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Supporting Information: Computational 
Methods 

Training Data 
We queried the Electron Microscopy Data Bank (EMDB) for all 
single particle Cryo-EM maps with a resolution 4 Å, for which 
corresponding protein models were available in the Protein Data 
Bank in Europe (PDBe), yielding 576 map and model pairs as of 
February 2018. We filtered these EMDB/PDB pairs by the 
following three criteria: (1) Convincing visual fit between map 
and model; (2) presence of at least one annotated -helix or -
sheet; and (3) preference of the highest resolution map in case 
the same authors deposited several instances of the same 
macromolecular complex. Maps with severe misfits, 
misalignments, or models without corresponding reconstruction 
densities, and vice versa, were discarded. After applying these 
criteria, we retained 293 map/model pairs for generating the 
training data (see Table 1, below). 
To extract secondary structure information from the PDB data, 
we developed a custom parser for the PDBML[1] format based 
on xmltodict. To obtain additional secondary structure 
information, we implemented a variant of the DSSP algorithm[2] 
without strand direction, and a torsion angle based secondary 
structure detection inspired by STRIDE[3]: annotated or DSSP-
detected secondary structures were extended by neighboring 
amino acids if they matched the same Ramachandran profile.  
 
Annotation of reconstruction maps 
For every entry pair, the augmented model was then 
superimposed on the map and all voxels within 3 Å of a protein 
backbone atom, or, in the case of nucleotides, within 3 Å of any 
non-Hydrogen atom, were assigned to the respective class 
(helix, sheet or nucleotide) if their value was higher than ½ of the 
average backbone density of the helix, sheet or nucleotide in 
question. Secondary structures with a backbone standard 
deviation of <2  and atoms without secondary structure 
assignment were either excluded, as they were likely incorrectly 
modelled, misfitted, or flexible structures, or labelled as 
‘unassigned’. For some training data pairs, such as virus capsids, 
only small or partial protein models were deposited for large 
Cryo-EM maps, resulting in well-defined high-density regions 
without model coverage. These regions would not get annotated 
and hence result in false positives if the network tried to predict 
the actual structure. To mitigate this, all voxels with density  1.0 
r.m.s.d. but not within 5 Å of a model atom with density  1.0 
r.m.s.d. were masked as unmodeled density and hence did not 
contribute to training. 
Since our network generated a single class label as output, the 
reconstruction density of the secondary structures must be 
converted to a strict assignment to one of the three classes in 
order to be used as training examples. For each secondary 
structure, the reconstruction map density was multiplied by the 
backbone standard deviation and rescaled to an output density 
between zero and one (corresponding to 0.5 and 1.0 times the 
average backbone density of the local secondary structure 
element) for each label type. The highest channel value 
determined the voxel class. If multiple channels shared the 
same value, sheets took precedence over oligonucleotides, 
which took precedence over helices. Voxels where all channel 
values were below 0.01 were assigned the ‘unassigned’ class. 

Finally, reconstruction maps were rescaled to a voxel size of 1.1 
Å if they were outside of [1.0; 1.2] Å. 
 
Generation of training segments 
To generate the 703 voxel sized segments needed for training, 
candidate volumes were sampled from the entire map, and 
segments with a mean backbone density < 3.0 r.m.s.d., less 
than 5% annotated volume, or less than 100 atoms with 
standard deviation  1.0 r.m.s.d. were discarded. This resulted in 
altogether 2183 training segments, of which 110 segments (5%) 
were held back for evaluation during training. To generate 
additional segments for training, we applied rotations in steps of 
90° around all three axes, resulting in 24 rotated versions of 
each segment that could all be used as separate training 
volumes since the convolutional network is not rotation-invariant. 
Segments were further augmented during training by using a 
randomly translated 403 sub-cube for each step. 

 

Figure 4. Haruspex neural network architecture. The network consists of 
multiple interconnected layers, shown as rectangular boxes. The layers are 
connected by convolution and pooling operations (arrows). Layer height 
represents the level of abstraction: lower layer data, generated by pooling 
operations, contain more abstract representations of the map. Input data 
(blue) is fed into the downconvolutional arm (yellow) in order to extract 
valuable information, which is then combined with previously discarded 
information through concatenations in the upconvolutional arm (purple) to 
compute annotated output data (green) for a subsection (20³) of the input 
volume (40³). Our network consists of two encoder blocks, containing 
altogether three convolutional layers (3x3x3) and two pooling layers. This is 
followed by two decoder blocks, one with upconvolution followed by two 3x3x3 
convolutions and 128 feature channels, and one with upconvolution followed 
by two 3x3x3 convolutions with 64 and 32 feature channels, with concatenated 
sections of the corresponding layer in the encoding part. The output part 
consists of a final 1x1x1 convolution followed by a soft-max output layer. This 
results in 13 layers in total (12 + 1 convolution at bottom). 

 
Network Architecture 
We used a state-of-the-art U-Net-like encoder-decoder 
architecture[4,5]  (see Fig. 4) with a single input channel (the 
reconstruction density). This architecture is a variant of so-called 
fully convolutional networks where spatial information and object 
details are encoded, reduced by pooling layers and then 
recovered again with up-sampling or transpose convolutions; the 
term U-Net arises from the U-like shape of the data flow. The 
encoding branch consisted of two 3x3x3 convolutional layers 
with 32 and 64 feature channels, respectively, followed by max-
pooling layers. Another convolutional layer with 128 feature 
channels followed by a max-pooling layer finally resulted in an 83 
cube with 128 feature channels at the deepest layer of the 
network. This cube was passed through another convolutional 
layer with the same data padding in order to preserve its 
dimensions. A fully connected layer was considered, but not 
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chosen due to its high memory and performance cost. The 
decoding branch of the U-Net was made of two blocks, each 
consisting of a deconvolution followed by two 3x3x3 
convolutions (128 feature channels in the first, 64 and 32 
channels in the second block to restore symmetry) with 
concatenated sections of the corresponding layer in the 
encoding part. The output part consists of a final 1x1x1 
convolution followed by a soft-max output layer. The output layer 
reproduced the central 203 voxel cube of the input layer in four 
annotation channels representing co-dependent probabilities for 
the four classes (helix, sheet, nucleotide, unassigned) summing 
up to one. The highest channel value determined the predicted 
class. Implementation was realized using TensorFlow[6]. The 
network was trained end-to-end by comparing the predicted 
class of each voxel to the annotated EMDB model using cross-
entropy loss, back propagating the error through the network, 
and adapting the network weights to iteratively minimize the 
error. 
 
Network Training 
The network was trained for 40,000 steps on training batches of 
100 random segment pairs per step corresponding to 80 epochs, 

using ADAM stochastic optimization[7] with a learning rate of 
0.001, 1 = 0.9, 2 = 0.999 and = 0.1. Error assignment for 
backpropagation was performed using cross-entropy loss, where 
the target class was represented in one-hot encoded binary 
format (1 for the target class, 0 for the other three classes). To 
account for class imbalance, voxels were weighted according to 
overall class occurrence in the training data. Furthermore, non-
true negatives were weighted 16-fold stronger than true 
negatives. 
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Table 1. List of EMDB/PDB entries used as training data. 

EMDB PDB EMDB PDB EMDB PDB EMDB PDB EMDB PDB EMDB PDB 

2278 3j2v 4140 5m1j 8123 5it7 3570 5mup 6675 5wq7 8605 5us9 

2513 4ci0 4146 5m32 8138 5iyd 3571 5muu 6676 5wq8 8606 5uu5 

2566 3j6b 4147 5m3f 8139 5iz7 3574 5mv5 6687 5wtf 8608 5uvn 

2650 3j7q 4148 5m3m 8175 5jte 3583 5mz6 6698 5x0m 8615 5uyk 

2762 3j7y 5199 4v7q 8176 5ju8 3593 5n61 6699 5x0x 8616 5uyl 

2764 3j80 5256 3izx 8184 5jzg 3601 5n8o 6703 5x58 8617 5uym 

2773 4uy8 5495 3j26 8185 5jzh 3618 5np6 6705 5x5b 8618 5uyn 

2787 4v19 5499 3j2p 8189 5k0u 3624 5nd8 6709 5x8p 8619 5uyp 

2807 3j8h 5623 3j9i 8194 5k12 3630 5ned 6710 5x8r 8620 5uyq 

2832 3j92 5764 3j4u 8237 5kcr 3654 5nj3 6711 5x8t 8622 5uz5 

2847 5afi 5776 3j5q 8238 5kcs 3656 5njt 6732 5xlr 8641 5v7q 

2857 5adx 5926 3j6q 8253 5kip 3695 5nsr 6733 5xmi 8642 5v7v 

2876 3j9m 5995 3j7h 8279 5kps 3713 5nwy 6742 5xnm 8645 5v93 

2913 5aj3 6000 3j7l 8281 5kpw 3730 5o2r 6743 5xnn 8650 5va1 

2924 4ui9 6037 3j7x 8282 5kpx 3747 5o5b 6744 5xno 8658 5vc7 

2938 4ug0 6057 3j7z 8289 5kuf 3748 5o5j 6752 5xs5 8697 5vjh 

2981 5a0q 6224 3j9c 8314 5l35 3750 5o60 6757 5xs7 8708 5vly 

2984 5a1a 6239 3j9d 8315 5sy1 3751 5o61 6770 5xsy 8712 5vms 

3013 5a32 6240 3j9e 8331 5szs 3771 5oac 6771 5xtb 8713 5vn3 

3037 3jaj 6306 3j9w 8333 5t0c 3817 5oik 6772 5xtc 8732 5vt0 

3045 3jan 6311 3j9y 8342 5t15 3824 5ojs 6773 5xtd 8746 5vya 

3047 3jam 6324 3ja7 8343 5t2a 3842 5ool 6774 5xte 8762 5w3m 

3061 5a63 6337 5a22 8345 5t2c 3847 5oql 6775 5xth 8764 5w3s 

3129 5ac9 6338 3ja8 8354 5t4d 3908 6eoj 6777 5xwy 8778 5w68 

3130 5aca 6371 3jaz 8361 5t5h 4014 5l8q 6778 5xxb 8782 5w81 

3151 5apo 6374 3jb0 8369 5t7v 4015 5l93 6780 5xxu 8784 5w9i 

3152 5apn 6394 3jb4 8372 5t9m 4038 5ld2 6784 5xy3 8795 5wc3 

3178 5fj8 6398 3jb5 8373 5t9n 4050 5li0 6788 5xyi 8827 5wfe 

3218 5flm 6408 3jb6 8397 5tc1 4053 5lii 6789 5xym 8840 5wj5 

3231 5fmg 6413 3jb9 8399 5tcq 4055 5lj3 6790 5xyu 8859 5wlc 

3239 5fn4 6435 3jbg 8402 5tcu 4063 5lk7 6829 5yhq 8860 5wln 

3245 3jc2 6455 5an8 8409 5tj5 4068 5lki 7019 6ayf 8881 5wpq 

3246 5foj 6478 3jbs 8435 5tqq 4070 5lks 7030 6b0x 8882 5wpt 

3295 5ftj 6480 3jbt 8454 5tr1 4071 5ll6 7036 6b2z 8883 5wpv 

3331 5g2x 6486 3jbv 8461 5uar 4073 5lmn 7051 6b47 9400 5bk4 

3337 5fwk 6487 3jbx 8477 5u07 4080 5lmu 7059 6b6h 9512 5gjr 

3388 5g05 6488 3jby 8478 5u0a 4093 5lnk 7071 6b9q 9515 5gjw 

3434 5m3l 6526 3jcl 8481 5u1c 4115 5lwi 7073 6baa 9517 5gka 

3446 5m5w 6534 3jc6 8482 5u1d 4121 5lza 8003 5gag 9518 5gky 

3460 5mbv 6551 3jcf 8506 5u4j 4124 5lzd 8011 5gam 9519 5gkz 

3461 5mc6 6555 3jci 8511 5u6o 4125 5lze 8014 5gap 9524 5gm6 

3490 5mdw 6559 3jcj 8512 5u6p 4130 5lzs 8015 5gaq 9539 5gup 

3508 5mgp 6583 3jcs 8515 5u70 4131 5lzt 8064 5hx2 9564 5h0r 

3525 5mlc 6584 5imq 8521 5u9f 4132 5lzu 8072 5i68 9565 5h0s 

3531 5mmi 6615 3jct 8522 5u9g 4133 5lzv 8099 5ipi 9569 5h4p 

3532 5mmj 6617 3jcu 8540 5udb 4134 5lzw 8107 5iqr 9570 5h1q 

3533 5mmm 6635 3jd2 8576 5umd 4135 5lzx 8117 5irx 9572 5h1s 

3539 5mps 6656 5h3o 8598 5urf 4136 5lzy 8118 5irz 9575 5h37 

3551 5mrc 6667 5h5u 8604 5us7 4137 5lzz 8119 5is0   
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Table 2. List of EMDB/PDB entries used as test data with individual test results. 

EMDB PDB 
True  

Positives (%) 
False  

Positives (%) 
False 

Negatives (%) 
Recall[a] 

(%) 
Precision[a] 

(%) 
Remarks 

0001 6gh5 64.8 31.2 4.0 94.2 67.5 Fig. 3F 

0011 6gjc 75.7 20.4 4.0 95.0 78.8  

0065 6gtg 60.6 20.0 19.3 75.8 75.2  

0088 6gy6 91.5 6.7 1.7 98.1 93.2  

0089 6gyb 66.2 29.7 4.1 94.1 69.0  

0097 6gyu 78.7 18.4 2.8 96.5 81.0  

0128 6h25 70.7 24.1 5.2 93.1 74.6  

0133 6h3i 48.4 49.7 1.9 96.3 49.3 Fig. 3B 

0136 6h3n 66.8 29.9 3.3 95.3 69.1  

0150 6h6f 78.4 17.9 3.7 95.5 81.4  

0180 6hbc 73.8 18.2 8.0 90.2 80.3  

0199 6hcy 84.8 15.0 0.2 99.7 85.0  

0227 6hiq 77.8 18.0 4.2 94.9 81.2  

0257 6hra 78.4 20.1 1.5 98.1 79.6  

0279 6huj 78.7 18.1 3.2 96.1 81.3  

0281 6hum 78.5 18.2 3.3 96.0 81.1  

0289 6hwh 72.3 22.9 4.7 93.9 75.9  

0308 6hyd 80.3 15.5 4.1 95.1 83.8  

0336 6n3q 82.1 16.1 1.8 97.9 83.6  

0339 6n4b 71.2 27.0 1.8 97.5 72.5  

0341 6n4q 71.8 13.1 15.1 82.6 84.6  

0345 6n51 69.5 27.5 3.0 95.9 71.7 Fig. 3E 

3984 6ez8 74.0 18.9 7.1 91.3 79.7  

4219 6fay 50.7 45.9 3.4 93.6 52.5  

4230 6fbv 69.2 19.8 10.9 86.4 77.7  

4264 6fhs 74.7 21.8 3.6 95.5 77.4  

4281 6fn1 75.3 18.8 6.0 92.7 80.0  

4287 6fo1 84.8 13.8 1.4 98.4 86.0  

4297 6fq5 92.7 5.9 1.4 98.5 94.0 Fig. 3A 

4302 6ft6 75.4 20.5 4.0 95.0 78.6  

4339 6g1k 85.9 13.6 0.5 99.4 86.3  

4345 6g2j 75.3 21.5 3.2 96.0 77.8  

4358 6g79 70.1 16.8 13.1 84.3 80.6  

4362 6g8z 88.3 7.9 3.8 95.8 91.8  

4386 6gct 84.0 15.8 0.2 99.8 84.2  

6822 5yd1 88.4 10.8 0.9 99.0 89.1  

6856 5yx9 86.7 12.5 0.8 99.1 87.4  

6877 5z1w 75.1 22.2 2.7 96.6 77.1  

6901 5z96 86.4 11.5 2.1 97.6 88.3  

6917 5zdh 75.2 17.6 7.2 91.2 81.1  

6929 5zgb 75.9 18.7 5.4 93.3 80.2  

6941 5zr1 82.5 11.9 5.7 93.6 87.4  

6991 6a70 70.3 27.0 2.7 96.3 72.2  

6997 6a95 82.8 11.6 5.6 93.6 87.7  

6998 6a96 66.3 27.9 5.8 91.9 70.4  

7075 6bbj 83.1 12.4 4.5 94.9 87.0  

7299 6bwi 74.9 23.1 2.1 97.3 76.4  

7320 6c04 70.6 27.1 2.3 96.8 72.3  

7348 6c6l 87.9 10.5 1.6 98.2 89.3  

7352 6c70 87.7 11.6 0.7 99.2 88.3  

                                                 
a As defined in the main article:  
recall = true positives / (true positives + false negatives) 
precision = true positives / (true positives + false negatives) 
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EMDB PDB 
True  

Positives (%) 
False  

Positives (%) 
False 

Negatives (%) 
Recall[a] 

(%) 
Precision[a] 

(%) 
Remarks 

7435 6c9a 87.7 8.4 3.9 95.8 91.2  

7442 6caj 61.1 9.2 29.8 67.2 86.9  

7460 6cdi 56.8 41.3 1.9 96.8 57.9  

7464 6ces 65.9 30.3 3.7 94.6 68.5  

7468 6cfw 79.5 18.9 1.6 98.1 80.8  

7482 6cjq 87.3 12.0 0.7 99.2 87.9  

7516 6cm3 61.1 36.2 2.7 95.8 62.8  

7526 6cmx 56.3 37.8 6.0 90.4 59.8  

7535 6cnj 69.8 23.0 7.2 90.7 75.2  

7537 6cnm 91.0 5.7 3.4 96.4 94.1  

7542 6co7 86.5 10.6 2.9 96.8 89.1  

7544 6coy 92.1 4.2 3.7 96.1 95.7  

7573 6crv 74.3 14.5 11.2 86.9 83.7  

7609 6csx 83.4 11.9 4.7 94.6 87.5  

7620 6cud 88.5 7.2 4.4 95.3 92.5  

7637 6cv9 79.4 20.6 0.0 100.0 79.4  

7783 6d03 72.5 26.6 0.9 98.8 73.2  

7808 6d6q 70.8 24.1 5.2 93.2 74.6  

7823 6d7l 76.1 23.2 0.7 99.1 76.7  

7826 6d7w 75.0 21.5 3.5 95.5 77.8  

7835 6d9h 80.9 16.1 3.0 96.4 83.4  

7844 6dbj 77.2 17.7 5.2 93.7 81.4  

7868 6dde 67.2 12.2 20.6 76.6 84.7  

7882 6dg7 79.3 19.5 1.2 98.5 80.3  

7942 6dju 70.4 25.2 4.4 94.1 73.6  

7959 6dlz 75.3 22.5 2.3 97.1 77.0  

7965 6dmr 82.6 15.4 2.0 97.6 84.3  

7968 6dmy 75.1 22.4 2.5 96.8 77.0  

7971 6dnf 82.3 10.6 7.1 92.1 88.6  

7981 6dqn 73.9 5.8 20.3 78.5 92.7  

7999 6drj 76.8 13.3 9.9 88.6 85.2  

8909 6ds5 64.7 32.0 3.3 95.1 66.9  

8911 6dt0 85.3 14.2 0.6 99.3 85.8  

8912 6du8 61.3 21.5 17.2 78.1 74.0  

8922 6dw0 66.0 21.2 12.8 83.7 75.7  

8953 6e14 55.9 33.2 10.9 83.7 62.7  

8957 6e1m 82.3 9.1 8.6 90.5 90.1  

8959 6e1o 82.2 17.8 0.0 100.0 82.2  

8962 6e2g 75.7 23.4 0.9 98.8 76.3  

8969 6e2r 62.6 26.9 10.5 85.7 69.9  

8978 6e3y 72.8 20.1 7.1 91.1 78.4  

9000 6e7p 79.7 12.7 7.6 91.3 86.3  

9012 6e9d 46.8 44.2 9.0 83.9 51.5  

9013 6e9e 81.3 16.6 2.0 97.6 83.0  

9024 6ebk 80.5 14.5 5.0 94.2 84.7  

9032 6edo 69.9 29.3 0.8 98.8 70.5  

9065 6mb3 61.7 31.9 6.3 90.7 65.9  

9066 6mcb 72.9 20.0 7.1 91.1 78.5  

9103 6mdp 72.4 26.6 1.0 98.6 73.1  

9104 6mdr 75.9 19.2 4.9 93.9 79.8  

9112 6mgv 85.4 6.1 8.5 91.0 93.4  

9116 6mhq 91.4 7.6 1.0 98.9 92.3  
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EMDB PDB True  
Positives (%) 

False  
Positives (%) 

False 
Negatives (%) 

Recall[a] 

(%) 
Precision[a] 

(%) 
Remarks 

9117 6mhs 86.0 11.6 2.4 97.3 88.1  

9230 6msm 84.9 10.8 4.3 95.2 88.8  

9244 6mu2 66.4 16.9 16.7 79.9 79.8  

9256 6muu 73.9 20.6 5.5 93.0 78.2  

9277 6mwq 60.5 22.3 17.2 77.9 73.1  

9318 6n1r 74.5 19.6 5.9 92.7 79.2  

9326 6n28 82.6 7.3 10.1 89.1 91.9  

9382 6niy 73.6 21.0 5.4 93.2 77.8  

9588 6acc 61.1 26.2 12.7 82.9 70.0  

9590 6acf 78.2 13.0 8.8 89.8 85.7 Fig. 3C 

9616 6agb 76.0 13.5 10.5 87.9 84.9  

9617 6agf 85.5 13.1 1.4 98.4 86.8  

9627 6ahu 70.5 18.8 10.7 86.8 79.0 Figs.1,2B,2C,2D 

9648 6idf 81.1 13.8 5.1 94.1 85.4  

9657 6ifu 70.6 24.3 5.2 93.1 74.4  

9682 6ijz 82.3 16.1 1.6 98.1 83.7  

9708 6iqw 66.2 20.1 13.7 82.8 76.7  

9747 6ixh 68.8 28.3 3.0 95.9 70.9 Fig. 3D 

9751 6iyc 81.7 15.8 2.5 97.0 83.8  
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Figure 5. Resolution of depositions vs. year. These boxplots show the 
trend of annual average resolution for published EM maps/structures in the 
Electron Microscopy Data Bank (EMDB). We used the main resolution as 
given in the deposition for entries deposited between 1/1/2011 and 3/3/2020. 
Entries without resolution were omitted. The midline of the boxes corresponds 
to the median values, which are 3.8 Å for 2018, 3.6 Å for 2019 and 3.3 Å for 
2020. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


