Supporting Information

Pt/ZrO² Prepared by Atomic Trapping: an Efficient Catalyst for the Conversion of Glycerol to Lactic Acid with Concomitant Transfer Hydrogenation of Cyclohexene

*Zhenchen Tang,^a Pei Liu, ^b Huatang Cao,^c Sara Bals, ^b Hero J. Heeres ^a and Paolo P. Pescarmona a,**

^a Chemical Engineering Group, Engineering and Technology Institute Groningen, University of

Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

^b Electron Microscopy for Material Science, University of Antwerp, Groenenborgerlaan 171,

2020 Antwerp, Belgium

^c Advanced Production Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG, the Netherlands

*Corresponding Author. E-mail: p.p.pescarmona@rug.nl

This Supporting Information contains 9 pages including 8 Figures and 5 Tables.

Figure S1. Supplementary HAADF-STEM images for $2Pt/ZrO₂ - 550$.

Figure S2. TEM images of $2Pt/ZrO₂$ catalysts calcined and reduced with different procedures.

(A) $2Pt/ZrO_2-400-R250$, average particle size of Pt: 2.0 nm; (B) $2Pt/ZrO_2-800-R250$.

Figure S3. HAADF-STEM images of 0.5Pt/ZrO₂ catalysts calcined at different temperatures. (A) $0.5Pt/ZrO₂-550$; (B) $0.5Pt/ZrO₂-800$.

Figure S4. HAADF-STEM images coupled with EDX-mapping for 0.5Pt/ ZrO₂-800. Note: the red spots in the EDX-mapping of Pt might be caused by noise and not represent actual Pt species. This EDX-mapping of Pt is shown with the purpose of demonstrating the absence of large Pt nanoparticles in this sample.

Figure S5. TEM images of Pt/ZrO₂ catalysts with different loading after calcination at 550 °C. (A) $0.5Pt/ZrO₂-550$; (B) $1Pt/ZrO₂-550$; (C) $5Pt/ZrO₂-550$, average particle size of Pt: 1.3 nm; (D) 9Pt/ZrO2-550, average particle size of Pt: 1.5 nm. Note: the resolution of these TEM images does not allow identification of nanoparticles < 0.5 nm.

Figure S6. TEM images of Pt/ZrO₂ catalysts with different loading after calcination at 550 °C and reduction at 250 °C. (A) $0.5Pt/ZrO₂-550$, average particle size of Pt: 0.8 nm; (B) 1Pt/ZrO₂-550, average particle size of Pt: 1.2 nm; (C) 5Pt/ZrO₂-550, average particle size of Pt: 2.0 nm; (D) $9Pt/ZrO₂ - 550$, average particle size of Pt: 2.6 nm.

Figure S7. XRD patterns of calcined ZrO₂ and Pt/ZrO₂ catalysts with various Pt loadings (0.5-9%), before (A) and after reduction (B).

Table S1. Catalytic conversion of glycerol to lactic acid using Pt catalysts supported on different oxides. ^a

					Selectivity	in	the		conversion of Yield in the conversion	
					glycerol (%)				of cyclohexene $(\%)^b$	
		Conv. GLY	YLA	S (transfer-H)		Lactic Glyceric Glycolic Propane-			Cyclohexane Benzene	
	Entry Catalyst	$(\%)$	$(\%)$	$(\%)$	acid	acid	acid	diol		
1	2Pt/TiO ₂ -550-R250	9.4	8.6	28	91	1.0	$\overline{0}$	2.0	1.3	θ
$\mathbf{2}$	2Pt/ZrO ₂ -550-R250	96	95	36	99	0.5	0.2	0.7	17	$\overline{0}$
3	2Pt/CeO ₂ -800-R250	90	88	45	98	0.5	$\overline{0}$	0.5	20	θ

^a Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 160°C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^b Under the employed reaction conditions (mol_{glycerol}: mol_{cyclohexene} = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

Figure S8. Effect of the amount of NaOH on the catalytic performance of $2Pt/ZrO₂ - 550-R250$. Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 160°C; reaction time: 4.5 h; N² pressure: 20 bar.

Table S2. Catalytic conversion of glycerol to lactic acid using a Pt/ZrO₂ catalyst at different reaction temperature.

Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = $1/1950$; NaOH: 15 mmol; reaction time: 4.5 h; N₂ pressure: 20 bar. ^a Under the employed reaction conditions (molglycerol: molgyclohexene = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

Table S3. Catalytic conversion of glycerol to lactic acid using a Pt/ZrO₂ catalyst, as a function of

the presence of cyclohexene.

Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); cyclohexene: 20 mmol; nominal Pt/glycerol ratio = 1/1950; NaOH: 15 mmol; temperature: 140°C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^a Under the employed reaction conditions (molglycerol: molgyclohexene = 1 : 2) the maximum theoretical yield of cyclohexane is 50%.

Table S4. Catalytic conversion of glycerol to lactic acid using 2Pt/ZrO₂ 550-R250.^a

^a Reaction conditions: aqueous glycerol solution: 30 mmol (1.0 M, 30 mL); nominal Pt/glycerol ratio = 1/1950; NaOH: 40 mmol; temperature: 160° C; reaction time: 4.5 h; N₂ pressure: 3 bar. $\frac{b}{2}$ Around 10 bar H₂ (77% in the H₂ and N₂ mixture) was detected after reaction, corresponding to a volume of 65 mL. The moles of H_2 were calculated assuming an ideal gas behavior ($pV = nRT$) at 298 K.

Table S5. Catalytic conversion of glycerol over $2Pt/ZrO₂ - 550-R250$ in the presence of 1-decene

or 1-decyne as hydrogen acceptor. ^a

^a Reaction conditions: aqueous glycerol solution: 10 mmol (0.5 M, 20 mL); hydrogen acceptors: 20 mmol; nominal Pt/glycerol ratio = $1/1950$; NaOH: 15 mmol; temperature: 160° C; reaction time: 4.5 h; N₂ pressure: 20 bar. ^b Under the employed reaction conditions (molglycerol: mol_{decene} = 1 : 2) the maximum theoretical yield of decane is 50%. n.a. = not available.