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Supplementary Figure 1. Volcano plot of most significantly downregulated genes in DFUs.
Volcano plot indicating differentially regulated genes in DFUs. Dotted line region is magnified on the
right panel highlighting some of the most significantly down-regulated genes in DFUs
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Supplementary Figure 2. Downregulation of genes in DFUs involved
in inflammatory response and cellular movement processes.
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Supplementary Figure 3. Upstream regulators CSF2, STAT3 and IL1A partially activated in
DFUs compared to oral and skin wounds.
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Supplementary Figure 4. Validation of upstream regulators STAT3, p-STAT3 and TNFa in
DFUs compared to oral and skin wounds. Representative pictures of oral day 3 wounds, skin day 3
wounds and DFUs to show basal marker K5, and upstream regulators that are downregulated in DFUs
compared to oral and skin wounds. Experiments were performed once with 3 biologically independent
patient samples per group with minimum duplicate technical replicates. Scale bar= 50 pm,
magnification 20x.
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Supplementary Figure S. FOXM1 pathway activation in human acute oral and skin wounds. a.
Heat-map of genes involved in FOXM1 pathway demonstrating oral and skin wounds share 50/54
genes commonly regulated. b. Upstream regulator, ZBTB17, that acts as an upstream negative
regulator of FOXM1 pathway is suppressed in oral and skin wounds.
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Supplementary Figure 6. Time course of FOXM1 and FOXO1 expression
during wound healing in oral and skin wounds compared to DFUs. FOXM1 is
induced upon wounding in oral and skin day 3 wounds compared to suppression in
DFUs. FOXOI1 expression does not change during wounding in oral and skin
wounds and is comparable to DFUs. RPKM= Reads per kilobase of transcript per
million mapped reads.
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Supplementary Figure 7. Inhibition of proliferation in DFUs. a IPA-predicted network of cellular
proliferation from oral and skin specific genes compared to DFU specific genes. b Representative
pictures of oral day 3 wounds, skin day 3 wounds and DFUs to show basal marker K5, proliferation
marker PCNA and macrophage marker CD68. Decreased PCNA and CD68 demonstrates decreased
proliferation of macrophages in DFUs compared to oral and skin wounds. Experiments were
performed once with 3 biologically independent patient samples per group with minimum duplicate
replicates. Scale bar= 100 pum.



Ki67

Oial Day 3

Skin Day 3

DFU

Supplementary Figure 8. Hyperproliferation in epidermis of oral, skin
and DFU wounds. Representative pictures of oral day 3 wounds, skin day 3
wounds and DFUs to show basal marker K5 and proliferation marker Ki67.
Ki67 staining demonstrates increased epidermal proliferation of
keratinocytes in oral, skin and DFU wounds. Experiments were performed
once with 3 biologically independent patient samples per group with
minimum duplicate replicates. Scale bar= 50 um, magnification 20x.
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Supplementary Figure 9. Prediction of macrophages populations in oral and
skin day 6 wounds compared to DFUs. Estimated proportions of macrophages in
oral and skin wounds at day 6 post wounding shows M2 macrophages to be
present.
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Supplementary Figure 10. Prediction of immune cell infiltrates in oral, skin day 3 wounds
and DFUs. Estimated proportions of different subsets of leukocytes (T cells, B cells and NK

cells) in DFUs compared to oral and skin wounds.
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Supplementary Figure 11. Inhibition of FOXM1 decreases frequency of
macrophages and neutrophils in the wounds of STZ-induced diabetic mice.
Representative zebra plots of F4/80 and Ly6G expression on gated CD11b+ cells
from wounded skin after topical treatment with either vehicle or FOXM1 inhibitor
FDI-6 on day 4. Numbers in representative plots indicate percent positive cells in
each quadrant. Treatment of wounds with FDI-6 resulted in decreased macrophages
and neutrophils compared to vehicle treated wounds.
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Supplementary Figure 12. Inhibition of FOXM1 decreases frequency of myeloid, CD11b+

cells, in diabetic wounds. a-c Diabetic (STZ-induced) and CD-1 control mice were wounded and
treated topically with either the FOXM!1 inhibitor FDI-6 or vehicle. Wound edge skin at day 4 was
collected and frequencies of total numbers of myeloid, CD11b+ cells was determined by flow
cytometry. Data represent three mice per group. Data presented as mean + SEM. (a) *P =0.018 for
control group and *P=0.012 for diabetic group, (b) **P =0.009 for control group and *P=0.049 for
diabetic group as calculated using one-way ANOVA with Tukey's multiple comparisons test (a,b).
Source data are provided as a Source Data file. c Representative zebra plots of CD11b expression
on gated CD45+ single cells from wounded skin after topical treatment with either vehicle or
FOXMI inhibitor FDI-6 on day 4. Numbers in representative plots indicate percent positive cells in
each quadrant. Treatment of wounds with FDI-6 resulted in decreased CD11b+ cells compared to
vehicle treated wounds.
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Supplementary Figure 13. Inhibition of FOXM1 decreases frequency of
macrophages and neutrophils in db/db and db/+ wounds. a-d db/db (a,b) and db/+
(c,d) mice were wounded and treated topically with either the FOXM1 inhibitor FDI-6 or
vehicle every other day for 7 days. Wound edge skin at day 3 and 7 was collected and
frequencies of macrophages (F4/80+Ly6G-) and neutrophils (F4/80-Ly6G+) within gated
myeloid cells, was determined by flow cytometry. Data represent three mice per group.
Data presented as mean £ SEM. Source data are provided as a Source Data file. (a) *P=
0.036, (b) *P=0.039 for day 3 group and *P=0.037 for day 7 group, (d) *P=0.03, as
calculated using two-tailed unpaired Student t test (a-d). e-f Representative zebra plots of
F4/80 and Ly6G expression on gated CD11b+ cells from wounded skin after topical
treatment with either vehicle or FOXMI1 inhibitor FDI-6 on day 7. Numbers in
representative plots indicate percent positive cells in each quadrant. Treatment of wounds
with FDI-6 resulted in decreased macrophages and neutrophils compared to vehicle

treated wounds.
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Supplementary Figure 14. Inhibition of FOXMI1 decreases frequency of myeloid,
CD11b+ cells, in db/db and db/+ wounds. a-d db/db (a,b) and db/+ (c,d) mice were
wounded and treated topically with either the FOXM1 inhibitor FDI-6 or vehicle
every other day for 7 days. Wound edge skin at day 3 and 7 were collected and
frequencies of myeloid, CD11b+ cells was determined by flow cytometry. Data
represent three mice per group. Data presented as mean + SEM. Source data are
provided as a Source Data file. (a) *P=0.033, (b)*P =0.019, (c) P=0.045, (d)
**P=0.006 as calculated using two-tailed Student t test (a-d). e-f Representative zebra
plots of CD11b expression on gated CD45+ single cells from wounded skin after
topical treatment with either vehicle or FOXMI inhibitor FDI-6 on day 3 and 7.
Numbers in representative plots indicate percent positive cells in each quadrant.
Treatment of wounds with FDI-6 resulted in decreased CD11b+ cells compared to
vehicle treated wounds.
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FOXM1 interacting factors involved in regulating wound healing that are suppressed in DFUs

FOXM1- wound healing-

Expression in acute

Expression in DFU

Evidence supporting promotion of healing

interactions wounds (Oral and
Skin)
IL6 Increased No change IL67-mice exhibit impaired healing in part due to delayed
macrophage infiltration and neutrophil trafficking-2
MMP9 Increased No change FOXM1 regulates MM9 thru JNK to stimulate cell migration®
SOD2 Increased Decreased SOD2 is present in mitochondria of immune cells, in

particular neutrophils, promoting wounding-triggered
intracellular killing of microorganisms via generation of
reactive oxygen species (ROS)*

Supplementary Table 1. FOXMI1 interacting proteins involved in stimulating wound healing
downregulated in DFUs compared to oral and skin acute wounds.
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