IMPROvER: The Integral Membrane Protein Stability Selector Supplementary Information

Steven P.D. Harborne^{1,2,*,†}, Jannik Strauss^{1,†}, Jessica C. Boakes^{1,†}, Danielle L. Wright¹, James G. Henderson¹, Jacques Boivineau³, Veli-Pekka Jaakola⁴, and Adrian Goldman^{1,5,*}

¹Astbury Centre for Structural and Molecular Biology, University of Leeds, UK
 ²Peak Proteins, BioHub, Alderley Park, Macclesfield, UK
 ³Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Virchow 16, Basel, Switzerland
 ⁴Confo Therapeutics, Technologiepark 94, 9052 Zwijnaarde, Belgium
 ⁵MIBS, Biological and Environmental Sciences, University of Helsinki, Finland

^{*}Corresponding authors: steven.harborne@peakproteins.com and a.goldman@leeds.ac.uk [†]these authors contributed equally

Figure S1. Analysis of stabilising versus destabilising trends in GPCR datasets. Analysis of stabilising versus destabilising trends in GPCR datasets when correlated with bioinformatic information. The frequency with which a factor was associated with stabilising or destabilising effects when changed to alanine (or leucine if natively an alanine) was calculated and normalised to the total number of observations of each factor. This provided a score for effect on stability for stabilisation (scale of 0 to 1) or destabilisation (scale of 1 to 0).

Figure S2. In-gel GFP-fluorescence analysis of ClPPase stability. A) Representative example of in-gel GFP-fluorescence from melting curve analysis of wild-type ClPPase. The white box denotes the cropped image used for the panel insert in Fig. 3D. B) Representative gels of single-temperature ClPPase stability assay. The band analysed is denoted by a black arrow. Outer edge colouring around each panel is according to the prediction module of IMPROVER from which the variant was selected (blue: *deep-sequence* based, green: *model-based*, red: *data-driven*).

Figure S3. Extended data for CIPPase variant stability and activity data. A) Single-temperature stability assay results for CIPPase variants. Averages were derived from three biological repeats as indicated by open circles associated with each bar. B) Ten-temperature melting curve stability analysis results for select CIPPase variants. Values are derived from single experiments, or up to three repeats for variants (as indicated by open circles associated with each bar). Wild-type was tested eight times to provide a robust measurement for comparison. C) PP_i hydrolysis activity assay results for top stabilising and one destabilising (L142P) CIPPase variant. Values derived from three technical repeats. Colouring in all panels is according to the prediction module of IMPROVER from which the variant was selected (blue: *deep-sequence* based, green: *model-based*, red: *data-driven*). Orange has been used for the double F20Y/G130A variant. Error bars in all panels representative of the SEM.

Figure S4. Melting curves of CIPPase. Protein that remained in solution after challenge in a ten-temperature melting curve was quantified using in-gel GFP fluorescence. Data for wild-type (black line) plotted with variants selected by the A) *deep-sequence* based (blue), B) *model-based* (green) or C) *data-driven* (red) modules of IMPROVER. D) The double variant of G130A+F20Y (orange) has been plotted relative to the single G130A (red) and F20Y (blue) variants as well at wild-type (black). Three repetitions were done for the six best variants identified after recording the first round of melting curves for the selected variants. Error bars are representative of the standard deviation where repetitions were carried out. Data were fitted using a four-parameter dose-response curve (variable slope) by non-linear least-squares.

Figure S5. Structural rationalisation of stabilising CIPPase variants. A close-up view of helices (H) 1, 3, 4 and 7 in the best comparative homology model of CIPPase, representing a 'hot-spot' for stabilising mutations in CIPPase (all other helices removed for clarity). Six of the stabilising variants were located in this region: A) G130S, B) G130A, C) F20Y, D) R290F, E) S113A and F) R109W. Stabilising variants are shown in colour and space-filling spheres according to the prediction module of IMPROVER from which they were selected (blue: *deep-sequence* based, green: *model-based*, red: *data-driven*), with the native residue for the position or important interacting residues shown in black (all others shown in grey). Potential salt-bridge interactions are displayed as red dashed lines. Oxygen atoms are coloured red and nitrogen blue.

Figure S6. In-cell GFP-fluorescence for hENT1 variants. Representative example fluorescent confocal microscopy of GFP-signal from *Sf9* insect cells 3 days post baculovirus transfection. Examples of cells expressing wilt-type hENT1 and the hENT1 variants A88L, K263A, T336A, Q246A, S412A, N30F, S321T, S152L and G408A. The GFP signal in K263A appears greater than in the other cells, which could be due to increased protein expression levels but more likely due to an automatically selected longer exposure by the instrument. Images acquired with an EVOS FL fluorescence confocal microscope. Images produced at 20x magnification for all except WT and G408A, which are at 40x magnification.

Figure S7. In-gel GFP-fluorescence analysis of hENT1 stability. A) Representative example of in-gel GFP-fluorescence from melting curve analysis of wild-type hENT1. The white box denotes the cropped image used for the panel insert in Fig. 4E. B) Representative gels of single-temperature hENT1 stability assay. The band analysed is denoted by a black arrow. Outer edge colouring around each panel is according to the prediction module of IMPROVER from which the variant was selected (blue: *deep-sequence* based, green: *model-based*, red: *data-driven*).

8/<mark>22</mark>

Figure S8. Extended data for hENT1 variant stability and ligand binding analysis. A) Single temperature stability assay results for hENT1 variants. Averages were derived from two or three biological repeats as indicated by open circles associated with each bar. B) Ten-temperature melting curve stability analysis results for selected hENT1 variants. Values are the average of five repeats for variants except for wild-type (as indicated by open circles associated with each bar). C) Binding of the radiolabelled hENT1 specific inhibitor NBMPR. Values are derived from the average of six readings from three biological repeats (two from each). Colouring in all panels is according to the prediction module of IMPROvER (blue: *deep-sequence* based, green: *model-based*, red: *data-driven*). Error bars in all panels representative of the SEM.

Figure S9. Melting curves of hENT1. Protein that remained in solution after challenge in a ten-temperature melting curve was quantified using in-gel GFP fluorescence. Data for wild-type (black line) plotted with variants selected by the A) *deep-sequence-based* (blue), B) *model-based* (green) or C) *data-driven* (red) modules of IMPROVER. Error bars are representative of the standard deviation from five repetitions. Data were fitted using a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting.

Figure S10. Structural rationalisation of stabilising hENT1 and hPTH₁R variants. A) Close-up view of transmembrane helices (TMH) 1, 2 and 5 to highlight the positions of the stabilising variants L27E and N30F in hENT1. B) Close-up view of TMH2 and TMH3 to highlight the positions of the stabilising variants F288A and F291T in hPTH₁R. C) Close-up view of TMH2 and TMH3 to highlight the positions of the stabilising variants F288A and F291T in hPTH₁R. C) Close-up view of TMH2 and TMH3 to highlight the positions of the stabilising variants F288A and F291T in hPTR₁. Stabilising variants are shown in colour according to the prediction module of IMPROvER from which they were selected (green: *model-based*, red: *data-driven*), with all other residues shown in grey. Oxygen atoms are coloured red, nitrogen blue and sulphur yellow.

Figure S11. In-gel GFP-fluorescence analysis and melting curves of hPTH₁R. A) Representative example of in-gel GFP-fluorescence from melting curve analysis of wild-type hPTH₁R. The white box denotes the cropped image used for the panel insert in Fig. 5E. Protein that remained in solution after challenge in a ten-temperature melting curve was quantified using in-gel GFP fluorescence. Data for wild-type (black line) plotted with variants selected by the B) *deep-sequence*-based (blue), C) *model-based* (green) or D) *data-driven* (red) modules of IMPROVER. Error bars are representative of the standard deviation from three repetitions. Data were fitted using a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting.

Amino acid	Score	Тороlоду	Score
Q	37	TM helix	9
G	36	Cytosolic loop	8
E	34	Cytosolic helix	5
н	34	Extracellular loop	4
Т	32	Extracellular helix	4
А	30		
К	30	AA conservation (%)	Score
S	26	20 to 30	17
Р	23	50 to 60	16
F	21	0 to 10	15
R	21	30 to 40	13
Ν	19	90 to 100	12
L	15	10 to 20	12
V	14	60 to 70	9
Μ	13	40 to 50	8
I	11	70 to 80	6
С	9	80 to 90	3
D	7		
W	5	Disorder confidence score (%)	Score
Y	3	20 to 30	17
		40 to 50	15
Lipid contact prediction	Score	10 to 20	15
Yes	3	30 to 40	11
No	2	0 to 10	11
		80 to 90	10
		70 to 80	9
Helix-helix contact prediction	Score	90 to 100	8
Yes	3	60 to 70	8
No	2	50 to 60	6

Table S1. Scoring matrix for data-driven approach of stabilising variant selection

Module	IMPROvER	Variant	Sequence	Remaining	Error	repeats (n)	$T_m (^{\circ}C)^{c}$	Error	repeats (n)	Comment
	Score		conservation (%)	GFP- signal (%) ^a	$(\pm\%)^b$	1		$(\pm^{\circ}C)^b$	1 ()	
n/a	n/a	wild-type	n/a	50.3	1.2	3	49.3	0.9	8	n/a
deep-sequence	1.00	C544Å	0	50.0	5.5	3	-	-	-	neutral
deep-sequence	1.00	S113A	2	53.0	1.5	3	53.6	2.8	3	stabilising
deep-sequence	1.00	S273V	1	59.7	3.0	3	48.8	-	1	neutral
deep-sequence	1.00	F334V	5	53.3	8.4	3	-	-	-	neutral
deep-sequence	0.99	V350F	12	50.3	3.5	3	-	-	-	neutral
deep-sequence	0.97	G130S	15	62.3	5.2	3	57.4	-	1	stabilising
deep-sequence	0.97	G326L	2	47.7	3.0	3	-	-	-	neutral
deep-sequence	0.97	\$371K	9	50.7	6.5	3	50.6	-	1	neutral
deep-sequence	0.97	A329P	3	53.0	3.0	3	-	-	_	neutral
deep-sequence	0.96	V83F	25	49.7	2.0	3	-	-	-	neutral
deep-sequence	0.96	V351F	18	48.3	1.3	3	-	-	-	neutral
deep-sequence	0.95	K331H	4	51.0	64	3	-	_	_	neutral
deep-sequence	0.95	F20Y	11	58.0	4.6	3	58.4	12	3	stabilising
deep-sequence	0.95	S303A	8	55.0	1.5	3	-	-	-	neutral
deep-sequence	0.94	M456I	12	51.0	2.5	3		_	_	neutral
model based	1.00	T363W	12	53.0	3.0	3				neutral
model based	0.00	0162V	12	187	3.0	3	-	-	-	neutral
model based	0.99	V81W	1	40.7 50.7	65	3	-	-	-	etabilicing
model based	0.99	P/63W	27	57.7	6.0	3	51.1	-	3	neutral due to
model-based	0.99	K403 W	21	51.1	0.0	3	51.1	1.5	3	longo onnon
model beend	0.00	12223	11	507	20	2				large error
model-based	0.99	1525 W	11	32.7	5.6	3	-	-	-	de etch ili eine
model-based	0.98	L142P	75	41.5	10.5	2	44	0.5	3	destabilising
model-based	0.98	LIJII	38 15	38.3	2.4	3	49.7	1.2	2	neutral
model-based	0.97	V 093 Y	15	43.0	1.0	3	51.4	-	1	stabilising
model-based	0.97	R109W	96	58.0	1.5	3	52.7	1./	3	stabilising
model-based	0.96	F801	11	53.7	3.8	3	-	-	-	neutral
model-based	0.95	F61W	8	54.3	6.2	3	-	-	-	neutral
model-based	0.95	R290F	34	58.7	0.9	3	52.0	0.6	3	stabilising
model-based	0.95	D358W	6	45.3	4.8	3	-	-	-	neutral
model-based	0.94	D468F	99	47.0	1.7	3	-	-	-	stabilising
model-based	0.94	I501L	18	45.0	3.1	3	50.6	-	1	neutral
data-driven	0.99	A93L	35	51.5	3.5	2	-	-	-	neutral
data-driven	0.98	G31A	82	57.7	2.3	3	51.0	-	1	stabilising
data-driven	0.96	A14L	54	61.0	1.0	3	48.4	-	1	neutral
data-driven	0.95	A114L	88	63.5	0.5	2	50.2	-	1	neutral
data-driven	0.91	G179A	60	58.0	1.0	3	52.9	1.5	3	stabilising
data-driven	0.90	G620A	96	49.0	1.5	3	-	-	-	neutral
data-driven	0.88	G130A	15	67.0	1.0	3	62.3	1.1	3	stabilising
data-driven	0.85	A319L	8	56.3	4.6	3	51.5	-	1	stabilising
data-driven	0.85	A492L	52	56.0	3.8	3	47.7	-	1	destabilising
data-driven	0.84	A616L	33	48.3	3.3	3	-	-	-	neutral
data-driven	0.79	G527A	51	49.5	9.0	3	-	-	-	neutral
data-driven	0.75	G230A	99	54.0	2.3	3	-	-	-	neutral
data-driven	0.71	E293A	25	47.7	0.3	3	-	-	-	neutral
data-driven	0.70	A690L	54	52.3	1.5	3	-	-	-	neutral
data-driven	0.68	G480A	94	51.0	1.2	3	-	-	-	neutral

Table S2. Table of residues selected by IMPROvER for CIPPase stabilisation

a Calculated based on remaining in-gel GFP-signal after single-point temperature challenge thermostability assay. b For n > 1: standard error of the mean (SEM) shown.

^c Average T_m was calculated from individual T_m estimated for each individual repeat by fitting with a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting in the python package scipy.stats

ClPPase Residue	PPase Study	Mutation Studied	B-W ‡	Location	Role /Effect	Ref*
\$173	TmPPase,	M174,	5.33	exit channel	facilitates ion release	1, 3, 3, 9,
	AVP1,	E229Q,				13
	AVP1,	E229D,				
	ScPPase,	K190R,				
1.176	VrPPase	E225	5.26	and the second	for ilitates is a select	1700
L1/6	ImpPase,	S1//, E102A	5.36	exit channel	facilitates ion release	1, 7, 9, 9,
	ScPPase	E193A, F193D				15
	ScPPase	T228				
	VrPPase	1220				
M180	TmPPase	L181	5.4	hydrophobic gate	prevent back-flow of ions?	1
R190	TmPPase,	R191,	5.42	coupling funnel	coupling of pumping and hydrolysis	1, 8, 8, 9,
	RbPPase,	R176A,				9, 10, 10,
	RbPPase,	R176K,				13, 13
	ScPPase,	R207A,				
	ScPPase,	R207K,				
	AVP1,	R246A,				
	AVPI,	R246K,				
	VrPPase,	K242, K242				
K 108	TmPDace	K 100	5 58	coupling funnel	coupling of pumping and hydrolysis	1 11 13
K 190	VrPPase	K199, K250A	5.56	coupling funner	coupling of pumping and nyurorysis	1, 11, 15
	VrPPase	K250				
D231	TmPPase.	D232.	-	-	loose coupling	1, 4, 4, 8,
	VrPPase.	D283A.				8, 9, 13,
	VrPPase,	D283E,				14, 14
	RbPPase,	D217A,				
	RbPPase,	D217E,				
	ScPPase,	D248G,				
	VrPPase,	D283,				
	RbPPase,	D217A,				
5005	RbPPase	D217H	6.10			
D235	TmPPase,	D236,	6.43	active site	coordination nucleophile	1, 4, 4, 9,
	VrPPase,	D287A,				15
	ScPPase	D267E, D252G				
	VrPPase	D2320, D287				
D242	TmPPase.	D243.	6.5	ion-gate	ion-selectivity	1, 9, 11,
	ScPPase,	D259G,		6		13, 13, 13,
	VrPPase,	D294A,				13, 13
	VrPPase,	D294N,				
	VrPPase,	D294E,				
	VrPPase,	D294T,				
	VrPPase,	D294A,				
5245	VrPPase	D294			1 1 1 1	1 0 0 0
E245	ImpPase,	E246,	-	-	enhanced activity	1, 8, 8, 9,
	RDPPase,	E231Q, E231D				9, 9, 10, 7,
	ScPPase	E251D, E262A				10, 10, 10
	ScPPase	E262D				
	ScPPase,	E262O.				
	VrPPase.	G297A.				
	ChlPPase,	E242D,				
	BvPPase,	E246A,				
	BvPPase,	E246Q,				
	BvPPase	E246D				
S253	TmPPase,	S254,	6.61	exit channel	facilitates ion release	1, 10, 13,
	VrPPase,	A305S,				13
	VrPPase,	A305,				
1260	vrPPase TmDDoor	A305 V261	6.69	avit channal	facilitates ion release	1 10 12
A200	VrDDase	1201,	0.08	exit channel	facilitates fon felease	1, 10, 15
	VrPPase	131211, 1312				
D484	TmPPase	D458	-	coupling funnel	coupling of pumping and hydrolysis	1
D445	TmPPase.	D465,	11.57	active site	substrate/product binding	1, 11, 13
	VrPPase,	D507A,		-		
	VrPPase	D507				
D472	TmPPase,	N492,	12.43	active site	substrate/product binding	1, 11, 13
	VrPPase,	N534A,				
	VrPPase	D534				
K479	TmPPase,	K499,	-	-	loose coupling/ low affinity	1, 8, 8, 8,
	RbPPase,	K469A,				14, 16, 16
	RbPPase,	K469D,				
	RbPPase,	K409R,				
	RDPPase,	K409K,				
	DVPPase,	K409K, K480A				
	DVITASC	NT07A			~ ·	-

Table S3. Table of residues excluded from selection in CIPPase stabilisation

CIDDaga	DDaga Study	Mutation	Table S3	- Continued from previous page	Dala /Effect	D of \$
CIPPase	PPase Study	Mutation	B-M ‡	Location	Role /Effect	Ref*
A 482	TmPPase		12.53	coupling funnel	coupling of pumping and hydrolysis	1 12 12
A402	ScDDase	A502, A5148	12.33	coupling funner	coupling of pumping and nyurorysis	1, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1
	ScPPase	A5145, A514I				12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
	ScPPase	A514I				12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
	ScPPase	A514M				12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
	ScPPase.	A514P.				13
	ScPPase.	A514Y.				
	ScPPase,	A514F,				
	ScPPase,	A514W,				
	ScPPase,	A514D,				
	ScPPase,	A514E,				
	ScPPase,	A514N,				
	ScPPase,	A514H,				
	ScPPase,	A514K,				
	ScPPase,	A514R,				
	VrPPase	A544				
I483	TmPPase,	1503,	12.54	coupling funnel	coupling of pumping and hydrolysis	1, 11, 13
	VrPPase,	I545A, I545				
	VrPPase					
A486	TmPPase,	A506,	12.57	coupling funnel	coupling of pumping and hydrolysis	1, 13
1 407	VrPPase	A548	10.50	1° C 1	1. 6 . 11 1 1 .	1 12
A48/	ImPPase,	1507, A549	12.58	coupling funnel	coupling of pumping and hydrolysis	1, 13
1.402	VIPPase TwpDase	1.512	12 (4	harder which is a set.		1 11 11
L495	Imppase,	L313,	12.04	nydrophobic gate	prevent back-now of ions?	1, 11, 11, 11, 12
	VIPPase,	L555D				15
	VrDDase	L555D,				
\$406	TmDDace	\$516	12.67	avit channel	facilitates ion release	1
S246	TmPPase	\$247	6 54	nearby ion-gate	sodium binding impaired	1699
5240	ScPPase	S263C	0.54	hearby lon-gate	sourum omanig impared	1, 0, 0, 0, 0, 0, 10, 10, 13, 7
	ScPPase	S263A				10, 15, 7
	ScPPase	\$263E				
	VrPPase.	S298A.				
	VrPPase.	S298.				
	ChlPPase	S243A				
K638	TmPPase,	K663,	15.64	active site	substrate/product binding	1, 13
	VrPPase	K694			1 0	, -
K639	TmPPase,	K664,	15.65	active site	substrate/product binding	1, 11, 13
	VrPPase,	K695A,				
	VrPPase	K695				
D661	TmPPase,	D688,	16.31	active site	substrate/product binding	1, 4, 4, 13
	VrPPase,	D723A,				
	VrPPase,	D723E,				
	VrPPase	D723				
D665	TmPPase,	D692,	16.35	active site	substrate/product binding	1, 4, 4, 13
	VrPPase,	D727A,				
	VrPPase,	D727E,				
	VrPPase	D727				
K668	TmPPase,	K695,	16.38	active site	substrate/product binding	1, 13
B (()	VrPPase	K730				
D669	TmPPase,	D696,	-	-	no activity	1, 4, 4, 13,
	VrPPase,	D731A,				16, 16
	VrPPase,	D731E,				
	VrPPase,	D/31,				
	BvPPase,	D704E,				
N676	BVPPase TmDDage	D704A	16.46	noorthy ion asta	andium hinding impaired	1 11 12
N6/6	ImPPase,	D703,	16.46	nearby ion-gate	sodium binding impaired	1, 11, 13,
	VIPPase,	N/36A,				7
	Chippese,	N/38, N677D				
V 680	TmPDaga	N077D K707		ion gete	no activity	1 12 12
K000	VrDDase	K707, K742A	-	Ion-gate	no activity	1, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1
	VrDDase	K742A, K742D				15, 15, 7
	VrPPase	K742R,				
	VrPPase	K742				
	ChlPPase	K681N				
M684	TmPPase	V711	16 54	hydrophobic gate	prevent back-flow of jons?	1 11 11
	VrPPase.	V746A.	-0.0 .		r	13
	VrPPase.	V746D.				-
	VrPPase	V746				
S691	TmPPase.	\$718, P753	16.61	exit channel	facilitates ion release	1, 13
	VrPPase					, -
F76	AVP1	E119Q	-	membrane cytosol interface	loose coupling	3
				TMH2		
G249	AVP1,	E305Q,	6.57	coupling funnel	coupling of pumping and hydrolysis	3, 3, 10,
	AVP1,	E305D,		-		13, 13
	VrPPase,	E301A,				
	VrPPase,	E301, E301				
	VrPPase					

Continued on next page

ClPPase	PPase Study	Mutation	B-W ‡	Location	Role /Effect	Ref*
E353	AVP1.	E4270.	-	membrane cytosol interface	loose coupling/ low affinity	3, 3, 8, 8,
	AVP1,	E427D,		TMH9	1 8 9	- / - / - / - /
	RbPPase,	E351D,				
	RbPPase,	E351A,				
	RbPPase	E351Q				0
D/29	AVD1	D504N		membrane external interface	no ostivity	8
D438	AVP1	D504N,	-	TMH11	no activity	5, 5,
	RhPPase	D304E, D428N		TWITT		
	Rorruse	D 12011				8
T513	AVP1	D573N	-	loop 13-14	enhanced activity	3
N607	AVP1, VrP-	E667Q,	-	Transmembrane domain M15	loose coupling	3, 11
	Pase	E663A				
F685	AVP1	E751Q	-	C-terminal end	loose coupling	3
D201	VrPPase,	D253A,	-	active site	substrate/product binding	4, 4, 9, 13
	VrPPase,	D253E,				
	VrPPase,	D2180, D253				
V207	VrPPase	V259A	-	-	loose coupling/ low affinity	4
K209	VrPPase.	K261A.	-	active site	stabilising salt bridges?	4, 4, 13
	VrPPase,	K261R,			5	, , -
	VrPPase	K261				
E211	VrPPase,	E263G,	-	active site	stabilising salt bridges?	4, 4, 4, 13,
	VrPPase,	E263A,				13
	VrPPase,	E263D,				
	VrPPase,	E268, E263				
D227	VrPPase	D270 A		antima aita	anhatesta (nea duat hin din a	4 4 0 12
D227	VrPPase,	D279A, D270E	-	active site	substrate/product binding	4, 4, 9, 15
	ScPPase	D244G				
	VrPPase	D279				
I252	VrPPase	C304R	-	-	loose coupling/ low affinity	4
A475	mPPase		12.46	active site	involved in K+ dependency	5
G478	mPPase		12.49	active site	involved in K+ dependency	5
V236	ScPPase	C253A	-	-	no activity	6
T369	ScPPase	S402C	-	-	no activity	6
E566	ScPPase	S609C	-	-	no activity	6
C578 8651	ScPPase	C621A \$604C	-	-	no activity	6
T87	mPPase	3094C	- 3.45	- TMH3	dual numping signature	0 7
F91	mPPase		3 49	TMH3	dual pumping signature	7
D143	mPPase		4.6	TMH4	dual pumping signature	7
R105	RbPPase	R101K	-	TMH3	enhanced activity	8
G192	RbPPase	G178A	-	TMH5	loose coupling/ low affinity	8
L387	RbPPase,	E385Q,	-	loop 9-10	pump-less	8, 10, 10
	AVP1,	K461R,				
5505	AVP1	K461A		Th (1114	1 1: /1 65 :/	0
E385	RbPPase,	E584A,	-	1MH14	loose coupling/ low aminity	8,
	KOPPase	E364D				8
\$630	RbPPase	G637A	_	TMH15	loose coupling/ low affinity	8
T172	ScPPase	P189L	-	ТМН5	pump-less	9
A174	ScPPase	V191A	-	-	loose coupling	9
T177	ScPPase	G194Q	-	-	loose coupling	9
F178	ScPPase	F195L	-	-	pump-less	9
G181	ScPPase	G198A	-	-	no activity	9
S183	ScPPase	A200T	-	-	loose coupling	9
M185	ScPPase	12021	-	-	loose coupling	9
F188 G102	ScPPase	F2055	-	-	pump loss	9
G195	ScPPase	G211A	-	-	pump-less	9
D205	ScPPase.	D222G.	-	active site	substrate/product binding	9.13
	VrPPase	D257			B	-,
L206	ScPPase	L223P	-	-	no activity	9
A212	ScPPase	Q229R	-	-	loose coupling	9
E216	ScPPase	E233G	-	-	loose coupling	9
I225	ScPPase	I242T	-	-	loose coupling	9
V229	ScPPase,	V246I,	-	-	loose coupling	9,
	ScPPase	V246A				0
M220	CaDDaga	MOSET			lassa sourling	9
W1239 V244	ScPPase	1V12301 F2611	-	- TMH6	loose coupling	9 0 10
1244	VrPPase	F296A	-	1 14110	ioose couping	9, 10
G262	ScPPase.	A278V.	-	ТМН6	low activity	9.10
	VrPPase	S314A		-	· · · · · · · · · · · · · · · · · · ·	.,
F265	ScPPase,	D281G,	-	Vacuolar lumen loop	low activity	9, 10, 11
	VrPPase,	L317A,		-	-	
	VrPPase	L317A				
P271	ScPPase	P287A	-	-	loose coupling	9
						Continued on next page

ClPPase	PPase Study	Mutation	B-W ‡	Location	Role /Effect	Ref*
Residue	Ť	Studied				
I277	ScPPase	I293V	-	-	loose coupling	9
G278	ScPPase	G294R	-	-	no activity	9
T291	ScPPase	P307A	-	-	loose coupling	9
N299	ScPPase	S313E	-	-	loose coupling	9
L306	ScPPase	R320C	-	-	loose coupling	9
S311	ScPPase	S325R	-	-	no activity	9
L314	ScPPase	I328T	-	-	loose coupling	9
T308	ScPPase	F322L	-	-	loose coupling	9
A318	ScPPase	L332P	-	-	pump-less	9
L327	ScPPase	V351A	-	-	pump-less	9
G328	ScPPase	A357G	-	-	loose coupling	9
Y335	ScPPase,	L368P,	-	-	no activity	9,
	ScPPase	L368A				
						9
G341	ScPPase	G374A	-	-	no activity	9
A344	ScPPase	L377P	-	-	pump-less	9
I348	ScPPase,	I381P,	-	-	loose coupling	9,
	ScPPase	I381A				
						9
G349	ScPPase	Q382R	-	-	loose coupling	9
L243	VrPPase	L295A	-	TMH6	loose coupling	10
Y247	VrPPase	Y299A	-	TMH6	no expression	10
V248	VrPPase,	A300S,	-	TMH6	enhanced activity	10, 15
	BvPPase	C249S				
S250	VrPPase	S302A	-	TMH6	enhanced activity	10
I251	VrPPase	S303A	-	TMH6	low activity	10
T254	VrPPase	A306S	-	TMH6	no expression	10
A255	VrPPase	L307A	-	TMH6	no expression	10
A256	VrPPase	V308A	-	TMH6	loose coupling	10
L257	VrPPase	V309A	-	TMH6	low activity	10
A258	VrPPase	A310S	-	TMH6	loose coupling	10
A261	VrPPase	\$313A	-	TMH6	low activity	10
L263	VrPPase	F315A	-	TMH6	low activity	10
G264	VrPPase.	G316A.	-	Vacuolar lumen loop	loose coupling	10, 11
	VrPPase	G316A		······································	1 8	- /
K266	VrPPase	N318A	-	TMH6	no expression	10
T157	VrPPase	D218A	-	Vacuolar lumen loop	loose coupling	11
T197	VrPPase	T249A	-	Substrate binding site	no activity	11
D217	VrPPase.	D269A.	-	active site	substrate/product binding	11, 13
	VrPPase	D269			B	,
N228	VrPPase	N280A	-	Substrate binding site	low activity	11
F698	VrPPase	F698A	_	Transmembrane domain M15	loose coupling	11
1687	VrPPase	L749A	-	Coupling funnel	no activity	11 11
1007	VrPPase	L 749D		Coupling runner	no uouvity	,
V355	ScPPase	E388V	_	_	no expression	12 12 12
1555	ScPPase	F388G			no expression	12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
	ScPPase	F388D				12, 12, 12, 12, 12, 12
	ScPPase	F388D				12
	ScPPase	F388E				
	Soppose	F300E,				
	Ser rase,	F300K,				
D635	VrDDooo	D601		active site	substrate/product binding	13
D055 P553	VrDDooo	D091 D600 D570	-	TMH13	links motion of inner to outer ring	13 12
K333	virrase,	KUU9, KJ/8	15.02	1101113	miks motion of inner to outer ring	15, 15
C 105	VaDD	8547		compliant fragment	accordination of water	12
3483 M190	VIPPase	3347	-	coupling runnel	coordination of water	15
M189	VrPPase V-DD	L232	5.4	nydrophobic gate	prevent back-now of ions?	13
E500	VrPPase D1 DD	K362	12./1	exit channel	facilitates ion release	15
P3/4	KDPPase	H3/2A	-	1MH10	loose coupling/ low affinity	14
E645	RbPPase D1 DD	H652A	-	-	loose coupling	14
H654	RbPPase	H661A	-	-	loose coupling/ low affinity	14
5695	RbPPase	H/02V	-	-	loose coupling/ low affinity	14

† PPase abbreviations: AVP1; Arabidopsis thaliana (isoform 1), BvPPase; Bacteroides vulgatus, ChlPPase; Chlorobium limicola, PaPPase; Pyrobaculum aerophilum, RbPPase; Rhodospirillum rubrum, ScPPase; Streptomyces coelicolor, TmPPase; Thermotoga maritima, VrPPase; Vigna radiata
‡ B-W; Ballesteros–Weinstein numbering scheme
* References: 1; Kellosalo et. al. 2012, 2; Harborne et. al. 2018, 3; Zhen et. al. 1997, 4; Nakanishi et. al. 2001, 5; Belogurov Lahti 2002, 6; Mimura et. al. 2004, 7; Luoto et. al. 2013, 8; Schultz Baltscheffsky 2003, 9; Hirono, Nakanishi Maeshima 2007, 10; Pan et. al. 2011, 11; Asaoka, Segami Maeshima 2014, 12; Hirono Maeshima 2009, 13; Lin et. al. 2012, 14; Schultz Baltscheffsky 2004, 15; undergrad thesis Dovile Dormantaite 2016, 16; undergrad thesis Hannah Shephard 2016

Module	IMPROvER Score	Variant	Sequence conservation (%)	Remaining GFP- signal (%) ^a	Error (±%) ^b	repeats (n)	$T_m (^{\circ}\mathrm{C})^{\mathrm{c}}$	Error $(\pm^{\circ}C)^{b}$	repeats (n)	Comment
n/a	n/a	wild-type	n/a	53.0	10.5	6	44.6	0.6	12	n/a
deep-sequence	1.00	I380V	16	67.4	5.0	2	42.0	0.1	2	destabilisng
deep-sequence	0.96	M306T	2	76.6	8.8	2	44.9	0.1	2	neutral
deep-sequence	0.95	S363L	4	50.8	11.2	2	-	-	-	neutral
deep-sequence	0.92	I145V	18	52.5	9.2	2	-	-	-	neutral
deep-sequence	0.91	I282V	11	15.2	0.8	2	-	-	-	destabilisng
deep-sequence	0.91	G225V	2	60.9	2.5	2	43.6	0.7	2	neutral
deep-sequence	0.87	S321T	14	95.7	32.4	2	42.1	0.1	2	destabilisng
deep-sequence	0.87	G225L	2	40.1	19.2	2	-	-	-	neutral
deep-sequence	0.86	V389F	20	43.2	10.4	2	-	-	-	neutral
deep-sequence	0.86	S290K	5	18.4	14.2	2	-	-	-	destabilisng
model-based	0.99	R233F	38	39.6	-	1	-	-	-	destabilisng
model-based	0.99	R233L	38	57.4	3.2	2	40.8	0.1	2	destabilisng
model-based	0.99	S152L	20	115.7	52.8	2	42.7	1.3	5	neutral
model-based	0.98	E247M	19	113.9	9.0	2	45.8	0.6	2	stabilising
model-based	0.98	N30F	83	103.7	-	1	46.8	0.4	5	stabilising
model-based	0.97	T53D	2	50.0	6.8	2	-	-	-	neutral
model-based	0.96	L27E	56	89.2	31.5	2	45.5	0.7	5	stabilising
data-driven	1.00	T126A	43	45.1	20.4	2	-	-	-	neutral
data-driven	0.99	A401L	12	111.0	3.4	2	46.3	0.7	2	stabilising
data-driven	0.99	G305A	10	18.7	-	1	-	-	-	destabilisng
data-driven	0.98	G408A	94	99.2	60.0	1	-	-	-	stabilising
data-driven	0.98	A155L	38	41.4	2.6	2	-	-	-	destabilisng
data-driven	0.98	T336A	14	101.0	12.2	2	43.9	0.7	5	neutral
data-driven	0.98	A183L	49	49.6	12.3	2	-	-	-	neutral
data-driven	0.96	Q180A	56	53.0	8.6	2	-	-	-	neutral
data-driven	0.93	Q246A	4	58.2	8.2	2	44.8	0.7	5	neutral
data-driven	0.90	F153A	20	83.9	8.9	2	37.1	1.6	2	destabilisng
data-driven	0.90	F185A	6	51.3	5.0	2	-	-	-	neutral
data-driven	0.90	G207A	21	97.5	9.6	2	41.3	0.1	2	neutral
data-driven	0.87	E265A	5	52.8	11.0	2	-	-	-	neutral
data-driven	0.86	A88L	18	68.1	11.4	2	45.2	0.5	5	neutral
data-driven	0.81	K263A	2	61.8	6.5	2	47.2	1.1	5	stabilising
data-driven	0.80	K420A	33	39.4	8.1	2	-	-	-	destabilisng
data-driven	0.80	K356A	18	51.6	8.3	2	-	-	-	neutral
data-driven	0.80	K287A	45	33.6	0.8	2	-	-	-	destabilisng
data-driven	0.78	S406A	53	58.8	2.8	2	-	-	-	neutral
data-driven	0.70	T211A	46	29.9	4.0	2	-	-	-	destabilisng
data-driven	0.69	V148A	29	37.2	5.2	2	-	-	-	destabilisng
data-driven	0.67	F371A	71	49.9	10.4	2	-	-	-	neutral
data-driven	0.67	F403A	45	49.5	6.9	2	-	-	-	neutral
data-driven	0.63	A214L	12	38.0	25.0	2	-	-	-	destabilising

Table S4. Table of residues selected by IMPROVER for hENT1 stabilisation

^a Calculated based on remaining in-gel GFP-signal after single-point temperature challenge thermostability assay.

^b For n > 1: standard error of the mean (SEM) shown.

^c Average T_m was calculated from individual T_m estimated for each individual repeat by fitting with a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting in the python package *scipy.stats*

ENT Studied	Mutation Studied	Role /Effect	Ref*
hENT1	W29G, W29C, W29A, W29Y,	Altered permeant selectivity and reduced inhibitor sensitivity	7
hENT1	W29V, W29T M33I,	Altered permeant selectivity and reduced inhibitor sensitivity	8, 12
hENT2	M33A I33M, I33C	Altered permeant selectivity and increased inhibitor sensitivity	
hENT1	133A, 1338 N480	Altered permeant selectivity and reduced inhibitor sensitivity Reduced inhibitor sensitivity	13
hENT1	M89C, M89T, M89V	Increased substrate transport and inhibitor sensitivity	10
	M89L, M89O	Reduced minibility sensitivity	
hENT1	L92Q, L92P	Selective reduction in substrate transport and inhibitor sensitivity	6
hENT1	G154S	Reduced inhibitor sensitivity	11
LdNT1.1	S158C/	Reduced substrate transport	14
bENT1	L465C \$160C	Increased substrate transport and inhibitor consitivity	10
ILLIVII	S160C, S160N	increased substrate transport and initiation sensitivity	10
LdNT1.1	T160A	Reduced substrate transport	14
LdNT1.1	Y161A	Reduced substrate transport	14
LdNT1.1	G162A, G162C/ S173C	Reduced substrate transport	14
LdNT1.1	M163A	Increased substrate transport	14
LdNT1.1	F164A	Increased substrate transport	14
LdNT1.1	F167A	Reduced substrate transport	14
LdNT1.1	G162C/ S173C	Reduced substrate transport	14
LdNT1.1	T174A	Reduced substrate transport	14
Lanti.i Lanti 1	M176A	Reduced substrate transport	14
Luittii	M176C/ M442C		
hENT1	G179L, G179V,	Reduced substrate transport and inhibitor sensitivity	1, 3
hENT1	G184L, G184V,	Reduced substrate transport and inhibitor sensitivity	3
bFNT1	G184C F209A	Reduced substrate transport	1
hENT1	P308A	Reduced substrate transport	1
hENT1	F334C, F334Y, F334I, F334V, F334V,	Altered permeant selectivity and inhibitor sensitivity	5
hENTI	N338S, N338C, N338M, N338D, N338D, N338D, N338Q,	Altered permeant selectivity and inhibitor sensitivity	5
LdNT1.1	N338A M176C/ M442C	Reduced substrate transport	14
LdNT1.1	L444A	Reduced substrate transport	14
LdNT1.1	V445A	Reduced substrate transport	14
LdNT1.1	L446A	Increased substrate transport	14
Luin II.I	G447C/ G467C	Reduced substrate transport	14
LdNT1.1	S158C/ L465C	Reduced substrate transport	14
LdNT1.1	M466A	Reduced substrate transport	14
LdNT1.1	G467A, G447C/ 467C	Reduced substrate transport	14
LdNT1.1	I468A	Reduced substrate transport	14
LdNT1.1	S469A	Reduced substrate transport	14
LdNT1.1	1470A	Reduced substrate transport	14
Lan II.I hENT1	L4/1A L442T, 1.442I	Altered permeant selectivity and inhibitor sensitivity	14 1, 7, 8

Table S5. Table of residues excluded from selection in hENT1 stabilisation

 ⁺ ENT species abbreviations: Leishmania donovani ENT (LdNT1.1); human ENT (hENT).

 ^{*} References: 1; Huang, W et al. 2017, 2; Osato, D.et al. 2003, 3; SenGupta, D. et al 2002, 4; Sundaram, M. et al 2001, 5; Visser F. et al 2007, 6; Endres, C. et al. 2004, 7;

 Paproski, R. et al 2008, 8; Visser F. et al 2005, 9; Aseervatham, V. et al 2015, 10; Endres, C. et al 2004, 11; Yao, S. et al. 2001, 12; Visser, F. et al. 2005, 13; Vickers, M. et al 1991, 14; Valdes, R. et al 2014

Module	IMPROvER Score	Variant	Sequence conservation (%)	Remaining GFP- signal (%) ^a	Error (±%) ^b	repeats (n)	$T_m (^{\circ}\mathrm{C})^{\mathrm{c}}$	Error $(\pm^{\circ}C)^{b}$	repeats (n)	Comment
n/a	n/a	wild-type	n/a	54.0	2.2	3	38.7	0.8	3	n/a
deep-sequence	1.00	T427M	2	54.0	1.2	3	-		-	neutral
deep-sequence	1.00	A275K	4	47.5	12.2	3	-		-	neutral
deep-sequence	0.99	G188Y	1	64.6	1.0	3	41.2	0.7	3	stabilising
deep-sequence	0.99	M189L	3	62.3	1.4	3	39.1	0.9	3	neutral
deep-sequence	0.99	L228V	13	41.7	1.9	3	-		-	destabilise
deep-sequence	0.98	S356A	7	55.4	5.7	3	-		-	neutral
deep-sequence	0.98	G188K	1	64.0	2.1	3	40.3	1.2	3	stabilising
deep-sequence	0.98	A274D	1	64.6	6.3	3	39.1	0.1	3	neutral
deep-sequence	0.97	T427L	2	51.3	5.4	3	-		-	neutral
model-based	1.00	S198M	89	67.0	0.8	3	42.1	0.8	3	stabilising
model-based	0.99	F291T	38	65.8	2.2	3	40.9	0.9	3	stabilising
model-based	0.98	D251R	13	67.2	1.5	3	41.7	1.5	3	stabilising
model-based	0.98	E259P	3	51.4	4.0	3	-		-	neutral
model-based	0.97	E260R	1	62.1	1.6	3	39.7	1.5	3	neutral
data-driven	1.00	T203A	14	56.2	1.6	3	-		-	neutral
data-driven	0.99	A333L	21	66.5	0.5	3	-		-	inconclusive
data-driven	0.99	Q401A	11	68.1	2.7	3	40.7	0.2	3	stabilising
data-driven	0.98	F288A	35	72.0	3.5	3	41.5	0.7	3	stabilising
data-driven	0.98	E391A	12	63.6	6.0	3	39.4	0.2	3	neutral
data-driven	0.97	G323A	13	74.6	1.8	3	41.5	0.6	2	stabilising

Table S6. Table of residues selected by IMPROVER for hPTH₁R stabilisation

 a Calculated based on remaining in-gel GFP-signal after single-point temperature challenge thermostability assay. b For n > 1: standard error of the mean (SEM) shown.

^c Average T_m was calculated from individual T_m estimated for each individual repeat by fitting with a four-parameter dose-response curve (variable slope) by non-linear least-squares fitting in the python package scipy.stats

hPTH ₁ R Residue	B-W ‡	Location	Role/Effect	Ref*
Y191	1.43	TMH1	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
Y195	1.47	TMH1	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
H223	2.50	TMH2	constitutively active receptor	2
M231	2.58	TMH2	interactions with residue 19 of PTH	3
L232	2.59	TMH2	interactions with residue 19 of PTH	3
R233	2.60	TMH2	interactions with residue 19 of PTH - affect peptide ligand binding and/or potency	1, 3, 4
			in multiple class B GPCRs - polar Network conserved amongst GPCRs	
A234	2.61	TMH2	interactions with residue 19 of PTH	3
V235	2.62	TMH2	interactions with residue 19 of PTH	3
S236	2.63	TMH2	interactions with residue 19 of PTH	3
I237	2.64	TMH2	interactions with residue 19 of PTH	3
F238	2.65	TMH2	interactions with residue 19 of PTH	3
V239	2.66	TMH2	interactions with residue 19 of PTH	3
K240	2.67	TMH2	interactions with residue 19 of PTH - affect peptide ligand binding and/or potency	1, 3
			in multiple class B GPCRs	
D241	2.68	TMH2	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
L244	2.71	TMH2	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
Y245	2.72	TMH2	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
L289	3.37	TMH3	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
N295	3.43	TMH3	polar Network conserved amongst GPCRs	4
K359	5.35	TMH5	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
K360	5.36	TMH5	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
T410	6.42	TMH6	constitutively active receptor	2
M414	6.46	TMH6	may be involved in binding.	5
P415	6.47	TMH6	Cross-linking	6
H420	6.52	TMH6	polar Network conserved amongst GPCRs	4
Y421	6.53	TMH6	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
F424	6.56	TMH6	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
M425	6.57	TMH6	may be involved in binding.	5
W437	7.35	TMH7	ligand discrimination	7
Q440	7.38	TMH7	ligand discrimination	7
M441	7.39	TMH7	Cross-linking	6
M445	7.43	TMH7	affects peptide ligand binding and/or potency in multiple class B GPCRs	1
Q451	7.49	TMH7	polar Network conserved amongst GPCRs	4

Table S7. Table of residues excluded from selection in $hPTH_1R$ stabilisation

 # B-W; Ballesteros–Weinstein numbering scheme

 References: 1; Hollenstein et al. (2013), 2; Schipani et al. (1997), 3; Gensure et al. (2003), 4; Liang et al. (2018), 5; Bisello et al. (1998), 6; Gensure et al.

 (2001), 7; Clark et al. (1998)