Supporting Information

Pt/ZrO₂ Prepared by Atomic Trapping: an Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene

Zhenchen Tang,^a Pei Liu, ^b Huatang Cao,^c Sara Bals, ^b Hero J. Heeres ^a and Paolo P. Pescarmona ^{a,*}

^a Chemical Engineering Group, Engineering and Technology Institute Groningen, University of

Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

^b Electron Microscopy for Material Science, University of Antwerp, Groenenborgerlaan 171,

2020 Antwerp, Belgium

^c Advanced Production Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG, the Netherlands

*Corresponding Author. E-mail: p.p.pescarmona@rug.nl

This Supporting Information contains 9 pages including 8 Figures and 5 Tables.

Figure S1. Supplementary HAADF-STEM images for 2Pt/ZrO₂-550.

Figure S2. TEM images of 2Pt/ZrO₂ catalysts calcined and reduced with different procedures. (A) 2Pt/ZrO₂-400-R250, average particle size of Pt: 2.0 nm; (B) 2Pt/ZrO₂-800-R250.

Figure S3. HAADF-STEM images of 0.5Pt/ZrO₂ catalysts calcined at different temperatures.(A) 0.5Pt/ZrO₂-550; (B) 0.5Pt/ZrO₂-800.

Figure S4. HAADF-STEM images coupled with EDX-mapping for 0.5Pt/ ZrO₂-800. Note: the red spots in the EDX-mapping of Pt might be caused by noise and not represent actual Pt species. This EDX-mapping of Pt is shown with the purpose of demonstrating the absence of large Pt nanoparticles in this sample.

Figure S5. TEM images of Pt/ZrO₂ catalysts with different loading after calcination at 550 °C. (A) 0.5Pt/ZrO₂-550; (B) 1Pt/ZrO₂-550; (C) 5Pt/ZrO₂-550, average particle size of Pt: 1.3 nm; (D) 9Pt/ZrO₂-550, average particle size of Pt: 1.5 nm. Note: the resolution of these TEM images does not allow identification of nanoparticles < 0.5 nm.

Figure S6. TEM images of Pt/ZrO₂ catalysts with different loading after calcination at 550 °C and reduction at 250 °C. (A) 0.5Pt/ZrO₂-550, average particle size of Pt: 0.8 nm; (B) 1Pt/ZrO₂-550, average particle size of Pt: 1.2 nm; (C) 5Pt/ZrO₂-550, average particle size of Pt: 2.0 nm; (D) 9Pt/ZrO₂-550, average particle size of Pt: 2.6 nm.

Figure S7. XRD patterns of calcined ZrO_2 and Pt/ZrO_2 catalysts with various Pt loadings (0.5-9%), before (A) and after reduction (B).

 Table S1. Catalytic conversion of glycerol to lactic acid using Pt catalysts supported on different oxides.^a

					Selectivi	ity in th	ne conv	ersion of	Yield in the	conversion
					glycerol	(%)			of cyclohexer	ne (%) ^b
		Conv. _{GLY}	Y_{LA}	$S_{(transfer-H)}$	Lactic	Glyceric	Glycolic	Propane-	Coulstones	D
Entry	Catalyst	(%)	(%)	(%)	acid	acid	acid	diol	Cyclonexane	Delizene
1	2Pt/TiO ₂ -550-R250	9.4	8.6	28	91	1.0	0	2.0	1.3	0
2	2Pt/ZrO ₂ -550-R250	96	95	36	99	0.5	0.2	0.7	17	0
3	2Pt/CeO2-800-R250	90	88	45	98	0.5	0	0.5	20	0

^a Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 160°C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^b Under the employed reaction conditions (mol_{glycerol} : mol_{cyclohexene} = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

Figure S8. Effect of the amount of NaOH on the catalytic performance of 2Pt/ZrO₂-550-R250. Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 160°C; reaction time: 4.5 h; N₂ pressure: 20 bar.

						Selectiv glycero	rity in th l (%)	ne conve	ersion of	f f conversion o cyclohexene (%) ^a	
Entry	Catalyst	Temp. (°C)	Conv. _{GLY} (%)	Y _{LA} (%)	S _(transfer-H) (%)	Lactic acid	Glyceric acid	Glycolic acid	Propane- diol	Cyclohex	ane Benzene
1	2Pt/ZrO ₂ -550-R250	120	25	24	62	96	0.2	0.2	0.4	7.5	0.4
2	2Pt/ZrO ₂ -550-R250	140	40	39	69	95	0.4	0.2	0.9	14	0
3	2Pt/ZrO ₂ -550-R250	160	96	95	36	99	0.5	0.2	0.7	17	0
4	2Pt/ZrO ₂ -550-R250	180	> 99	97	47	97	0.7	0.6	1.8	23	0

Table S2. Catalytic conversion of glycerol to lactic acid using a Pt/ZrO₂ catalyst at different reaction temperature.

Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; reaction time: 4.5 h; N₂ pressure: 20 bar. ^a Under the employed reaction conditions (mol_{glycerol} : mol_{cyclohexene} = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

Table S3. Catalytic conversion of glycerol to lactic acid using a Pt/ZrO₂ catalyst, as a function of

the presence of cyclohexene.

		Cyclohexene	Conv ci v	VLA	S/transfor ID	Selectiv glycerol	Selectivity in the conversion of glycerol (%)			Yield conversion cyclohexe	in the n of ne (%) ^a
Entry	Catalyst	(mmol)	(%)	(%)	(%)	Lactic acid	Glyceri acid	c Glycolic acid	Propane- diol	Cyclohexa	ine Benzene
1	2Pt/ZrO ₂ -550-R250	20	40	39	69	95	0.4	0.2	0.9	14	0
2	2Pt/ZrO ₂ -550-R250	none	39	38	n.a.	97	1.0	0.4	1.6	n.a.	n.a.

Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 140° C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^a Under the employed reaction conditions (mol_{glycerol} : mol_{cyclohexene} = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

				Selectivity in	Yield in the gas phase (%) ^b			
		Conv. _{GLY}	Y_{LA}		Glyceric	Glycolic	Propane-	
Entry	Catalyst	(%)	(%)	Lactic acid	acid	acid	diol	H ₂
1	2Pt/ZrO ₂ -550-R250	96	94	98	0	0	0.5	98

Table S4. Catalytic conversion of glycerol to lactic acid using 2Pt/ZrO₂ 550-R250.^a

^a Reaction conditions: aqueous glycerol solution: 30 mmol (1.0 M, 30 mL); nominal Pt/glycerol ratio = 1/1950; NaOH: 40 mmol; temperature: 160° C; reaction time: 4.5 h; N₂ pressure: 3 bar. ^b Around 10 bar H₂ (77% in the H₂ and N₂ mixture) was detected after reaction, corresponding to a volume of 65 mL. The moles of H₂ were calculated assuming an ideal gas behavior (pV = nRT) at 298 K.

Table S5. Catalytic conversion of glycerol over 2Pt/ZrO₂-550-R250 in the presence of 1-decene

or 1-decyne as hydrogen acceptor. ^a

		Convery	Vra		Selectivi glycerol	ity in tl (%)	ne conve	rsion of	Yield in the of hydrogen (%) ^b	conversion acceptors
Entry	Hydrogen Acceptors	(%)	(%)	S _(transfer-H) (%)	Lactic acid	Glyceric acid	Glycolic acid	Propane -diol	Decene	Decane
1	1-decene	97	96	92	99	0.7	0.1	0.1	-	45
2	1-decyne	1.3	1.2	n.a.	94	2.5	0	0.3	n.a.	n.a.

^a Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); hydrogen acceptors: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 160° C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^b Under the employed reaction conditions (mol_{glycerol} : mol_{decene} = 1 : 2) the maximum theoretical yield of decane is 50%. n.a. = not available.