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1 R Code

Our estimation approach can be easily applied using the coxph function of the
R package survival. Here we illustrate the use of coxph with missing event
type according to our methodology. First, consider a dataset named data

with competing risks, which includes failure time x, event type c, a covariate
of interest z, and an auxilliary covariate a. The first step of the analysis is to
fit a logistic model for the probability of the cause of interest. First define a
event type, i.e.
cause <- 1.
Next, one needs to fit the logistic model πj(Wi,γ0) in the complete cases and
then calculate the “weight”

Ri∆ij + (1−Ri)πj(Wi, γ̂n).

This can be done using the following lines of code:
data[data$r==0,"c"]<- -1

cc <- data[data$r==1 & data$c>0,]

cc$y <- 1*(cc$c==cause)
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mod1 <- glm(y ∼ x + z + a, family = "binomial", data = cc)

data$pi <- predict(mod1, data, type = "response")

data$weight <- data$r*(data$c==cause)+(1-data$r)*data$pi

data$d <- (data$weight>0)

data$weight <- data$weight + (data$weight == 0)

The next stage of the analysis is to fit the Cox proportional hazards model us-
ing data$weight as weight in the coxph function. However, since case weights
in coxph are also incuded in the risk sets, we need a data manipulation step
in order to “remove” these weights from the risk sets for the observations with
a missing event type. This data manipulation step proceeds as follows:
dt0 <- data[data$r==0,]

dt0$weight <- 1 - dt0$weight

dt0$d <- 0

data1 <- rbind(data,dt0)

Now estimation of the regression coefficients using the proposed maximum
pseudo partial likelihood approach is performed by using coxph in the aug-
mented dataset data1, with the weights data1$weight:
fit <- coxph(Surv(x, d) ∼ z, weight = weight, data = data1)

b1 <- coef(fit)

Note that the standard error estimates provided by coxph are not valid
and correct estimation of the standard errors can be performed using the
nonparametric bootstrap. We plan to develop an R package that provides
standard errors according to our closed-form estimators.

Estimation of the baseline cumulative cause-specific hazard functions can
be performed using the basehaz function as:
H1 <- basehaz(fit, centered = FALSE)

Finally, the cumulative incidence function given the covariate pattern z0
can be easily estimated using the regression coefficient b1 and baseline cumula-
tive cause-specific hazard estimates for all cases of failure using the estimator:

F̂n,1(t; z0) =

∫ t

0

exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
dΛ̂n,1(s; z0), t ∈ [0, τ ].

For example, with two possible causes of failure, the baseline cumulative inci-
dence function for cause 1 can be estimated based on the baseline cumulative
cause-specific hazards H1 and H2 as follows:
Haz1 <- H1$hazard

Haz2 <- H2$hazard

S <- exp(-Haz1-Haz2)

S.minus <- c(1,S[1:(length(S)-1)])

Haz1.minus <- c(0,Haz1[1:(length(Haz1)-1)])

CIF1 <- cumsum(S.minus*(Haz1-Haz1.minus))

Standard error estimation for the covariate-specific cumulative incidence
function can again be performed by using the nonparametric bootstrap method.
As noted above, we plan to develop an R package that implements the pro-
posed methods with full functionality.
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2 Asymptotic Theory Proofs

Our study of the asymptotic properties of the proposed estimators heavily rely
on empirical process theory [4,2]. We use the standard notation

Pnf =
1

n

n∑
i=1

f(Di), and Pf =

∫
D
fdP = Ef,

for any measurable function f : D 7→ R, where D denotes the sample space
and P the true (induced) probability measure defined on the Borel σ-algebra
on D. Let K be a generic constant that my differ from place to place. In many
calculations we only focus on one arbitrarily chosen event type j, as the same
technical proofs apply to all j = 1, . . . , k.

2.1 Proof of Theorem 1

To facilitate the presentation of the proofs we define

Gj(βj) = P

{∫ τ

0

[
Z− E(t,βj)

]
dÑj(t;γ0)

}
for j = 1, . . . , k. Note that Gn,j(βj ; γ̂n) defined in Section 3.1 can be rewritten
as

Gn,j(βj ; γ̂n) = Pn

{∫ τ

0

[Z− En(t,βj)]dÑj(t; γ̂n)

}
Trivial algebra leads to the decomposition

Gn,j(βj ; γ̂n)−Gj(βj) = An,j +Bn,j −Cn,j(βj)−Dn,j(βj), j = 1, . . . , k,

where

An,j = Pn

{∫ τ

0

Z
[
dÑj(t; γ̂n)− dÑj(t;γ0)

]}
,

Bn,j = (Pn − P )

∫ τ

0

ZdÑj(t;γ0),

Cn,j(βj) = Pn

{∫ τ

0

[
En(t,βj)− E(t;βj)

]
dÑj(t; γ̂n)

}
and

Dn,j(βj) = (Pn − P )

{∫ τ

0

E(t,βj)
[
dÑj(t; γ̂n)− dÑj(t;γ0)

]}
.

The termsAn,j coverge to 0 almost surely by the almost sure consistency of γ̂n

and conditions C3 and C5. The same is true for the term Bn,j as a consequence
of the strong law of large numbers and the boundedness condition C5. Next,
it is easy to argue that the classes of functions {Y (t) exp(βTZ) : t ∈ [0, τ ],β ∈
Bj} and {ZY (t) exp(βTZ) : t ∈ [0, τ ],β ∈ Bj} are Donsker and thus also
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Glivenko-Cantelli, which combined with condition C1 and strong consistency
of γ̂n lead to the fact that supβj∈Bj

∥Cn,j(βj)∥
as∗→ 0. Finally, for Dn,j(βj)

consider the class of functions

L(l)
j =

{
[R∆j + (1−R)πj(W,γ0)]

∫ τ

0

E(l)(t,β)dN(t) : β ∈ Bj

}
,

where

E(l)(t,βj) =
P [Z(l)Y (t) exp(βT

j Z)]

P [Y (t) exp(βT
j Z)]

,

with Z(l) being the lth component of Z. Based on the Lipschitz continuity
property of E(l)(t,βj) we can argue that for any finitely discrete probability

measure Q and any β1,β2 ∈ Bj and f
(l)
β1

, f
(l)
β2

∈ Lj ,∥∥∥f (l)
β1

− f
(l)
β2

∥∥∥
Q,2

≤
∥∥∥∥[R∆j + (1−R)πj(W,γ0)]

∫ τ

0

∣∣∣E(l)(t,β1)− E(l)(t,β2)
∣∣∣ dN(t)

∥∥∥∥
Q,2

≤
∥∥∥∥∫ τ

0

∣∣∣E(l)(t,β1)− E(l)(t,β2)
∣∣∣ dN(t)

∥∥∥∥
Q,2

≤ K∥β1 − β2∥ ∥N(τ)∥Q,2

Hence for any β ∈ Bj there exists a βi, i = 1, . . . , N(ϵ,Bj , ∥ · ∥), such that

∥βi − β∥ < ϵ. Consequently, for any f
(l)
β ∈ L(l)

1j there exists an fβi
such that∥∥∥f (l)

βi
− f

(l)
β

∥∥∥
Q,2

≤ Kϵ ≡ ϵ′,

and thus we can cover the whole L(l)
j with N(ϵ,Bj , ∥·∥) L2(Q) ϵ′-balls centered

at fβi
. By the minimality of the covering number we have that

N(ϵ′,L(l)
j , L2(Q)) ≤ N(ϵ,Bj , ∥ · ∥),

which implies that L(l)
j satisfies the uniform entropy bound given by 2.5.1 in

[4]. Additionally, L(l)
j can be shown to be a pointwise measurable class using

similar arguments to those presented in page 142 in [2]. Therefore, L(l)
j is

Donsker by proposition 8.11 of [2] and Theorem 2.5.2 of [4]. This fact along
with the strong consistency of γ̂n and the conditions C1, C3 and C5 lead to

supβj∈Bj
∥Dn(βj)∥

as∗→ 0, and thus

sup
βj∈Bj

∥Gn,j(βj ; γ̂n)−Gj(β)∥
as∗→ 0.

This fact along with condition C6, which ensures that Gj(β) is concave and

thus it has a unique root, leads to the strong consistency of β̂n,j for all j =
1, . . . , k, by Theorem 2.10 of [2].
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Next, for the proof of consistency of Λ̂n,j(t), we have the following expan-
sion

Λ̂n,j(t)− Λ0,j(t) = A⋆
n,j(t) +B⋆

n,j(t), (1)

were.

A⋆
n,j(t) = Pn

{
(1−R)[πj(W, γ̂n)− πj(W,γ0)]

∫ t

0

I[PnY (s) > 0]
dN(s)

Pn[Y (s)eβ̂
T
n,jZ]

}

and

B⋆
n,j(t) =

{∫ t

0

Pn[dÑj(s;γ0)]

Pn[Y (s)eβ̂
T
n,jZ]

−
∫ t

0

P [dÑj(s;γ0)]

P [Y (s)eβ
T
0,jZ]

}
for all j = 1, . . . , k. Using the almost sure consitency of γ̂n and conditions

C3 and C5 it can be easily argued that ∥A⋆
n,j(t)∥∞

as→ 0, by the continuous
mapping theorem. The uniform outer almost sure convergence of B⋆

n,j(t) to 0
follows by an expansion and arguments similar to those provided in page 57
of [2]. This completes the proof of the uniform outer almost sure consistency
of Λ̂n,j(t) for all j = 1, . . . , k.

2.2 Proof of Theorem 2

Since the estimator β̂n,j satisfies Gn,j(β̂n,j ; γ̂n) = 0, it follows that

0 =
√
nGn,j(β̂n,j ; γ̂n)

=
√
n
[
Gn,j(β̂n,j ; γ̂n)−Gn,j(β̂n,j ;γ0)

]
+
√
nGn,j(β̂n,j ;γ0). (2)

The first term of (2) can be expressed, after some algebra, as

√
n
[
Gn,j(β̂n,j ; γ̂n)−Gn,j(β̂n,j ;γ0)

]
= A′

n,j +B′
n,j +C′

n,j +D′
n,j .

where

A′
n,j =

√
n(Pn − P ) {ZN(τ)(1−R) [πj(W, γ̂n)− πj(W,γ0)]} ,

B′
n,j =

√
n(Pn − P )

{
[πj(W, γ̂n)− πj(W;γ0)]

∫ τ

0

E(t,β0,j)dN(t)

}
,

C′
n,j =

√
nPn

{∫ τ

0

[
En(t, β̂n,j)− E(t,β0,j)

]
d
[
Ñj(t; γ̂n)− Ñj(t;γ0)

]}
and

D′
n,j =

(
P

{
(1−R)

∫ τ

0

[Z− E(t,β0,j)]dN(t)π̇j(W,γ0)
T

})
×
√
n(γ̂n − γ0).
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It is straighforward to argue that the class {πj(W,γ) : γ ∈ Γ} is Donsker
due to the Lipschitz continuity in γ, as a result of condition C3, which implies
that the class {

ZN(τ)[πj(W,γ)− πj(W,γ0)] : γ ∈ Γ
}

is also Donsker. Since P {ZN(τ) [πj(W,γ)− πj(W,γ0)]}
2 → 0 as γ → γ0,

and by the consistency of γ̂n, it follows by Corollary 2.3.12 of [4] that A′
n,j

p→
0. Similar arguments along with the Donsker property for the class{

[πj(W,γ)− πj(W,γ0)]

∫ τ

0

E(t,β0,j)dN(t) : γ ∈ Γ

}
can be used to show that B′

n,j
p→ 0. Next, using similar arguments to that

used in the proof of consistency of β̂n,j , it can be shown that ∥En(t, β̂n,j) −
E(t,β0,j)∥∞

as∗→ 0. The boundedness conditions imply the uniform bounded-

ness of the variation of the process (of time) En(t, β̂n,j)−E(t,β0,j). Addition-

ally, it can be easily argued that
√
nPn[Ñj(t; γ̂n)−Ñj(t;γ0)] converges weakly

to a tight zero-mean Gaussian process, and thus it follows that C′
n,j

p→ 0 by
Lemma 4.2 of [2]. Therefore, the first term in (2) is equal to D′

n,j+op(1). Next,
a Taylor expansion of the second term of (2) around β0,j and some algebra
lead to

√
nGn,j(β̂n,j ;γ0) =

√
nGn,j(β0,j ;γ0)−Hj(β0,j)

√
n(β̂n,j − β0,j)

+op(1 +
√
n∥β̂n,j − β0,j∥). (3)

By condition C6, Hj(βj) is invertible and thus there exists a constant K > 0
such that for any βj ∈ B we have

∥Hj(β0,j)(βj − β0,j)∥ ≥ K∥βj − β0,j∥, j = 1, . . . , k.

Now, applying a Taylor expansion of Gj(βj ;γ0) around β0,j leads to

∥Gn,j(βj ;γ0)−Gj(β0,j ;γ0)∥ ≥ K∥βj − β0,j∥+ o(∥βj − β0,j∥), (4)

for j = 1, . . . , k. Next, it can be easily shown that

√
n[Gn,j(β̂n,j ;γ0)−Gn,j(β0,j ;γ0)] = −

√
n(Pn − P )

∫ τ

0

[Z− E(t,β0,j)]dÑj(t;γ0)

+op(1 +
√
n∥β̂n,j − β0,j∥) + op(1)

= Op(1) + op(1 +
√
n∥β̂n,j − β0,j∥) + op(1).

Combining the above equation with (4) leads to

√
n∥β̂n,j − β0,j∥[K + op(1)] ≤ Op(1) + op(1 +

√
n∥β̂n,j − β0,j∥)
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and thus
√
n∥β̂n,j − β0,j∥ = Op(1). Therefore, the remainder term in (3) is

op(1). Next, for the second term, it is straightforward to show that PM̃j(t;β0,j ,γ0) =
0 where

M̃ij(t;β0,j ,γ0) = Ñij(t;γ0)−
∫ t

0

Yi(s) exp(β
T
0,jZi)dΛ0,j(s),

for all t ∈ [0, τ ] and j = 1, . . . , k. Also, the class {M̃j(t;β0,j ,γ0) : t ∈ [0, τ ]}, for
all j = 1, . . . , k, is Donsker since both Ñj(t;γ0) and

∫ t

0
Y (s) exp(βT

0,jZ)dΛ0,j(s)
form Donsker classes indexed by t ∈ [0, τ ]. The Donsker property for the latter
class follows from the fact that it is formed by bounded, by conditions C1, C2
and C5, monotone cadlag processes and Lemma 4.1 in [2]. Therefore,

√
nGn,j(β0,j ; γ0) =

√
nPn

∫ τ

0

{Z − E(t, β0,j)}dM̃j(t;β0,j , γ0) + op(1),

by Lemma 4.2 of [2]. Taking all the pieces together along with conditions C4
and C6 we obtain

√
n(β̂n,j − β0,j) =

√
nPn(ψj +Rjω) + op(1), j = 1, . . . , k,

where the influence functions were defined in the main text before stating
Theorem 2. Now, to show the consistency in probability of the covariance
esimator Σ̂j = Pn(ψ̂j + R̂jω̂)

⊗2 note that

Σ̂j = H−1
n,j(β̂n,j)

[
Pn(ψ̂

′
j + R̂′

jω̂)
⊗2
]
H−1

n,j(β̂n,j),

where ψ̂
′
j = Hn,j(β̂n,j)ψ̂j and R̂′

j = Hn,j(β̂n,j)R̂j . Similarly,

Σj = H−1
j (β0,j)

[
P (ψ′

j +R′
jω)

⊗2
]
H−1

n,j(β0,j),

where ψ′
j = Hj(β0,j)ψj and R′

j = Hj(β0,j)Rj . By Theorem 1, conditions
C1-C6, and standard arguments for the Cox model can be used to show

that H−1
n,j(β̂n,j)

p→ H−1
j (β0,j). Now, the fact that supt∈[0,τ ] ∥En(t, β̂n,j) −

E(t,β0,j)∥
as∗→ 0 as it was argued earlier, conditions C3 and C4, and the weak

law of large numbers lead to the conclusion that R̂′
j

p→ R′
j . Finally, conditions

C3-C5, Theorem 1, Lemma 4.2 in [3], and some algebra can be used to show

that Pn(ψ̂
′
j + R̂′

jω̂)
⊗2 p→ P (ψ′

j +R′
jω)

⊗2, and therefore Σ̂j
p→ Σj .

2.3 Proof of Theorem 3

By Taylor expansion and the consistency of β̂n,j and γ̂n, the first term in the
right side of expansion (1) can be shown to be

A⋆
n,j(t) =

(
P

{
(1−R)π̇j(W,γ0)

∫ t

0

dN(s)

P [Y (s)eβ
T
0,jZ]

})T

(γ̂n−γ0)+op(n
−1/2).
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Using similar analysis to that presented in page 57 of [2] and the regularity
condition C4 regarding γ̂n leads to the conclusion that the second term in (1)
is

B⋆
n,j(t) = Pn

∫ t

0

dM̃j(s;β0,j ,γ0)

P [Y (s)eβ
T
0,jZ]

− (β̂n,j − β0,j)
T

∫ t

0

E(s,β0,j)dΛ0,j(s) + op(n
−1/2).

Therefore

√
n
[
Λ̂n,j(t)− Λ0,j(t)

]
=

√
nPn[ϕj(t) +R⋆

j (t)ω] + op(1).

Condition C4, the fact that R⋆
j (t) is non-random and standard arguments re-

lated to ϕj(t) [2] imply that the class of influence functions is Donsker, and thus
the right-hand side of the above equality converges weakly to a tight mean-
zero Gaussian process with covariance function P{[ϕj(t) + R⋆

j (t)ω][ϕj(s) +
R⋆

j (s)ω]}. It can be shown using standard results for the Cox model [2], the

facts that Σ̂j
p→ Σj and supt∈[0,τ ] ∥R̂⋆

j (t)−R⋆
j (t)∥ = op(1) (the latter will be

proved in the next paragraph), and condition C4 that

sup
t∈[0,τ ]

Pn

{
[ϕ̂ij(t)− R̂⋆

j (t)ω̂]− [ϕj(t) +R⋆
j (t)ω]

}2

= op(1).

The Donsker property of the class of influence functions {ϕj(t) +R⋆
j (t)ω : t ∈

[0, τ ]} and the square integrability of the influence functions as a result of the

boundedness conditions lead to the conclusion that Pn{[ϕ̂j(t)+R̂⋆
j (t)ω̂][ϕ̂j(s)+

R̂⋆
j (s)ω̂]}, t, s ∈ [0, τ ], is a uniformly consistent (in probability) estimator of

the covariance function P{[ϕj(t) +R⋆
j (t)ω][ϕj(s) +R⋆

j (s)ω]} by Lemma 9.28
in [2].

Now, in order to show the final statement of Theorem 3 let Ŵn,j(t) =√
nPn[ϕ̂j(t)+ R̂⋆

j (t)ω̂]ξ and W̃n,j(t) =
√
nPn[ϕj(t)+R⋆

j (t)ω]ξ. It follows from
the Donsker property of the class of influence functions {ϕj(t) +R⋆

j (t)ω : t ∈
[0, τ ]} and the conditional multiplier central limit theorem [4] that W̃n,j(t)
converges weakly conditional on the data to the same limiting process as that
of

√
n[Λ̂n,j(t) − Λ0,j(t)] (unconditionally). In order to complete the proof of

the final statement we need to show that

∥Ŵn,j(t)− W̃n,j(t)∥∞ = op(1) j = 1, . . . , k,

since this implies that Ŵn,j(t) and W̃n,j(t) converge weakly (unconditionally)
to the same limiting process. It can be easily seen that

∥Ŵn,j(t)− W̃n,j(t)∥∞ ≤ A′′
n,j +B′′

n,j + C ′′
n,j

where
A′′

n,j = ∥
√
nPn[ϕ̂j(t)− ϕj(t)]ξ∥∞,

B′′
n,j = sup

t∈[0,τ ]

∥∥∥R̂⋆
j (t)−R⋆

j (t)
∥∥∥× (∥∥√nPn[ω̂ − ω]ξ

∥∥+ ∥∥√nPnωξ
∥∥) ,
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C ′′
n,j = sup

t∈[0,τ ]

∥∥R⋆
j (t)

∥∥× ∥∥√nPn[ω̂ − ω]ξ
∥∥ .

Using the same arguments as those used in the proof of Theorem 4 in [3]
along with conditions C3 and C4 leads to the conclusion that A′′

n,j = op(1).
Next, considering the term B′′

n,j , we have that ∥
√
nPn[ω̂ − ω]ξ∥ = op(1) by

arguments similar to those used in the proof of Lemma A.3 in [3]. Additionally,
∥
√
nPnωξ∥ = Op(1) by C4 and the central limit theorem. The first factor of

B′′
n,j is

sup
t∈[0,τ ]

∥∥∥R̂⋆
j (t)−R⋆

j (t)
∥∥∥ ≤ sup

t∈[0,τ ]

∥∥∥∥∥Pn [π̇j(W, γ̂n)− π̇j(W,γ0)]

∫ t

0

dN(s)

PnY (s)eβ̂
T
n,jZ

∥∥∥∥∥
+ sup

t∈[0,τ ]

∥∥∥∥∥Pnπ̇j(W,γ0)

∫ t

0

[
1

PnY (s)eβ̂
T
n,jZ

− 1

PY (s)eβ
T
0,jZ

]
dN(s)

∥∥∥∥∥
+ sup

t∈[0,τ ]

∥∥∥∥∥(Pn − P )π̇j(W,γ0)

∫ t

0

1

PY (s)eβ
T
0,jZ

dN(s)

∥∥∥∥∥ . (5)

By conditions C3, C4, C5 and the continuous mapping theorem

max
i

∥π̇j(Wi, γ̂n)− π̇j(Wi,γ0)∥ = oas(1).

Also, by Theorem 1 and conditions C1, C2, C5∥∥∥∥∥ 1

PnY (t)eβ̂
T
n,jZ

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1

PY (t)eβ
T
0,jZ + oas∗(1)

∥∥∥∥∥
∞

= Oas∗(1),

and therefore the first term in the right side of (5) is oas∗(1). By conditions
C3 and C5, which lead to the conclusion that

max
i

∥π̇j(Wi,γ0)∥ = Op(1),

and the fact that∥∥∥∥∥ 1

PnY (t)eβ̂
T
n,jZ

− 1

PY (t)eβ
T
0,jZ

∥∥∥∥∥
∞

= oas⋆(1),

as a result of Theorem 1, the Donsker property of the class {Y (t) : t ∈ [0, τ ]},
conditions C2 and C5, and some algebra, it follows that the second term in
the right side of (5) is also op(1). Finally, consider the classes of functions
F = {N(t) : t ∈ [0, τ ]} and

Lj,1 =

ft,j = π̇j(W,γ0)

∫ t

0

dN(s)

P
[
Y (s) exp(βT

0,jZ)
] : t ∈ [0, τ ]

 .
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For any finitely discrete probability measure Q and any t1, t2 ∈ [0, τ ] we have

∥ft1,j − ft2,j∥Q,2 ≤

∥∥∥∥∥∥π̇j(W,γ0)

∫ t2

t1

dN(s)

P
[
Y (s) exp(βT

0,jZ)
]
∥∥∥∥∥∥
Q,2

≤ K∥N(t2)−N(t1)∥Q,2,

by the boundedness of π̇j(W,γ0). Consequently, for any ϵ > 0 and ft,j ∈ Lj,1

with t ∈ [0, τ ] there exists a fti,j , i = 1, . . . , N(ϵ,F , L2(Q)), such that ∥ft,j −
fti,j∥Q,2 ≤ Kϵ ≡ ϵ′ and thus the class Lj,1 can be covered by N(ϵ,F , L2(Q))
L2(Q) ϵ′-balls centered at fti,j . Since F is Donsker, Lj,1 satisfies the uniform
entropy bound given by 2.5.1 in [4]. It can be easily argued that the class Lj,1 is
pointwise measurable [4,2]. Now, by proposition 8.11 of [2] and Theorem 2.5.2
of [4], it follows that Lj,1 is Donsker. This implies the Glivenko-Cantelli prop-
erty of that class and thus it follows that the last term in the right side of (5)

is op(1). Therefore, supt∈[0,τ ] ∥R̂⋆
j (t)−R⋆

j (t)∥ = op(1) and thus B′′
n,j = op(1).

Finally, C ′′
n,j = op(1) by similar arguments to those used for the term B′′

n,j ,

and thus ∥Ŵn,j(t) − W̃n,j(t)∥∞ = op(1) for all j = 1, . . . , k, which completes
the proof of the final statement of Theorem 3.

2.4 Proof of Theorem 4

The asymptotic expression in Theorem 4 follows from a decomposition of√
n[F̂n,j(t; z0)− F0,j(t; z0)] similar to that used in [1], our Theorems 1, 2 and

3, Lemma 4.2 in [2] and integration by parts. To show the Donsker property
of the class Φj(z0) = {ϕF

j (t; z0) : t ∈ [0, τ ]}, for all j = 1, . . . , k and z0 in the
bounded finite-dimensional space, we will use the following Lemma.

Lemma 1 Let g(t) be a fixed uniformly bounded function and f(t) = f1(t)−
f2(t) on [0, τ ], with Fl = {fl(t) : t ∈ [0, τ ]}, l = 1, 2, being Donsker classes of
measurable, non-decreasing and right-continuous functions. Then, the class

F3 =

{∫ t

0

g(s)df(s) : t ∈ [0, τ ]

}
,

is Donsker.

Proof For any t1, t2 ∈ [0, τ ] and any finitely discrete probability measure Q it
follows that∥∥∥∥∫ t1

0

g(s)dfl(s)−
∫ t2

0

g(s)dfl(s)

∥∥∥∥
Q,2

≤ K∥fl(t1)− fl(t2)∥Q,2, l = 1, 2,

where K = supt∈[0,τ ] |g(t)|. Now, for any t ∈ [0, τ ] there exists a ti ∈ [0, τ ],
with i = 1, . . . , N(ϵ,Fl, L2(Q)) and l = 1, 2, such that ∥fl(ti)− fl(t)∥Q,2 < ϵ.
Therefore, for any t ∈ [0, τ ] there exists a ti ∈ [0, τ ] such that ∥ϕl(ti) −
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ϕl(t)∥Q,2 < Kϵ, with ϕl ∈ F3,l =
{∫ t

0
g(s)dfl(s) : fl ∈ Fl

}
, l = 1, 2, and

thus F3,l can be covered by N(ϵ,Fl, L2(Q)) L2(Q) Kϵ-balls. Therefore, by the
Donsker property of the classes Fl, l = 1, 2, the classes F3,l, l = 1, 2, satisfy
the uniform entropy bound. Additionally, it can be argued that F3,1 and F3,2

are both pointwise measurable. Consequently, by proposition 8.11 of [2] and
Theorem 2.5.2 of [4], it follows that F3,1 and F3,2 are Donsker. Finally, the
Donsker property of F3 is a consequence of Corollary 9.31 of [2], since F3 is
formed by differences of functions that belong to Donsker classes.

The fact that ϕΛ
ij(t; z0) can be written as the difference of two non-decreasing

right-continuous functions which both belong to a Donsker class, along with
Lemma 1 above and integration by parts can be used to show the Donsker prop-
erty of Φj(z0), for all j = 1, . . . , k and z0 in the bounded covariate space. It can

be shown using Theorems 1-3, the fact that supt∈[0,τ ] Pn{[ϕ̂ij(t) − R̂⋆
j (t)ω̂] −

[ϕj(t)+R⋆
j (t)ω]}2 = op(1) as argued in the proof of Theorem 3, conditions C1-

C5, and integration by parts, that supt∈[0,τ ] Pn[ϕ̂
F
j (t; z0)−ϕF

j (t; z0)]
2 = op(1).

Futhermore, the Donsker property of Φj(z0), the square integrability of the in-
fluence functions ϕF

j (t; z0), and Lemma 9.28 in [2] lead to the conclusion that

Pnϕ̂
F
ij(t; z0)ϕ̂

F
ij(s; z0), t, s ∈ [0, τ ], is a uniformly consistent (in probability)

estimator of the covariance function PϕF
j (t; z0)ϕ

F
j (s; z0).

Now, in order to show the final statement of Theorem 4 let Ŵj(t; z0) =√
nPnϕ̂

F
j (t; z0)ξ and W̃j(t; z0) =

√
nPnϕ

F
j (t; z0)ξ. It follows from the Donsker

property of the class of influence functions Φj(z0) and the conditional multi-

plier central limit theorem [4] that W̃F
n,j(t; z0) converges weakly, conditionally

on the data, to the same limiting process as that of
√
n[F̂n,j(t; z0)−F0,j(t; z0)]

(unconditionally). Finally, we need to show that

∥ŴF
n,j(t; z0)− W̃F

n,j(t; z0)∥∞ = op(1) j = 1, . . . , k.

Straightforward algebra and the fact that

max
i

∥ϕΛ
ij(t; z0)∥∞ = Op(1), j = 1, . . . , k

by the boundedness conditions, lead to the inequality

∥ŴF
n,j(t; z0)− W̃F

n,j(t; z0)∥∞ ≤ A′′′
n,j +B′′′

n,j + C ′′′
n,j +D′′′

n,j + E′′′
n,j + F ′′′

n,j

where

A′′′
n,j =

∥∥∥∥∥
∫ t

0

exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
d{

√
nPn[ϕ̂

Λ
j (s; z0)− ϕΛ

j (s; z0)]ξ}

∥∥∥∥∥
∞

,

B′′′
n,j =

∥∥∥∥∥
∫ t

0

{
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
− exp

[
−

k∑
l=1

Λ0,l(s−; z0)

]}
d[
√
nPnϕ

Λ
j (s; z0)ξ]

∥∥∥∥∥
∞

,
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C ′′′
n,j =

∥∥∥∥∥
k∑

l=1

∫ t

0

{
Pn

[
ϕ̂Λ
l (s−; z0)− ϕΛ

l (s−; z0)
]
ξ
}
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]

×d{
√
n[Λ̂n,j(s; z0)− Λ0,j(s; z0)]}

∥∥∥∥∥
∞

,

D′′′
n,j =

∥∥∥∥∥
k∑

l=1

∫ t

0

[
Pnϕ

Λ
l (s−; z0)ξ

]{
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
− exp

[
−

k∑
l=1

Λn,l(s−; z0)

]}

×d{
√
n[Λ̂n,j(s; z0)− Λ0,j(s; z0)]}

∥∥∥∥∥
∞

,

E′′′
n,j =

∥∥∥∥∥
k∑

l=1

∫ t

0

{√
nPn

[
ϕ̂Λ
l (s−; z0)− ϕΛ

l (s−; z0)
]
ξ
}
dΛ0,j(s; z0)

∥∥∥∥∥
∞

,

F ′′′
n,j = Op(1)|

√
nPnξ|

∥∥∥∥∥
∫ t

0

{
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
− exp

[
−

k∑
l=1

Λ0,l(s−; z0)

]}
dΛ0,j(s; z0)

∥∥∥∥∥
∞

.

Integration by parts, the fact that ∥Ŵn,j(t) − W̃n,j(t)∥∞ = op(1) as it was
shown in the proof of Theorem 3, Lemma A.3 in [3] and the boundedness con-
ditions can be used to show that A′′′

n,j = op(1). Next, B
′′′
n,j = op(1) by Theorem

1, the fact that
√
nPnϕ

Λ
j (t; z0)ξ converges weakly to a tight mean zero Gaus-

sian process due to the Donsker property of the class {ϕΛ
j (t; z0) : t ∈ [0, τ ]},

and Lemma 4.2 in [2]. Using the fact that the integrand in C ′′′
n,j converges uni-

formly to 0 in probability, Theorem 3, and Lemma 4.2 in [2] we can argue that
C ′′′

n,j = op(1). The same arguments can be used to show that D′′′
n,j = op(1).

Additionally, E′′′
n,j = op(1) by the fact that the term inside the curly brackets

is uniformly op(1), as it was argued earlier, and condition C1. Finally, the fact

that ∥ exp[−
∑k

l=1 Λ̂n,l(s−; z0)] − exp[−
∑k

l=1 Λ0,l(s−; z0)]∥∞ = oas∗(t) as a
consequence of Theorem 1, condition C1 and the fact that

√
nPnξ = Op(1) by

the central limit theorem, lead to the conclusion that F ′′′
n,j = op(1). Therefore,

∥ŴF
n,j(t; z0) − W̃F

n,j(t; z0)∥∞ = op(1) for all j = 1, . . . , k and the proof of the
last statement of Theorem 4 is complete.

3 Estimated Influence Functions

In Theorem 2 we provided the consistent estimator of the covariance matrix
of the finite-dimensional parameters as

Σ̂j =
1

n

n∑
i=1

(ψ̂ij + R̂jω̂i)
⊗2.
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The first component of the estimated influence functions in Σ̂j is

ψ̂ij = H−1
n,j(β̂n,j)

∫ τ

0

[Zi − En(t, β̂n,j)]dM̂ij(t; β̂n,j , γ̂n)

for i = 1, . . . , n and j = 1, . . . , k, where

Hn,j(β̂n,j) =
1

n

∫ τ

0


∑n

l=1 Z
⊗2
l Yl(t)e

β̂
T
n,jZl∑n

l=1 Yl(t)e
β̂

T
n,jZl

−

[∑n
l=1 ZlYl(t)e

β̂
T
n,jZl∑n

l=1 Yl(t)e
β̂

T
n,jZl

]⊗2


n∑
i=1

dÑij(t; γ̂n),

En(t, β̂n,j) =

∑n
i=1 ZiYi(t)e

β̂
T
n,jZi∑n

i=1 Yi(t)e
β̂

T
n,jZi

and

M̂ij(t; β̂n,j , γ̂n) = Ñij(t; γ̂n)−
∫ t

0

Yi(s) exp(β̂
T

n,jZi)dΛ̂n,j(s).

The second component is

R̂j = H−1
n,j(β̂n,j)

{
1

n

n∑
i=1

(1−Ri)

∫ τ

0

[Zi − En(t, β̂n,j)]dNi(t)π̇j(Wi, γ̂n)
T

}
,

and ω̂i is the usual influence function for the parametric multinomial logit
model, where γ0 has been replaced by γ̂n and the expectations by sample
averages.

The estimated influence function components that are involved in the co-
variance function estimator for the baseline cumulative cause-specific hazard
estimator are

ϕ̂ij(t) =

∫ t

0

dM̂ij(s; β̂n,j , γ̂n)

n−1
∑n

l=1 Yl(s)e
β̂

T
n,jZl

− (ψ̂ij + R̂jω̂i)
T

∫ t

0

En(s, β̂n,j)dΛ̂n,j(s)

and

R̂⋆
j (t) =

{
1

n

n∑
i=1

[
(1−Ri)π̇j(Wi, γ̂n)

∫ t

0

dNi(s)

n−1
∑n

l=1 Yl(s)e
β̂

T
n,jZl

]}T

.

Finally, the estimated influence functions for the covariance function estimator
of the covariate-specific cumulative incidence function estimator are

ϕ̂F
ij(t; z0) =

∫ t

0

exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
dϕ̂Λ

ij(s; z0)

−
∫ t

0

[
k∑

l=1

ϕ̂Λ
il(s−; z0)

]
exp

[
−

k∑
l=1

Λ̂n,l(s−; z0)

]
dΛ̂n,j(s; z0),

where

ϕ̂Λ
ij(t; z0) = [zT0 (ψ̂ij + R̂jω̂i)Λ̂n,j(t) + ϕ̂ij(t) + R̂⋆

j (t)ω̂i] exp(β̂
T

n,jz0).



14

Table 1 Simulation results for β1 under scenario 3 where the model π1(W,γ) was mis-
specified with η = 2.

n pm Method Bias MCSD ASE CP MSE RE

200 23% Proposed MPPLE 0.008 0.352 0.348 0.953 0.124 1.000
AIPW 0.010 0.351 0.359 0.954 0.123 0.994
MI(5) 0.001 0.371 0.360 0.942 0.138 1.108

40% Proposed MPPLE 0.010 0.361 0.361 0.951 0.131 1.000
AIPW 0.013 0.362 0.377 0.962 0.131 1.001
MI(5) -0.006 0.391 0.379 0.947 0.153 1.170

54% Proposed MPPLE 0.004 0.387 0.378 0.949 0.150 1.000
AIPW 0.007 0.398 0.411 0.948 0.158 1.054
MI(5) -0.011 0.408 0.402 0.951 0.167 1.109

400 23% Proposed MPPLE -0.000 0.246 0.247 0.957 0.060 1.000
AIPW 0.001 0.246 0.248 0.954 0.061 1.006
MI(5) -0.010 0.252 0.251 0.950 0.064 1.056

40% Proposed MPPLE -0.002 0.256 0.257 0.957 0.066 1.000
AIPW -0.001 0.260 0.260 0.951 0.067 1.025
MI(5) -0.012 0.265 0.262 0.950 0.071 1.071

54% Proposed MPPLE 0.001 0.272 0.269 0.955 0.074 1.000
AIPW 0.005 0.279 0.279 0.943 0.078 1.058
MI(5) -0.017 0.276 0.275 0.945 0.077 1.034

2000 23% Proposed MPPLE -0.001 0.110 0.111 0.945 0.012 1.000
AIPW 0.001 0.110 0.110 0.943 0.012 1.001
MI(5) 0.002 0.111 0.110 0.943 0.012 1.019

40% Proposed MPPLE -0.001 0.115 0.115 0.949 0.013 1.000
AIPW 0.002 0.115 0.115 0.943 0.013 1.007
MI(5) 0.003 0.117 0.115 0.938 0.014 1.041

54% Proposed MPPLE -0.002 0.119 0.120 0.950 0.014 1.000
AIPW 0.000 0.120 0.121 0.958 0.015 1.026
MI(5) 0.004 0.124 0.121 0.939 0.015 1.085

pm: percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average esti-
mated standard error; CP: coverage probability; MSE: mean squared error; RE: variance of
the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum
partial pseudolikelihood estimator; AIPW: augmented inverse probability weighting
estimator; MI(5): Lu & Tsiatis type B multiple imputation based on 5 imputations

4 Additional Simulation Results

Simulation results for β1 under more pronounced misspecification of the model
π1(W,γ) are presented in Tables 1-2. Simulation results for the infinite-dimentional
parameters are presented in Tables 3-8.
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Table 2 Simulation results for β1 under scenario 4 where the model π1(W,γ) was mis-
specified with η = 0.1.

n pm Method Bias MCSD ASE CP MSE RE

200 30% Proposed MPPLE 0.009 0.492 0.478 0.948 0.242 1.000
AIPW 0.005 0.492 0.508 0.954 0.242 1.001
MI(5) -0.007 0.507 0.514 0.953 0.257 1.062

49% Proposed MPPLE 0.011 0.522 0.518 0.949 0.273 1.000
AIPW 0.006 0.527 0.563 0.962 0.277 1.017
MI(5) -0.017 0.560 0.571 0.949 0.314 1.150

62% Proposed MPPLE 0.011 0.593 0.563 0.933 0.351 1.000
AIPW -0.002 0.605 0.645 0.962 0.366 1.043
MI(5) -0.031 0.631 0.639 0.954 0.399 1.133

400 30% Proposed MPPLE -0.012 0.354 0.342 0.935 0.126 1.000
AIPW -0.015 0.354 0.348 0.938 0.126 0.999
MI(5) -0.004 0.358 0.351 0.940 0.128 1.020

49% Proposed MPPLE -0.014 0.390 0.371 0.944 0.153 1.000
AIPW -0.022 0.396 0.382 0.937 0.158 1.030
MI(5) -0.005 0.394 0.384 0.939 0.155 1.018

62% Proposed MPPLE -0.009 0.429 0.407 0.949 0.184 1.000
AIPW -0.018 0.445 0.430 0.941 0.199 1.076
MI(5) -0.003 0.433 0.424 0.941 0.188 1.019

2000 30% Proposed MPPLE 0.008 0.149 0.152 0.949 0.022 1.000
AIPW 0.008 0.150 0.151 0.945 0.023 1.010
MI(5) 0.001 0.149 0.153 0.953 0.022 1.004

49% Proposed MPPLE 0.006 0.161 0.164 0.949 0.026 1.000
AIPW 0.005 0.164 0.165 0.953 0.027 1.040
MI(5) -0.002 0.164 0.166 0.947 0.027 1.035

62% Proposed MPPLE 0.004 0.175 0.180 0.952 0.031 1.000
AIPW 0.003 0.179 0.183 0.943 0.032 1.054
MI(5) -0.004 0.179 0.183 0.955 0.032 1.050

pm: percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average esti-
mated standard error; CP: coverage probability; MSE: mean squared error; RE: variance of
the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum
partial pseudolikelihood estimator; AIPW: augmented inverse probability weighting
estimator; MI(5): Lu & Tsiatis type B multiple imputation based on 5 imputations
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Table 3 Pointwise simulation results for the proposed MPPLE method in terms of the base-
line cumulative cause-specific hazard function Λ0,1(t) and the baseline cumulative incidence
function F0,1(t), under a correctly specified model π1(W, γ) (scenario 1).

Λ0,1(t) F0,1(t)
n pm t Bias MCSD ASE CP Bias MCSD ASE CP

200 25% τ0.1 0.001 0.053 0.053 0.971 0.002 0.041 0.041 0.935
τ0.2 0.003 0.097 0.096 0.956 0.003 0.057 0.058 0.942
τ0.4 0.007 0.192 0.184 0.943 0.003 0.071 0.071 0.939
τ0.8 0.033 0.428 0.397 0.938 0.005 0.074 0.073 0.941

56% τ0.1 0.002 0.061 0.059 0.953 0.002 0.047 0.046 0.935
τ0.2 0.003 0.113 0.108 0.951 0.002 0.067 0.067 0.937
τ0.4 0.009 0.219 0.206 0.945 0.002 0.085 0.084 0.928
τ0.8 0.035 0.483 0.440 0.942 0.003 0.090 0.089 0.929

400 25% τ0.1 0.001 0.038 0.038 0.951 0.001 0.029 0.029 0.946
τ0.2 0.003 0.070 0.069 0.947 0.001 0.041 0.042 0.950
τ0.4 0.007 0.135 0.131 0.942 0.000 0.050 0.051 0.941
τ0.8 0.012 0.293 0.280 0.949 0.002 0.052 0.052 0.943

56% τ0.1 0.001 0.042 0.042 0.949 0.000 0.033 0.033 0.951
τ0.2 0.003 0.078 0.077 0.941 -0.000 0.047 0.048 0.952
τ0.4 0.007 0.150 0.147 0.950 -0.000 0.059 0.060 0.948
τ0.8 0.014 0.330 0.310 0.943 0.001 0.062 0.064 0.951

2000 25% τ0.1 -0.000 0.017 0.017 0.964 -0.000 0.013 0.013 0.956
τ0.2 -0.001 0.029 0.031 0.950 -0.000 0.018 0.019 0.955
τ0.4 -0.000 0.056 0.058 0.953 -0.000 0.022 0.023 0.954
τ0.8 0.000 0.121 0.124 0.959 0.000 0.022 0.023 0.952

56% τ0.1 0.000 0.018 0.019 0.956 0.000 0.014 0.015 0.955
τ0.2 -0.000 0.033 0.034 0.958 -0.000 0.021 0.021 0.954
τ0.4 -0.001 0.063 0.065 0.955 -0.000 0.026 0.027 0.951
τ0.8 -0.000 0.134 0.137 0.956 0.000 0.028 0.029 0.948

pm: percent of missingness; τp: p% of the total follow-up time τ ; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage
probability
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Table 4 Pointwise simulation results for the proposed MPPLE method in terms of the base-
line cumulative cause-specific hazard function Λ0,1(t) and the baseline cumulative incidence
function F0,1(t), under a misspecified model π1(W,γ) with η = 0.5 (scenario 2).

Λ0,1(t) F0,1(t)
n pm t Bias MCSD ASE CP Bias MCSD ASE CP

200 27% τ0.1 0.007 0.056 0.058 0.965 0.009 0.039 0.040 0.946
τ0.2 -0.001 0.101 0.102 0.958 0.006 0.053 0.055 0.939
τ0.4 -0.005 0.196 0.193 0.959 0.003 0.066 0.068 0.944
τ0.8 0.027 0.428 0.412 0.947 0.006 0.071 0.071 0.936

59% τ0.1 0.018 0.070 0.069 0.942 0.020 0.051 0.050 0.943
τ0.2 0.002 0.119 0.117 0.955 0.011 0.067 0.067 0.936
τ0.4 -0.012 0.225 0.216 0.955 0.004 0.083 0.083 0.929
τ0.8 0.027 0.489 0.463 0.948 0.006 0.089 0.088 0.936

400 27% τ0.1 0.010 0.042 0.042 0.950 0.009 0.028 0.029 0.953
τ0.2 0.003 0.074 0.073 0.939 0.004 0.038 0.039 0.946
τ0.4 -0.004 0.141 0.138 0.945 0.001 0.047 0.048 0.952
τ0.8 0.007 0.297 0.289 0.954 0.002 0.050 0.050 0.951

59% τ0.1 0.019 0.050 0.049 0.930 0.018 0.034 0.035 0.952
τ0.2 0.003 0.085 0.084 0.946 0.008 0.046 0.048 0.954
τ0.4 -0.015 0.157 0.154 0.955 -0.000 0.057 0.059 0.953
τ0.8 0.006 0.342 0.326 0.951 0.001 0.061 0.063 0.961

2000 27% τ0.1 0.007 0.018 0.018 0.928 0.008 0.013 0.013 0.914
τ0.2 -0.002 0.031 0.032 0.961 0.003 0.017 0.018 0.961
τ0.4 -0.012 0.060 0.061 0.953 0.000 0.021 0.022 0.950
τ0.8 -0.009 0.124 0.128 0.959 0.001 0.022 0.023 0.960

59% τ0.1 0.018 0.022 0.022 0.851 0.019 0.016 0.016 0.795
τ0.2 -0.000 0.036 0.037 0.962 0.010 0.021 0.021 0.947
τ0.4 -0.024 0.067 0.068 0.948 0.002 0.026 0.026 0.943
τ0.8 -0.018 0.140 0.143 0.954 0.002 0.028 0.028 0.945

pm: percent of missingness; τp: p% of the total follow-up time τ ; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage
probability
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Table 5 Pointwise simulation results for the proposed MPPLE method in terms of the base-
line cumulative cause-specific hazard function Λ0,1(t) and the baseline cumulative incidence
function F0,1(t), under a misspecified model π1(W,γ) with η = 2 (scenario 3).

Λ0,1(t) F0,1(t)
n pm t Bias MCSD ASE CP Bias MCSD ASE CP

200 23% τ0.1 -0.004 0.048 0.049 0.958 -0.002 0.039 0.040 0.928
τ0.2 -0.004 0.088 0.087 0.954 -0.002 0.056 0.057 0.947
τ0.4 0.004 0.171 0.165 0.953 -0.000 0.068 0.071 0.945
τ0.8 0.027 0.357 0.346 0.950 0.003 0.069 0.069 0.937

54% τ0.1 -0.009 0.049 0.050 0.960 -0.006 0.041 0.041 0.911
τ0.2 -0.008 0.092 0.090 0.949 -0.007 0.059 0.060 0.928
τ0.4 0.008 0.181 0.175 0.953 -0.002 0.074 0.077 0.949
τ0.8 0.036 0.379 0.365 0.950 0.003 0.078 0.078 0.936

400 23% τ0.1 -0.003 0.035 0.035 0.951 -0.003 0.028 0.029 0.938
τ0.2 -0.003 0.063 0.062 0.950 -0.004 0.040 0.041 0.947
τ0.4 0.006 0.118 0.118 0.940 -0.002 0.050 0.051 0.958
τ0.8 0.017 0.244 0.244 0.962 0.000 0.049 0.050 0.949

54% τ0.1 -0.009 0.035 0.035 0.939 -0.007 0.029 0.029 0.927
τ0.2 -0.010 0.066 0.064 0.941 -0.009 0.042 0.043 0.944
τ0.4 0.004 0.127 0.124 0.939 -0.003 0.053 0.055 0.959
τ0.8 0.024 0.265 0.258 0.954 0.001 0.054 0.055 0.947

2000 23% τ0.1 -0.004 0.016 0.016 0.944 -0.004 0.013 0.013 0.936
τ0.2 -0.004 0.026 0.028 0.960 -0.004 0.017 0.018 0.953
τ0.4 0.001 0.051 0.052 0.949 -0.001 0.022 0.023 0.950
τ0.8 0.004 0.107 0.108 0.956 -0.000 0.022 0.022 0.949

54% τ0.1 -0.009 0.016 0.016 0.918 -0.008 0.013 0.013 0.897
τ0.2 -0.009 0.028 0.029 0.946 -0.008 0.018 0.019 0.933
τ0.4 0.002 0.055 0.055 0.949 -0.003 0.024 0.025 0.955
τ0.8 0.012 0.113 0.114 0.952 -0.000 0.025 0.025 0.947

pm: percent of missingness; τp: p% of the total follow-up time τ ; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage
probability
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Table 6 Pointwise simulation results for the proposed MPPLE method in terms of the base-
line cumulative cause-specific hazard function Λ0,1(t) and the baseline cumulative incidence
function F0,1(t), under a misspecified model π1(W,γ) with η = 0.1 (scenario 4).

Λ0,1(t) F0,1(t)
n pm t Bias MCSD ASE CP Bias MCSD ASE CP

200 30% τ0.1 -0.003 0.069 0.067 0.953 0.008 0.032 0.031 0.937
τ0.2 -0.015 0.117 0.116 0.952 0.004 0.043 0.042 0.932
τ0.4 -0.014 0.229 0.222 0.941 0.004 0.055 0.054 0.932
τ0.8 0.031 0.498 0.466 0.942 0.006 0.060 0.060 0.942

62% τ0.1 -0.003 0.082 0.078 0.941 0.016 0.045 0.041 0.936
τ0.2 -0.030 0.133 0.127 0.937 0.005 0.054 0.052 0.921
τ0.4 -0.032 0.256 0.242 0.935 0.001 0.067 0.065 0.934
τ0.8 0.029 0.559 0.518 0.945 0.004 0.072 0.071 0.936

400 30% τ0.1 0.001 0.050 0.048 0.949 0.008 0.022 0.022 0.958
τ0.2 -0.012 0.086 0.083 0.940 0.002 0.030 0.030 0.951
τ0.4 -0.008 0.168 0.160 0.943 0.002 0.039 0.039 0.943
τ0.8 0.014 0.340 0.329 0.942 0.003 0.042 0.042 0.948

62% τ0.1 -0.001 0.059 0.057 0.945 0.017 0.030 0.030 0.952
τ0.2 -0.035 0.096 0.091 0.920 0.004 0.037 0.038 0.956
τ0.4 -0.040 0.187 0.175 0.931 0.001 0.046 0.047 0.947
τ0.8 -0.005 0.387 0.367 0.946 0.002 0.050 0.051 0.944

2000 30% τ0.1 -0.003 0.022 0.021 0.943 0.008 0.010 0.010 0.893
τ0.2 -0.023 0.036 0.036 0.908 0.001 0.014 0.013 0.938
τ0.4 -0.025 0.068 0.070 0.936 0.000 0.017 0.017 0.942
τ0.8 -0.018 0.138 0.144 0.954 0.001 0.019 0.019 0.947

62% τ0.1 -0.000 0.026 0.025 0.938 0.020 0.014 0.014 0.746
τ0.2 -0.042 0.039 0.040 0.823 0.006 0.017 0.017 0.939
τ0.4 -0.055 0.074 0.077 0.907 0.002 0.021 0.021 0.950
τ0.8 -0.033 0.155 0.160 0.948 0.003 0.023 0.023 0.947

pm: percent of missingness; τp: p% of the total follow-up time τ ; MCSD: Monte Carlo
standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage
probability
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Table 7 Simulation results for the coverage probability of the proposed 95% simultaneous
confidence bands for Λ0,1(t) and F0,1(t) under a correctly specified model π1(W,γ) (scenario
1).

Λ0,1(t) F0,1(t)
n pm EP HW EP HW

200 25% 0.947 0.953 0.944 0.952
44% 0.949 0.949 0.946 0.948
56% 0.942 0.949 0.941 0.949

400 25% 0.944 0.944 0.948 0.943
44% 0.945 0.945 0.950 0.952
56% 0.945 0.940 0.954 0.950

2000 25% 0.950 0.950 0.952 0.959
44% 0.956 0.959 0.956 0.956
56% 0.956 0.958 0.948 0.954

p̄m: average percent of missingness over the two scenarios; EP: equal-precision-type band;
HW: Hall–Wellner-type band
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Table 8 Simulation results for the coverage probability of the proposed 95% simultaneous
confidence bands for Λ0,1(t) and F0,1(t) under misspecified models π1(W,γ) (scenarios 2-4).

Λ0,1(t) F0,1(t)
Scenario η n pm EP HW EP HW

2 0.5 200 27% 0.901 0.924 0.922 0.950
46% 0.827 0.887 0.867 0.924
59% 0.757 0.835 0.810 0.898

400 27% 0.867 0.900 0.912 0.941
46% 0.757 0.829 0.809 0.919
59% 0.656 0.754 0.728 0.886

2000 27% 0.693 0.855 0.772 0.905
46% 0.298 0.586 0.387 0.746
59% 0.121 0.325 0.163 0.508

3 2 200 23% 0.946 0.945 0.947 0.953
40% 0.960 0.954 0.947 0.949
54% 0.956 0.957 0.941 0.950

400 23% 0.948 0.946 0.946 0.955
40% 0.947 0.950 0.942 0.955
54% 0.944 0.941 0.934 0.952

2000 23% 0.939 0.958 0.938 0.951
40% 0.936 0.946 0.928 0.938
54% 0.927 0.938 0.914 0.933

4 0.1 200 30% 0.682 0.781 0.854 0.921
49% 0.431 0.524 0.646 0.792
62% 0.271 0.326 0.476 0.618

400 30% 0.601 0.718 0.829 0.924
49% 0.203 0.296 0.514 0.708
62% 0.083 0.123 0.284 0.420

2000 30% 0.160 0.325 0.617 0.836
49% 0.000 0.003 0.080 0.220
62% 0.000 0.000 0.005 0.011

p̄m: average percent of missingness over the two scenarios; EP: equal-precision-type band;
HW: Hall–Wellner-type band
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5 Results from the Analysis of the Bladder Cancer Trial Data

This section includes the results from the application of the proposed methods
to the EORTC bladder cancer trial data.

Table 9 Descriptive statistics for the EORTC bladder cancer trial.

BCG treatment group
1/3 dose Full dose
n (%) n (%)

Vital status
Alive 258 (75.7) 251 (74.0)
Deceased 83 (24.3) 88 (26.0)
Cause of death
Bladder cancer 13 (15.7) 20 (22.7)
Other causes 55 (66.3) 60 (68.2)
Missing 15 (18.1) 8 (9.1)
WHO performance status
Fully active 281 (82.4) 278 (82.0)
Reduced activity 60 (17.6) 61 (18.0)

Median (IQR) Median (IQR)
Age (years) 68.0 (60.0, 74.0) 67.0 (58.0, 73.0)

WHO: World Health Organization

Table 10 Data analysis of the EORTC bladder cancer trial sample.

Proposed MPPLE AIPW

Covariate β̂n SE p-value β̂n SE p-value

Death due to bladder cancer
Group (Full dose = 1, 1/3 dose = 0) 0.451 0.356 0.204 0.421 0.372 0.258
Age (years) 0.026 0.019 0.174 0.027 0.021 0.191
Fully active (no = 1, yes = 0) 0.488 0.412 0.237 0.512 0.453 0.259

Death from other causes
Group (Full dose = 1, 1/3 dose = 0) 0.084 0.175 0.633 0.091 0.184 0.620
Age (years) 0.085 0.013 <0.001 0.085 0.013 <0.001
Fully active (no = 1, yes = 0) 0.105 0.221 0.635 0.097 0.214 0.650

MPPLE: maximum pseudo partial likelihood estimator; AIPW: augmented inverse proba-
bility weighting estimator; SE: estimated standard error of β̂n
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Fig. 1 Cumulative residual process for the evaluation of the parametric model π1(W ,γ0)
based on the EORTC bladder cancer trial data along with the 95% goodness-of-fit band
(grey area) and the corresponding p-value.
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Fig. 2 Predicted cumulative incidence functions (solid lines) of death from (a) bladder
cancerr and (b) other causes, for a 68-year old patient who is fully active and who was
assigned in the 1/3 dose of BCG, along with the 95% simultaneous confidence bands based
on equal precision (dotted lines) and Hall–Wellner-type weights (dashed lines). The time
interval depicted was restricted according to the guidlines provided in subsection 3.2 of the
main text.
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