Supplementary Material for "Generative-Discriminative Complementary Learning"

September 6, 2019

S1. Proof of Theorem 1

According to the triangle inequality of total variation (TV) distance, we have

$$d_{TV}(P_{XY}, Q_{XY}) \le d_{TV}(P_{XY}, P_{Y|X}Q_X) + d_{TV}(P_{Y|X}Q_X, Q_{XY}).$$
(1)

Using the definition of TV distance, we have

$$d_{TV}(P_{Y|X}P_X, P_{Y|X}Q_X) = \frac{1}{2} \int |p_{Y|X}(y|x)p_X(x) - p_{Y|X}(y|x)q_X(x)|\mu(x,y)$$

$$\stackrel{(a)}{\leq} \frac{1}{2} \int |p_{Y|X}(y|x)|\mu(x,y) \int |p_X(x) - q_X(x)|\mu(x)$$

$$\leq c_1 d_{TV}(P_X, Q_X), \qquad (2)$$

where p and q are densities, μ is a (σ -finite) measure, c_1 is a constant, and (a) follows from the Hölder inequality.

Similarly, we have

$$d_{TV}(P_{Y|X}Q_X, Q_{Y|X}Q_X) \le c_2 d_{TV}(P_{Y|X}, Q_{Y|X}),$$
(3)

where c_2 is a constant. Combining (1), (2), and (3), we have

$$d_{TV}(P_{XY}, Q_{XY}) \leq c_1 d_{TV}(P_X, Q_X) + c_2 d_{TV}(P_{Y|X}, Q_{Y|X})$$

$$\leq c_1 d_{TV}(P_X, Q_X) + c_2 d_{TV}(P_{Y|X}, Q'_{Y|X}) + c_2 d_{TV}(Q'_{Y|X}, Q_{Y|X})$$

(4)

Since we have no access to $P_{Y|X}$, by simply adapting the proof of Theorem 1 in [Thekumparampil et al.2018], we bound $d_{TV}(P_{Y|X}, Q'_{Y|X})$ using complementary conditional probabilities as

$$d_{TV}(P_{Y|X}, Q'_{Y|X}) = \max_{S_1, \dots, S_K \subseteq \mathcal{X}} \sum_{y \in \mathcal{Y}} \{ P(y|S_y) - Q'(y|S_y) \}$$

$$= \max_{S_1,\ldots,S_K \subseteq \mathcal{X}} \langle \mathbf{1}, P(\cdot|\{S_y\}_{y \in \mathcal{Y}}) - Q'(\cdot|\{S_y\}_{y \in \mathcal{Y}}) \rangle$$

$$\stackrel{(a)}{=} \max_{S_1,\ldots,S_K \subseteq \mathcal{X}} \langle \mathbf{1}, \mathbf{M}^{-1}(P(\cdot|\{S_{\bar{y}}\}_{\bar{y} \in \mathcal{Y}}) - Q'(\cdot|\{S_{\bar{y}}\}_{\bar{y} \in \mathcal{Y}})) \rangle$$

$$\stackrel{(b)}{\leq} \|\mathbf{M}^{-\mathsf{T}}\|_1 \max_{S_1,\ldots,S_K \subseteq \mathcal{X}} \|P(\cdot|\{S_{\bar{y}}\}_{\bar{y} \in \mathcal{Y}}) - Q'(\cdot|\{S_{\bar{y}}\}_{\bar{y} \in \mathcal{Y}}))\|_1$$

$$= \|\mathbf{M}^{-1}\|_{\infty} d_{TV}(P_{\bar{Y}|X}, Q'_{\bar{Y}|X}), \quad (5)$$

where $P(\cdot|\{S_y\}) = [P(Y = 1|S_1), \dots, P(Y = K|S_K)]^{\mathsf{T}}, P(\cdot|\{S_{\bar{y}}\}) = [P(\bar{Y} = 1|S_1), \dots, P(\bar{Y} = K|S_K)]^{\mathsf{T}}$, (a) follows from $P(\cdot|\{S_{\bar{y}}\}) = MP(\cdot|\{S_y\})$, and (b) follows from the fact that $\mathbf{1}^{\mathsf{T}}Ax \leq ||Ax||_1 \leq ||A||_1 ||x||_1$. By combining (4) and (5), we have

$$d_{TV}(P_{XY}, Q_{XY}) \leq c_1 d_{TV}(P_X, Q_X) + c_2 \| \boldsymbol{M}^{-1} \|_{\infty} d_{TV}(P_{\bar{Y}|X}, Q'_{\bar{Y}|X}) + c_2 d_{TV}(Q_{Y|X}, Q'_{Y|X})$$
(6)

According to the relations between total variation (TV), KL divergence (d_{KL}) , and Jensen-Shannon divergence (d_{JS}) , we can rewrite (6) as

$$d_{TV}(P_{XY}, Q_{XY}) \leq 2c_1 \sqrt{d_{JS}(P_X, Q_X)} + c_2 \|\boldsymbol{M}^{-1}\|_{\infty} \sqrt{d_{KL}(P_{\bar{Y}|X}, Q'_{\bar{Y}|X})} + c_2 \sqrt{d_{KL}(Q_{Y|X}, Q'_{Y|X})},$$
(7)

which follows from the Pinsker's inequality. By replacing $2c_1$ in (7) with a new constant c_1 (using the same notation for simplicity), we can obtain the inequality in Theorem 1. From the theorem, we can see that if the complementary labels are highlybiased, it may cause M to be rank-deficient. In this case, our algorithm may not minimize the distance between P_{XY} and Q_{XY} efficiently.

S2. Illustration of Our Objective Function (Eq. (5))

$$\begin{array}{cccc} P_X & P_{Y|X} & \stackrel{\mathbf{M}}{\longrightarrow} & P_{\bar{Y}|X} & \longrightarrow & \text{Transformation} \\ \hline (a) & & & & \downarrow & & \downarrow & \\ Q_X & Q_{Y|X} & \stackrel{(C)}{\longrightarrow} & Q'_{Y|X} & \stackrel{\mathbf{M}}{\longrightarrow} & Q'_{\bar{Y}|X} & & \longrightarrow & \text{Divergence} \end{array}$$

Figure 1: Illustration of the divergence terms that are minimized in Eq. (5). $P_{Y|X}$ ($P_{\bar{Y}|X}$) is the conditional distribution of ordinal (complementary) label given features on the real data. $Q'_{Y|X}$ ($Q'_{\bar{Y}|X}$) is the conditional distribution of ordinal (complementary) label produced by the classification network C in Eq. (5). $Q_{Y|X}$ is the conditional distribution of ordinal label given features induced by our generator G. From the figure, we can see that minimizing (b) leads to reduced divergence between $P_{Y|X}$ and $Q'_{Y|X}$. Therefore, the objective function minimizes the divergence between $P_{Y|X}$ and $Q_{Y|X}$ further because of (c). Combined with (a), our objective minimizes divergence between P_{XY} and Q_{XY} .

S3 .	Quality	of synthetic	data
-------------	---------	--------------	------

<i>r</i> _l Method	0.2	0.4	0.6	0.8	1.0			
CIFAR10								
Ordinary label, IS	5.16 ± 0.066	5.99 ± 0.058	6.19 ± 0.070	6.27 ± 0.070	6.53 ± 0.082			
CCGAN, IS	5.28 ± 0.048	5.90 ± 0.065	6.27 ± 0.094	6.27 ± 0.067	6.48 ± 0.052			
Ordinary label, FID	54.33	39.18	35.18	32.91	28.40			
CCGAN, FID	50.75	37.47	33.86	34.55	31.63			
CIFAR100								
Ordinary label, IS	5.11 ± 0.038	6.80 ± 0.084	7.59 ± 0.154	7.94 ± 0.133	7.82 ± 0.09			
CCGAN, IS	4.80 ± 0.042	6.36 ± 0.059	6.73 ± 0.095	7.17 ± 0.085	7.22 ± 0.115			
Ordinary label, FID	65.00	44.14	41.49	36.25	34.34			
CCGAN, FID	79.13	44.01	43.63	36.21	34.63			
VGGFACE100								
Ordinary label, IS	19.18 ± 0.254	29.19 ± 0.235	48.99 ± 0.533	54.59 ± 0.390	67.77 ± 0.568			
CCGAN, IS	16.49 ± 0.243	28.10 ± 0.368	45.82 ± 0.746	52.97 ± 0.470	62.30 ± 0.409			
Ordinary label, FID	100.48	66.00	42.98	38.07	26.26			
CCGAN, FID	113.78	59.98	36.45	31.661	27.79			

Table 1: This table shows the Inception Score and FID socore on CIFAR10, CIFAR100 and VGGFACE100 dataset. r_l denotes the proportion of sampled labeled data for training from the training set S. All these scores are under the uniformed M setting.

S4. More Generated Images

Figure 2: Synthetic results for MNIST and CIFAR10. We set $r_l = 1$ here. It shows the generated data with true M and esitimated M

References

[Thekumparampil et al.2018] Thekumparampil, K. K.; Khetan, A.; Lin, Z.; and Oh, S. 2018. Robustness of conditional gans to noisy labels. In *Advances in Neural Information Processing Systems*, 10271–10282. 1

Figure 3: Synthetic results for CIFAR100. We set $r_l = 1$ here. It shows the generated data with true M and estimated M

Figure 4: Synthetic results for MNIST and VGGFACE100. We set $r_l = 1$ here. It shows the generated data with true M and esitimated M