Supplemental Material

Liver fat and Cardio-metabolic Risk Factors among School Age Children

Madelon L. Geurtsen, MD, Susana Santos, PhD, Janine F. Felix, MD, PhD,

Liesbeth Duijts, MD, PhD, Meike W. Vernooij, MD, PhD, Romy Gaillard, MD, PhD,

Vincent W.V. Jaddoe, MD, PhD

Table of (Contents
Table 1.	Comparison of Child Characteristics between Children Included and Not Included in the Analyses
Table 2.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Insulin, Glucose,
	HDL-cholesterol and LDL-cholesterol
Table 3.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic
	Risk Factors at School Age among Normal Weight and Overweight/Obese Children
Table 4.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic
	Risk Factors at School Age
Table 5.	Associations of Liver Fat Fraction with Odds of Clustering of Cardio-metabolic Risk Factors
	without Visceral Fat Mass – Confounder Models
Figure 1.	Study Participants Flow Chart
Figure 2.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic
	Risk Factors at School Age – Basic Models
Figure 3.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic
	Risk Factors at School Age – Body Mass Index Models
Figure 4.	Histogram of Liver Fat Fraction of Children with Cardio-metabolic Clustering
Figure 5.	Histogram of Liver Fat Fraction of Children without Cardio-metabolic Clustering
Figure 6.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Adverse
	Levels of Single and Clustered Cardio-metabolic Risk Factors at School Age – Basic Models
Figure 7.	Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Cardio-
	metabolic Risk Factors at School Age – Confounder Models

Figure 8. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Adverse Levels of Single and Clustered Cardio-metabolic Risk Factors at School Age – Body Mass Index Models

	Participants	Non-participants	
Characteristics	(n = 3, 170)	(n = 965)	
			P-value
Age, mean (SD), years	9.8 (0.3)	9.8 (0.4)	0.100
Boys, n (%)	1563 (49.3)	505 (52.3)	0.100
Ethnicity, n (%), European	2118 (68.2)	576 (61.2)	< 0.001
Birth weight, mean (SD), g	3446 (558)	3409 (531)	0.328
Body mass index, mean (SD), kg/m ²	17.5 (2.7)	17.8 (3.0)	0.011
Systolic blood pressure, mean (SD), mmHg	103.3 (8.0)	103.3 (8.1)	0.489
Diastolic blood pressure, mean (SD), mmHg	58.6 (6.4)	58.8 (6.6)	0.611
Insulin, median (95% range), pmol/l	182.3 (35.2, 629.1)	174.3 (35.8, 740.4)	0.605
Glucose, mean (SD), mmol/l	5.3 (0.9)	5.2 (1.0)	0.044
HOMA-IR, median (95% range)	7.0 (1.1, 28.8)	6.7 (1.1, 32.4)	0.340
Total – cholesterol, mean (SD), mmol/l	4.3 (0.7)	4.3 (0.6)	0.378
HDL – cholesterol, mean (SD), mmol/l	1.5 (0.3)	1.5 (0.3)	0.524
LDL – cholesterol, mean (SD), mmol/l	2.3 (0.6)	2.3 (0.6)	0.417
Triglycerides, median (95% range), mmol/l	1.0 (0.4, 2.6)	1.0 (0.4, 2.4)	0.418
C-reactive protein, median (95% range), mg/l	0.3 (0.3, 5.7)	0.3 (0.3, 5.1)	0.279

Table 1. Comparison of Child Characteristics between Children Included and Not Included in the Analyses

Values are observed data and represent means (SD), medians (95% range) or numbers of subjects (valid %). Differences were tested using Student's t-tests and Mann-Whitney tests for normally and non-normally distributed variables, respectively and using χ^2 -test for dichotomous variables. HOMA-IR was calculated using the formula: insulin resistance = (insulin (μ U/L) x glucose (mmol/L)) / 22.5. LDL-cholesterol is calculated according to the Friedewald formula. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; n, number; SD, standard deviation.

		(95% Confidence Interval)			
	Insulin	Glucose	HDL-cholesterol	LDL-cholesterol	
	(n = 2,246)	(n = 2,252)	(n = 2,253)	(n = 2,242)	
Liver Fat Fraction					
Basic model	$0.14 (0.10; 0.18)^*$	0.02 (-0.02;0.07)	-0.13 (-0.17;-0.09)*	0.09 (0.04;0.13)*	
Confounder model	$0.14 (0.09; 0.18)^*$	0.03 (-0.01;0.07)	-0.11 (-0.15;-0.07)*	0.09 (0.05;0.13)*	
BMI model	$0.06 (0.02; 0.11)^*$	$0.05\;(0.01;0.10)^{\dagger}$	-0.05 (-0.10;-0.01) [†]	$0.05~(0.00;0.09)^\dagger$	
Non-alcoholic Fatty Liver D	lisease				
Basic model	0.41 (0.16;0.66)*	-0.04 (-0.29;0.21)	-0.37 (-0.61;-0.12)*	$0.30~(0.17;0.43)^{\dagger}$	
Confounder model	$0.38 (0.13; 0.64)^{*}$	-0.03 (-0.29;0.23)	-0.31 (-0.56;-0.06) [†]	0.31 (0.05;0.56) [†]	
BMI model	0.13 (-0.12;0.38)	0.02 (-0.24;0.28)	-0.11 (-0.36;0.14)	0.16 (-0.09;0.42)	

Table 2. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Insulin, Glucose, HDL-cholesterol and LDL-cholesterol

Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in insulin and glucose in SDS per SDS change in childhood liver fat fraction. *P-value <0.01, *P-value <0.05. Associations are adjusted for child age, sex, ethnicity in the basic models, further adjusted for maternal pre-pregnancy BMI and maternal education in the confounder models and additionally adjusted for childhood BMI at ten years of age in the BMI model. N, number; SDS, standard deviation scores. Table 3. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic Risk Factors at School Age among

Normal Weight and Overweight/Obese Children

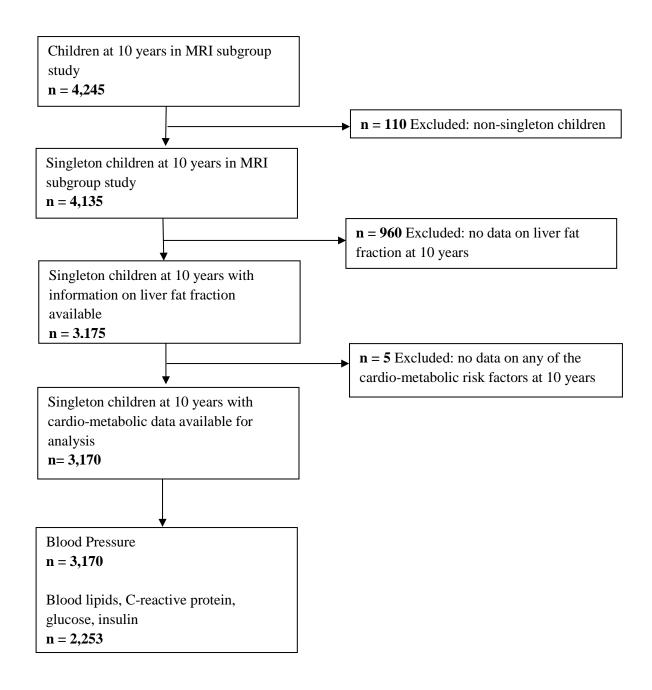
		Cardio-meta	bolic risk factors at 10	years in Standard Devia	ation Scores	
	Difference (95% Confidence Interval)					
	Systolic blood	Diastolic blood	HOMA-IR	Total – cholesterol	Triglycerides	C-reactive protein
	pressure	pressure				
Liver fat fraction						
Normal weight group	n = 2,323	n = 2,324	n = 1,729	n = 1,729	n = 1,727	n = 1,730
	$0.09~(0.04;0.13)^{*}$	0.06 (0.01;0.11)†	0.07 (0.01;0.13)†	0.07 (0.01;0.12)†	0.15 (0.10;0.21)*	$0.07~(0.02;0.12)^{*}$
Overweight group	n = 536	n = 536	n = 377	n = 382	n = 380	n = 383
	$0.13 (0.07; 0.19)^{*}$	0.08 (0.02;0.15)†	0.14 (0.07;0.22)*	0.13 (0.05;0.21)*	$0.20 (0.12; 0.27)^{*}$	0.20 (0.11;0.29)*
Non-alcoholic Fatty Liver						
Disease						
Normal weight group	n = 2,323	n = 2,324	n = 1,729	n = 1,729	n = 1,727	n = 1,730
	0.24 (-0.15;0.62)	0.45 (0.05;0.85)†	-0.11 (-0.55;0.32)	0.17 (-0.27;0.60)	0.47 (0.03;0.91)†	0.28 (-0.11;0.67)
Overweight group	n = 536	n = 536	n = 377	n = 382	n = 380	n = 383
	$0.37~(0.10;0.63)^{*}$	0.31 (0.04;0.58)†	0.32 (0.00;0.63)	0.45 (0.11;0.80)*	$0.49 (0.17; 0.81)^{*}$	$0.76(0.37;1.14)^*$

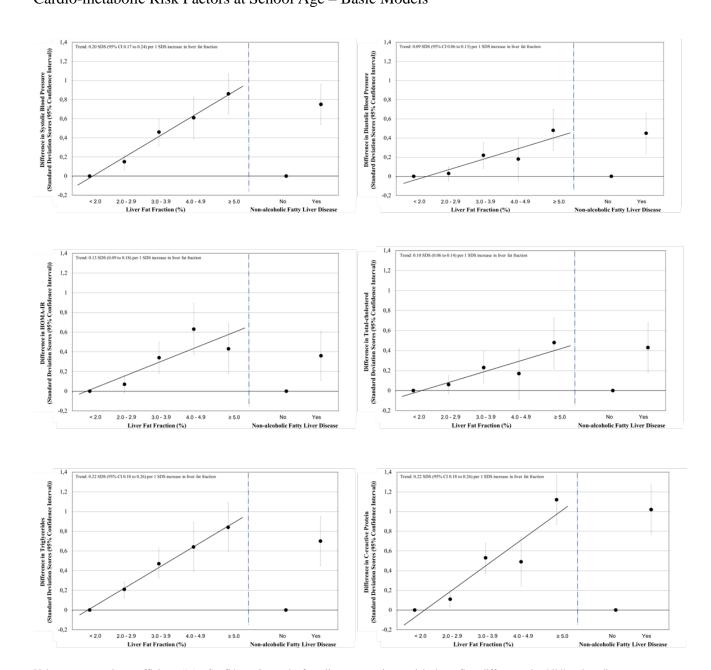
Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in childhood cardio-metabolic risk factors in SDS per SDS change in childhood liver fat fraction or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat). *P-value <0.01, †P-value <0.05. Associations are adjusted for child's age, sex, ethnicity, maternal pre-pregnancy BMI and maternal education. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; n, number; SDS, standard deviation scores.

Table 4 Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic Risk Factors at School Age

		Cardio-metab	olic risk factors at 10) years in Standard De	viation Scores	
	Difference (95% Confidence Interval) (n = 3,170)					
	Systolic blood	Diastolic blood	HOMA-IR	Total – cholesterol	Triglycerides	C-reactive protein
	pressure	pressure				
Liver fat fraction						
Confounder model	0.17 (0.14;0.21)*	0.07 (0.03;0.11)*	0.13 (0.09;0.17)*	0.11 (0.07;0.15)*	0.21 (0.17;0.25)*	0.20 (0.16;0.24)*
BMI model	$0.07~(0.03;0.10)^{*}$	0.05 (0.01;0.09)*	$0.07~(0.02;0.11)^{*}$	0.09 (0.04;0.13)*	$0.16 (0.12; 0.21)^{*}$	$0.12 (0.08; 0.16)^{*}$
Visceral fat model	0.07 (0.03;0.11)*	$0.05 (0.00; 0.09)^{*}$	$0.11 (0.06; 0.17)^{*}$	$0.08 (0.03; 0.13)^{*}$	$0.13 (0.08; 0.18)^{*}$	$0.10 \left(0.05; 0.15 ight)^{*}$
Non-alcoholic Fatty Liver						
Disease						
Confounder model	$0.66 \left(0.45; 0.87\right)^*$	$0.38 \left(0.17; 0.59\right)^{*}$	$0.34 (0.08; 0.59)^{*}$	$0.45\ {(0.20;0.70)}^{*}$	$0.67 (0.42; 0.93)^{*}$	$0.96 \left(0.71; 1.21 ight)^{*}$
BMI model	$0.29 (0.09; 0.49)^{*}$	0.31 (0.10;0.53)*	0.11 (-0.14;0.37)	$0.36 \left(0.10; 0.61\right)^*$	$0.48 (0.23; 0.74)^{*}$	0.67 (0.42;0.91)*
Visceral fat model	0.20 (-0.03;0.44)	0.25 (0.00;0.49)*	0.20 (-0.10;0.49)	0.32 (0.03;0.62)*	0.18 (-0.11;0.47)	$0.59 (0.31; 0.87)^{*}$

Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in childhood cardio-metabolic risk factors in SDS per SDS change in childhood liver fat fraction or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat). *P-value <0.01, †P-value <0.05. Confounder model adjusted for child's age, sex, ethnicity, maternal pre-pregnancy BMI and maternal education. BMI model: confounder model additionally adjusted for child BMI at 10 years. Visceral fat model: confounder model additionally adjusted for visceral fat mass at 10 years. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; n, number; SDS, standard deviation scores.


Table 5. Associations of Liver Fat Fraction with Odds of Clustering of Cardio-metabolic Risk


 Factors without Visceral Fat Mass – Confounder Models

Liver Fat Fraction (%)	Clustering of Cardio-metabolic Risk Factors without taking	
	into account Visceral Fat Mass (n = 3,170)	
< 2.0	Reference group	
2.0 - 2.9	1.36 (1.08;1.71)*	
3.0 – 3.9	2.85 (1.94;4.20) [*]	
4.0 - 4.9	2.78 (1.50;5.14)*	
≥ 5.0	6.68 (3.48;12,81)*	

Values are odds ratios (95% Confidence Intervals) analyzed in a subgroup of complete cases (n = 1,906) that reflect the odds of cardio-metabolic clustering without taking into account visceral fat mass, defined as having two or more out of high (>75th percentile) systolic or diastolic blood pressure, low (<25th percentile) HDL-cholesterol or high (>75th percentile) triglycerides, and high (>75th percentile) insulin for children with increasing liver fat fraction compared to the reference group (children with <2% of liver fat). *P-value <0.01. Associations are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI and maternal education. N, number.

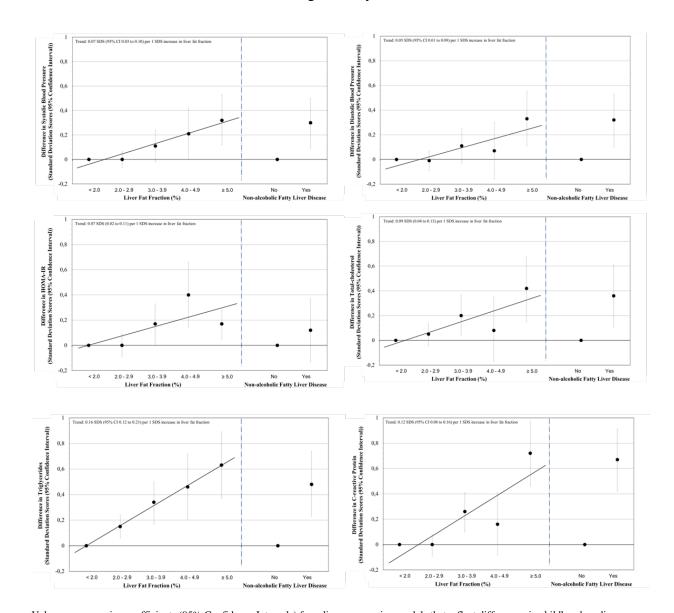

Figure 1. Study Participants Flow Chart

Figure 2. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic Risk Factors at School Age – Basic Models

Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in childhood cardiometabolic risk factors in SDS per SDS change in childhood liver fat fraction as compared to the reference group (children with <2.0% of liver fat; left side of each figure), or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat; right side of each figure). Associations are adjusted for child age, sex, ethnicity. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; SDS, standard deviation scores. Trend lines are given only when p-value for linear trend <0.05.

Figure 3. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Cardio-metabolic Risk Factors at School Age – Body Mass Index Models

Values are regression coefficients (95% Confidence Intervals) from linear regression models that reflect differences in childhood cardiometabolic risk factors in SDS per SDS change in childhood liver fat fraction as compared to the reference group (children with <2.0% of liver fat; left side of each figure), or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat; right side of each figure). Associations are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI, maternal education and childhood BMI at ten years of age. HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; SDS, standard deviation scores. Trend lines are given only when p-value for linear trend <0.05.

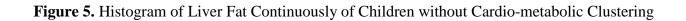
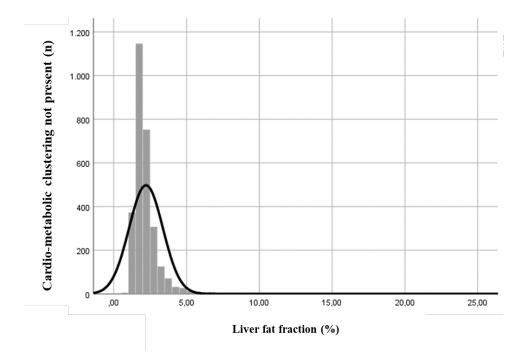
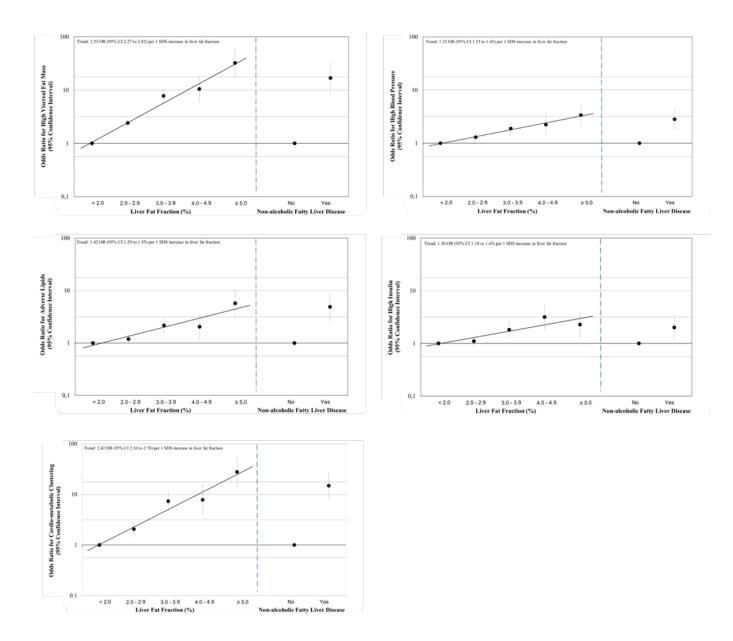




Figure 4. Histogram of Liver Fat Continuously of Children with Cardio-metabolic Clustering


Histogram of liver fat continuously(%) for children with cardio-metabolic clustering present.

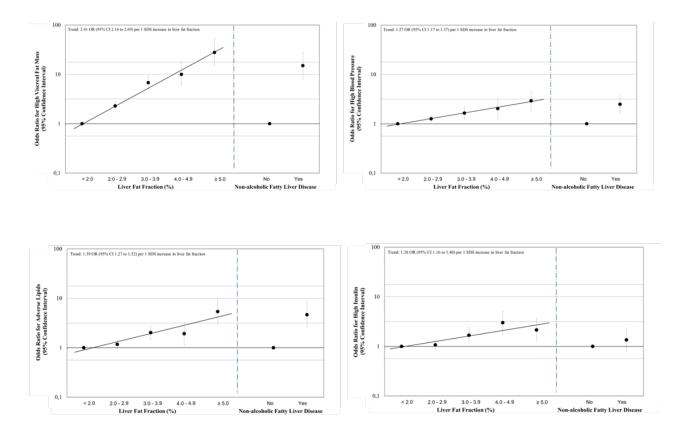

Histogram of liver fat continuously(%) for children without cardio-metabolic clustering present.

Figure 6. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Adverse Levels of Single and Clustered Cardio-metabolic Risk Factors at School Age – Basic Models

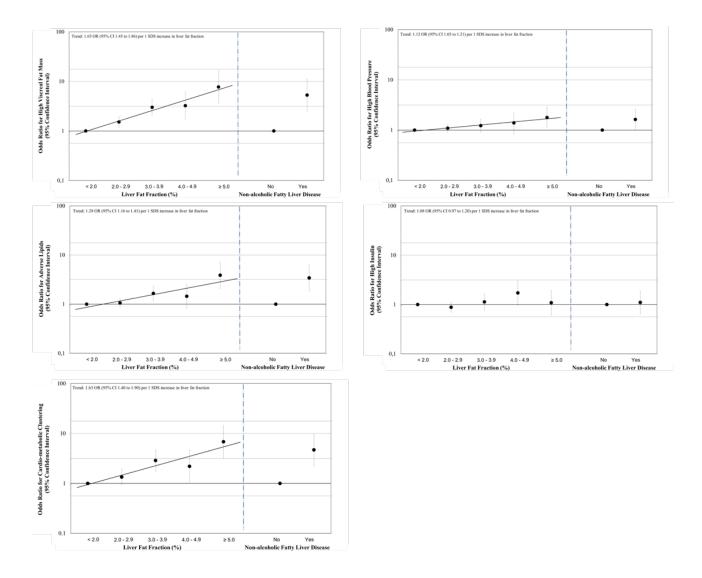

Values are odds ratios (95% Confidence Intervals) that reflect the risk of high (>75th percentile) visceral fat mass, high (>75th percentile) systolic or diastolic blood pressure, low (<25th percentile) HDL-cholesterol or high (>75th percentile) triglycerides, and high (>75th percentile) insulin and of cardio-metabolic clustering per SDS increase in liver fat fraction as compared to the reference group (<2.0%; left side of each figure), or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat; right side of each figure). Cardio-metabolic clustering was defined as having three or more of these risk factors and was analyzed in a subgroup of cases with complete data for all cardio-metabolic variables (n = 1,906). Associations are adjusted for child age, sex, ethnicity. OR, Odds Ratio; SDS, standard deviation scores. Trend lines are given only when p-value for linear trend <0.05.

Figure 7. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Cardio-metabolic Risk Factors at School Age – Confounder Models

Values are odds ratios (95% Confidence Intervals) that reflect the risk of high ($>75^{th}$ percentile) visceral fat mass, high ($>75^{th}$ percentile) systolic or diastolic blood pressure (shown as high blood pressure), low ($<25^{th}$ percentile) HDL-cholesterol or high ($>75^{th}$ percentile) triglycerides (shown as adverse lipids), and high ($>75^{th}$ percentile) insulin per increase in liver fat fraction as compared to the reference group (<2.0%; left side of each figure), or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat; right side of each figure). Associations are adjusted for child age, sex, ethnicity, maternal pre-pregnancy BMI and maternal education. SDS, standard deviation scores. Trend lines are given only when p-value for linear trend <0.05.

Figure 8. Associations of Liver Fat Fraction and Non-alcoholic Fatty Liver Disease with Odds of Adverse Levels of Single and Clustered Cardio-metabolic Risk Factors at School Age – Body Mass Index Models

Values are odds ratios (95% Confidence Intervals) that reflect the risk of high (>75th percentile) visceral fat mass, high (>75th percentile) systolic or diastolic blood pressure (shown as high blood pressure), low (<25th percentile) HDL-cholesterol or high (>75th percentile) triglycerides (shown as adverse lipids), and high (>75th percentile) insulin and of cardio-metabolic clustering per increase in liver fat fraction as compared to the reference group (<2.0%; left side of each figure), or for children with non-alcoholic fatty liver disease as compared to the reference group (children with <5% of liver fat; right side of the figure). Cardio-metabolic clustering was defined as having three or more of these risk factors and was analyzed in a subgroup of cases with complete data for all cardio-metabolic variables (n = 1,906). Associations are adjusted for child age, sex, ethnicity in the basic models, further adjusted for maternal pre-pregnancy BMI and maternal education in the confounder models and additionally adjusted for childhood BMI at ten years of age in the BMI model. OR, Odds Ratio; SDS, standard deviation scores. Trend lines are given only when p-value for linear trend <0.05.