Treatment of non-erosive reflux disease and dynamics of the esophageal microbiome: A prospective multicenter study

Chan Hyuk Park,¹ Seung In Seo,² Joon Sung Kim,³ Sun Hyung Kang,⁴ Beom Jin Kim,⁵ Yoon Jin Choi,⁶ Hyo Joo Byun,⁷ Jung-Ho Yoon,⁸ and Sang Kil Lee⁹ GERD Research Group of the Korean Society of Neurogastroenterology and Motility

¹Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea

²Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea

³Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Incheon St Mary's Hospital, the Catholic University of Korea, Seoul, Korea

⁴Department of Internal Medicine, Chungnam National University School of Medicine

⁵Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea

⁶Department of Internal Medicine, Korea University Guro Hospital, Department of Internal Medicine,

Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine Seoul, Korea

⁷Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea

⁸Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea

⁹Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea

Correspondence to: Sang Kil Lee, MD, PhD

Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722 Republic of Korea Phone: +82-2-2228-1996, Fax: +82-2-393-6884, E-mail: sklee@yuhs.ac

Supplementary information

Figure S1. Operational taxonomic units and diversity.

The number of OTUs and the Chao1 index tended to be lower in the esophagus than in the oropharynx at baseline as well as at week eight. Overall, significant difference was not observed except in the Chao1 index between oropharynx and esophagus at week eight.

Lines indicate the medians with interquartile ranges.

OTU, operational taxonomic unit; PPI, proton pump inhibitor; NS, not significant.

Figure S2. Principal component analysis of the microbiome according to the time-point (baseline vs. week eight) in the (A) oropharynx and (B) esophagus.

There was no significant difference in microbial compositions between the baseline and week eight in the oropharynx (P=0.334) as well as in the esophagus (P=0.920).

The ANOSIM test was used for comparison among the microbial communities.

ANOSIM, analysis of similarities.

Figure S3. Linear discriminant analysis of the relative abundance of bacteria between oropharyngeal and esophageal microbiomes.

Significantly more abundant bacterial taxa in each group are presented. At baseline, Enterobacteriaceae and Chitinophagaceae were more abundant, whereas unclassified Clostridiales Family XIII and Methylobacteriaceae were less abundant in the esophageal microbiome compared to those in the oropharyngeal microbiome. At week eight, there was no difference in the relative abundance of bacterial taxa in the esophageal microbiome compared to those in the oropharyngeal microbiome.

LDA, linear discriminant analysis

Table S1. Treatment responses in patients assessed for biologic markers and microbiomes.

 Table S2. Primer sequences for the quantitative polymerase chain reaction for biologic marker analyses.

Figure S1. Operational taxonomic units and diversity.

The number of OTUs and the Chao1 index tended to be lower in the esophagus than in the oropharynx at baseline as well as at week eight. Overall, significant difference was not observed except in the Chao1 index between oropharynx and esophagus at week eight.

Lines indicate the medians with interquartile ranges.

OTU, operational taxonomic unit; PPI, proton pump inhibitor; NS, not significant.

Figure S2. Principal component analysis of the microbiome according to the time-point (baseline vs. week eight) in the (A) oropharynx and (B) esophagus.

There was no significant difference in microbial compositions between the baseline and week eight in the oropharynx (P=0.334) as well as in the esophagus (P=0.920).

The ANOSIM test was used for comparison among the microbial communities.

ANOSIM, analysis of similarities.

Figure S3. Linear discriminant analysis of the relative abundance of bacteria between oropharyngeal and esophageal microbiomes.

Significantly more abundant bacterial taxa in each group are presented. At baseline, Enterobacteriaceae and Chitinophagaceae were more abundant, whereas unclassified Clostridiales Family XIII and Methylobacteriaceae were less abundant in the esophageal microbiome compared to those in the oropharyngeal microbiome. At week eight, there was no difference in the relative abundance of bacterial taxa in the esophageal microbiome compared to those in the oropharyngeal microbiome.

LDA, linear discriminant analysis

Table S1.	Treatment	responses i	n patients	assessed	for biologic	markers	and microbiomes.
-----------	-----------	-------------	------------	----------	--------------	---------	------------------

Variable	Value		
Ν	18		
Treatment response to PPI at week 8			
Heartburn			
Complete response	10 (55.6)		
Partial response	7 (38.9)		
Non-response	1 (5.6)		
Regurgitation			
Complete response	9 (50.0)		
Partial response	6 (33.3)		
Non-response	3 (16.7)		

BMI, body mass index; PPI, proton pump inhibitors; SD, standard deviation

Type of biologic	Direction	Sequences (5' to 3')			
Inflammatory marker					
	Forward	GGCTTAATTCTCTCGGAAACG			
ΙΕΝ-γ	Reverse	ATGGGTCCTGGCAGTAACAG			
	Forward	CCACAGACCTTCCAGGAGAATG			
IL-1β	Reverse	GTGCAGTTCAGTGATCGTACAGG			
	Forward	GTTGTGCAAGGGTCTGGTTT			
IL-0	Reverse	TTCCCTCAGGATGGTGTCTC			
	Forward	CAAGAGCCAGGAAGAAACCA			
IL-8	Reverse	AGCTGCAGAAATCAGGAAGG			
11 40	Forward	TGCAAAACCAAACCACAAGA			
IL-10	Reverse	TGCAGCTGTTCTCAGACTGG			
	Forward	CCCAGAAACATCCAATTCTCA			
NICPT	Reverse	GGAATGAAGGTGGCTGCTAT			
	Forward	TGGAGTCTGGGAAGGATTTG			
	Reverse	CGAAGCTGGACAAACACAGA			
DANTES	Forward	CGCTGTCATCCTCATTGCTA			
NANTES	Reverse	GCACTTGCCACTGGTGTAGA			
	Forward	AAAAATGGGCTCCCTCTCATCAGTTC			
INF-u	Reverse	TCTGCTTGGTGGTTTGCTACGAC			
Permeability marker					
	Forward	TTTGTGGGACAAGGAACACA			
OCLIN	Reverse	TAGTCAGATGGGGGTGAAGG			
70-1	Forward	CCGTTGGCATGAAGTGTATG			
20-1	Reverse	AGCCAGACCTGCAAGAAGAA			
CLDN-1	Forward	GCCCCAGTGGAGGATTTACT			
OLDIVET	Reverse	TGCTCAGATTCAGCAAGGAG			
	Forward	CTGTGGCCTCAGGACTCTCT			
	Reverse	ACCCTCCCAGGCTCATTAGT			
Hypersensitivity marker					
ASIC-3	Forward	GCCGTCACCAAGACTCTCTC			
A010-0	Reverse	TAGGCATGTCCAGGATGTCA			
	Forward	GCCTGGAGCTGTTCAAGTTC			
	Reverse	GATGAGCATGTTGAGCAGGA			
Control					
GAPDH	Forward	CCGGGAAACTGTGGCGTGATGG			
	Reverse	AGGTGGAGGAGTGGGTGTCGCTGTT			

Table S2. Primer sequences for the quantitative polymerase chain reaction for biologic marker analyses.