Supplemental information: Comparisons of simple and complex methods for quantifying exposure to point source air pollution emissions

Lucas RF Henneman1, Irene C Dedoussi2,3, Joan A Casey4,5, Christine Choirat6, Steven RH Barrett3, and Corwin M Zigler7

¹Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, U.S.A. ²Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands ³Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston,

U.S.A.

4School of Public Health, University of California, Berkeley, U.S.A.

5Columbia University Mailman School of Public Health, New York, U.S.A.

⁶Swiss Data Science Center, ETH Zürich and EPFL, Lausanne, Switzerland

⁷Department of Statistics and Data Sciences and Department of Women's Health, University of Texas, Austin, U.S.A.

SI-1 Reduced complexity approaches as PM_{2.5}

For HyADS and IDWE exposure fields to all emissions sources $(exposure_{i,j}^{m})$, we projected raw exposure fields to match the CMAQ-DDM Hybrid grid and trained multiple models over the continental United States. Along with model defined in equation (4) in the main paper, we trained two additional linear models:

$$PM_{2.5}^{CMAQ-DDM} = \beta_0^m + \beta_{exp}^m \sum_{j=1}^J exposure_j^m + \epsilon^m$$
(SI-1)
$$PM_{2.5}^{CMAQ-DDM} = \beta_0^m + \beta_{exp}^m \sum_{j=1}^J exposure_j^m + \beta_{\vec{X}}^m \vec{X} + \beta_{exp,\vec{X}}^m \vec{X} * \sum_{j=1}^J exposure_j^m + \beta_s^m s(x, y) + \epsilon^m$$
(SI-2)

where $PM_{2.5}^{CMAQ-DDM}$ is PM_{2.5} coal impacts from CMAQ-DDM Hybrid, \vec{X} is the vector of meteorological variables from the North American Reanalysis1, and s(x, y) is a bivariate spline of latitude and longitude (in meters) with 100 knots. ϵ is assumed iid normal with no spatial structure. We employed average temperature, accumulated precipitation, relative humidity, and x and y wind vectors for meteorological inputs.

As a fourth model, we employed a Z-score adjustment of *exposure*^m to match that of $PM_{2.5}^{CMAQ-DDM}$. For conversions of *exposure*^m_i to $PM_{2.5}^{m}$, we employed this equation:

$$PM_{2.5,j}^{m} = sd(PM_{2.5}^{CMAQ-DDM}) * \left(\frac{exposure_{j}^{m} - mean(exposure^{m})}{sd(exposure^{m})} + mean(PM_{2.5}^{CMAQ-DDM})\right)$$
(SI-3)

where $sd(\bullet)$ represents the standard deviation and $mean(\bullet)$ represents the mean.

SI-1.1 Annual evaluation

We trained the models using total PM2.5 coal source impacts in 2005 and evaluated them by predicting 2006 total PM2.5 coal source impacts (Figure SI-1). The linear model formulation in the main document was found to have the best performance and the least complex formulation; therefore, we present results from this model throughout the main results and the remainder of this document.

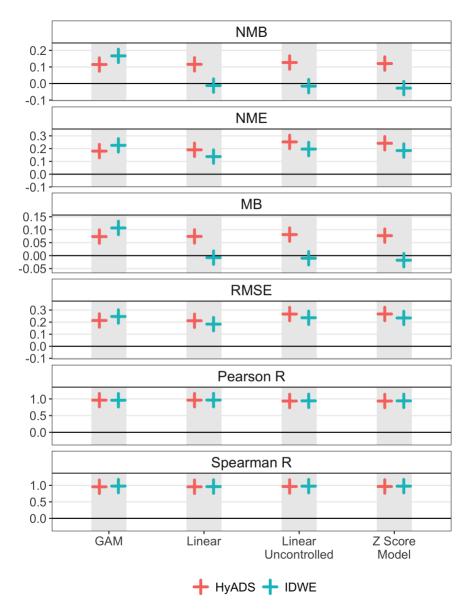


Figure SI-1: Evaluation statistics for total annual coal PM_{2.5} source impacts $PM_{2.5}^{m}$ evaluated against $PM_{2.5}^{CMAQ-DDM}$.

SI-1.2 Monthly evaluation

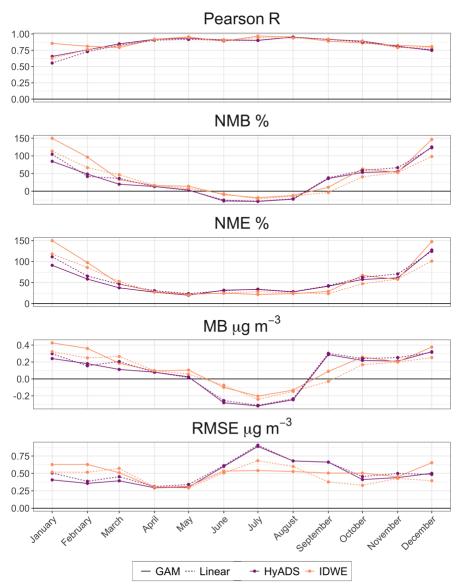


Figure SI-2: Evaluation statistics for total monthly coal PM_{2.5} source impacts PM^m_{2.5} evaluated against PM^{CMAQ-DDM}_{2.5}. Models were trained in each month in 2005 and evaluated in 2006.

SI-1.3 Total source impact fields as PM_{2.5}

Raw HyADS and IDWE exposure from all coal power plants $(\sum_{j=1}^{J} exposure_{i,j}^{HyADS})$ and $\sum_{j=1}^{J} exposure_{i,j}^{IDWE}$ were highly correlated with CMAQ-DDM in 2006 (Pearson R of 0.94 for both). $PM_{2.5}^{IDWE}$ year 2006 model predictions trained on 2005 $exposure^{IDWE}$ and $PM_{2.5}^{CMAQ-DDM}$ yielded lower bias and error than comparable results for $PM_{2.5}^{HyADS}$.

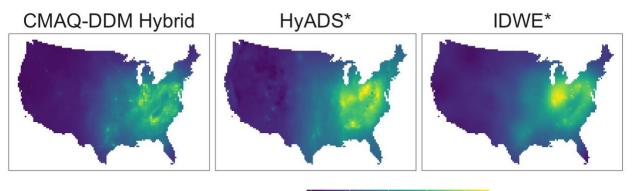


Figure SI-3: Total annual PM^{CMAQ-DDM}_{2.5}, PM^{HyADS}_{2.5}, and PM^{IDWE}_{2.5} in 2006. * denotes converted metrics from exposure^{HyADS} and exposure^{IDWE}.

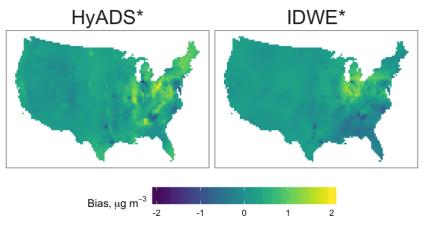
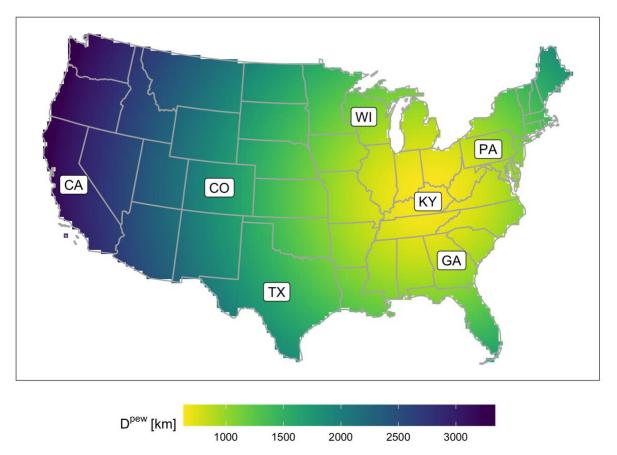



Figure SI-4: Spatial bias of total annual $PM_{2.5}^{HyADS}$ and $PM_{2.5}^{IDWE}$ relative to $PM_{2.5}^{CMAQ-DDM}$ in 2006. * denotes converted metrics from exposure^{HyADS} and exposure^{IDWE}.

SI-2 Additional supplemental figures

Figure SI-5: Population-emissions weighted distance (D_{pew}) calculated for each grid cell in the contiguous United States.

SI-2 Source impact evaluation metrics

This section presents expanded annual evaluations of $PWSI_{i,P}^{HyADS}$ and $PWSI_{i,P=US}^{IDWE}$ against $PWSI_{i,P=US}^{Adjoint}$. These figures supplement the evaluation metrics presented in Figure 3. **SI-2.1 Annual evaluations**

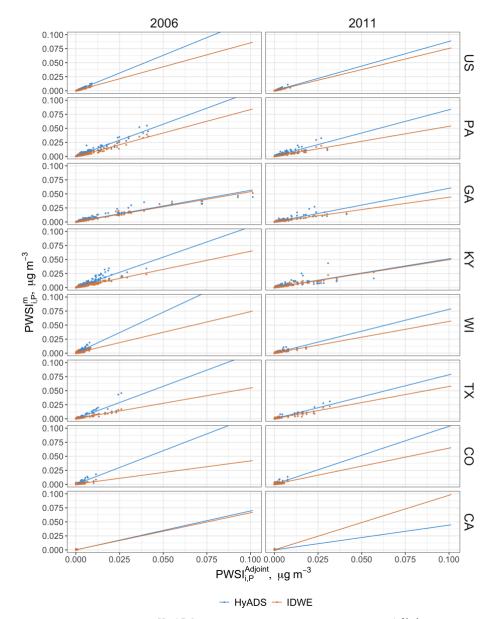


Figure SI-6: Scatterplot of $PWSI_{i,P}^{HyADS}$ and $PWSI_{i,P}^{IDWE}$ against $PWSI_{i,P}^{Adjoint}$ for each coal-fired power plant.

Figure SI-7: Spearman R (rank-ordered correlation), Normalized Mean Error ($0\% < NME < +\infty$) and Mean Bias (MB) of PWSI^{HyADS} and PWSI^{IDWE} compared to GEOS-Chem adjoint sensitivities. IDWE* for CA are omitted from this plot because they are many times higher than the NME in other states. The removed values range from 3,600% to 6,200%.

SI-2.1 Monthly evaluations

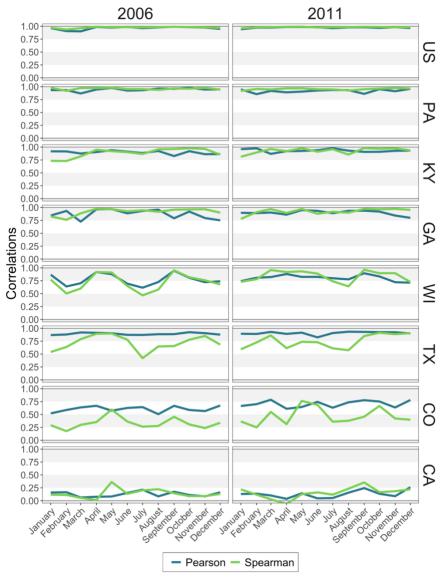


Figure SI-8: Monthly linear (Pearson R) and rank-ordered (Spearman R) correlations between $PWSI_{P,j}^{HyADS}$ and $PWSI_{P,j}^{IDWE}$ source impacts evaluated against $PWSI_{P,j}^{Adjoint}$ on individual states and entire United States (US). States are ordered east to west descending.

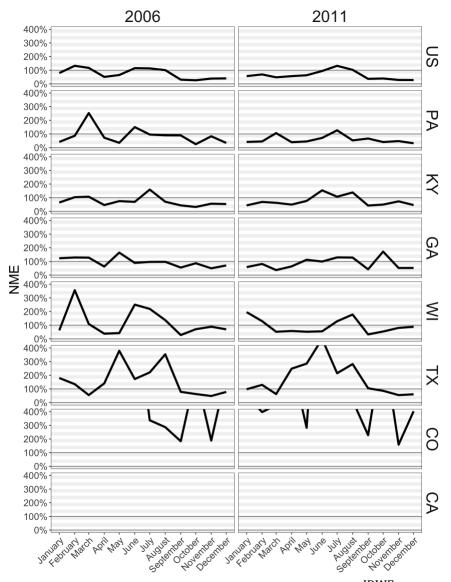


Figure SI-9: Normalized Mean Error $(0\% < NME < +\infty)$ of PWSI^{IDWE}_{P,j} evaluated against PWSI^{HyADS}. The values in Colorado (CO) range up to 18,000% and in California range from 800% to greater than 2,000,000%.

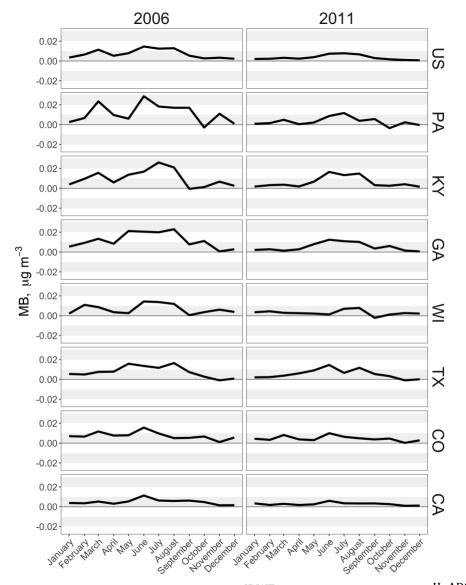


Figure SI-10: Mean bias (MB) of $PWSI_{P,j}^{IDWE}$ evaluated against $PWSI_{P,j}^{HyADS}$.

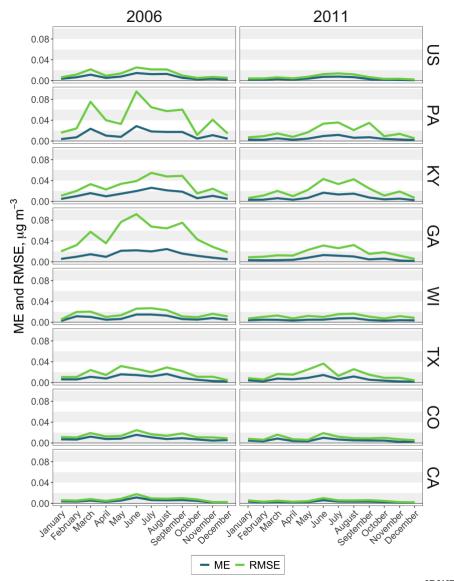


Figure SI-11: Mean error (ME) and root mean square error (RMSE) of PWSI^{IDWE} evaluated against PWSI^{HyADS}.

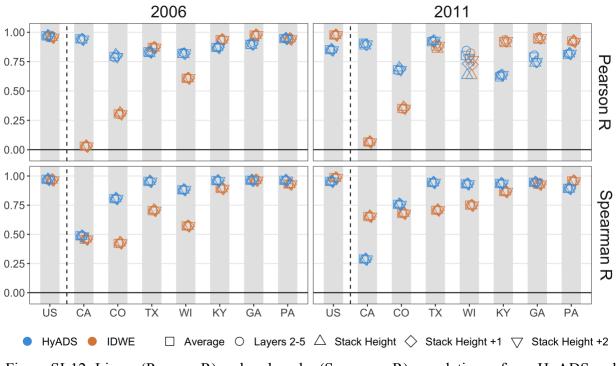


Figure SI-12: Linear (Pearson R) and rank-order (Spearman R) correlations of raw HyADS and IDWE individual source exposure metrics ($exposure_{i,j}^{HyADS}$ and $exposure_{i,j}^{IDWE}$) compared to $PWSI_{P,j}^{Adjoint}$.