constant on per division site basis is B(i)0 divided by the number 

of monomers-1. Thirdly, as 𝑔(𝑥𝑔) shape for Lyz and -Syn fibril divisions suggest a 0 function that 

result in similar division rates in the fibril centre and fibril edge, simulations for these two fibril types 

were carried out using Eq. S6 in Xue and Radford 2013 instead of Eq. S8. Finally, the experimental 

distribution at the first time-points (including all the experimental noise) were directly used as the initial 

distribution (dashed lines in Fig. 6) instead of parameterised distributions (Xue et al., 2009) in the 

simulations to illustrate the fact that our model has shown that the self-similar distribution shape will 

be reached independently of the initial length distribution.  

 

 

 




