

Supporting Information

Triarylborane-Catalyzed Alkenylation Reactions of Aryl Esters with Diazo Compounds

Ayan Dasgupta⁺, Katarína Stefkova⁺, Rasool Babaahmadi, Lukas Gierlichs, Alireza Ariafard,* and Rebecca L. Melen*

anie_202007176_sm_miscellaneous_information.pdf

Table of Contents

1	Experimental		
	1.1	General experimental	
	1.2	General procedure a: synthesis of diazoesters	03
	1.2.1	Synthesis and spectral characterization of diazo compounds	04
	1.3	General procedure b: synthesis of alkyne esters	06
	1.3.1	Synthesis and spectral characterization of alkyne-ester compounds	06
	1.4	General procedure c: synthesis of diaryl esters	12
	1.4.1	Synthesis and spectral characterization of diaryl ester compounds	13
2	Product Characterization		
	2.1	General procedure d: C–C coupling reaction	16
	2.2	Synthesis and spectral characterization of products	16
3	NMR	Spectra	33
4	Crystallographic Data		
	4.1	Single crystal X-ray diffraction	172
	4.2	Solid-state structures	173
	4.3	X-ray refinement data	176
5	Computational Data		
	5.1	Additional free energy profiles	179
	5.2	Cartesian coordinates and total energies for the calculated structures	183
	5.3	Computational details	207
6	References		208

1. Experimental

1.1 General experimental

With the exception of the starting materials, all reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump. A nitrogen-filled glove box (MBraun) was used to manipulate solids including the storage of starting materials, room temperature reactions, product recovery and sample preparation for analysis. All solvents (toluene, hexane, tetrahydrofuran, chloroform, acetonitrile,

dichloromethane, pentane) were dried by employing a Grubbs-type column system (Innovative Technology) or a solvent purification system MB SPS-800 and stored under a nitrogen atmosphere. Anhydrous (with Sure/Seal) α, α, α -trifluorotoluene (TFT) was purchased from Merck and dried over molecular sieves before use. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. All the triarylboranes were prepared as per the standard literature report.^{[1][2]} Thin-layer chromatography (TLC) was performed on pre-coated aluminum sheets of Merck silica gel 60 F254 (0.20 mm) and visualized by UV radiation (254 nm) also a solution of KMnO₄ (1.5 g KMnO₄, 10 g K₂CO₃, and 1.25 mL 10% NaOH in 200 mL water) were used to develop the stain on TLC plates. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 or Bruker Avance 500 spectrometers. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C NMR was measured as ¹H decoupled. Yields are given as isolated yields. Chemical shifts are expressed as parts per million (ppm, δ) downfield of tetramethylsilane (TMS) and are referenced to CDCl₃ (7.26/77.16 ppm) as internal standard. NMR spectra were referenced to CFCl₃ (¹⁹F).^[3] The description of signals includes s = singlet, d = doublet, t = triplet, q = quartet, and m =multiplet, br. = broad. All coupling constants are absolute values and are expressed in Hertz (Hz). ¹³C NMR was measured as ¹H decoupled. Yields are given as isolated yields. All spectra were analyzed assuming a first order approximation. IR-Spectra were measured on a Shimadzu IRAffinity-1 photo-spectrometer. Mass spectra were measured on a Waters LCT Premier/XE or a Waters GCT Premier spectrometer. Ions were generated by the Atmospheric Solids, Analysis Probe (ASAP), Electrospray (ES) or Electron Ionisation (EI). The molecular ion peaks values quoted for either molecular ion (M⁺), molecular ion plus or minus hydrogen (M+H⁺, M-H⁻), molecular ion minus hydride (M-H⁺), molecular ion plus sodium (M+Na⁺).

1.2 Synthesis of diazoesters

General Procedure a: 1,8-Diazabicyclo[5.4.0]undec-7-ene (1.5 equiv.) (until otherwise mentioned) was added to a solution of corresponding ester (1 equiv.) and 4-acetamidobenzenesulfonyl azide (1.2 equiv.) in anhydrous CH₃CN (30 mL). The reaction mixture was stirring at room temperature for 14–16 h under the nitrogen atmosphere. The organic compounds were extracted with diethyl ether (3×25 mL), the combined organic fractions were washed with brine solution (1×30 mL), dried over MgSO₄ and concentrated using vacuum. The

crude compound was purified *via* column chromatography using silica gel (Merck, 60 Å, 230–400 mesh particle size) and hexane/ethyl acetate as eluent.

1.2.1 Synthesis and spectral characterization of diazo compounds

Synthesis of dimethyl 2-diazomalonate (1a):^[4]

Synthesized in accordance with *General Procedure a* using 1,8diazabicyclo[5.4.0]undec-7-ene (6.3 mL, 42.0 mmol), 4acetamidobenzenesulfonyl azide (8.65 g, 36.0 mmol), and dimethyl malonate (3.4 mL, 30.0 mmol). The crude compound was purified *via*

column chromatography using hexane/ethyl acetate (80:20 v/v) as eluent. The desired product (1a) was obtained as a yellow liquid. Yield: 4.50 g, 95%, 28.5 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 3.81 (s, 6H, OCH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 161.5 (C=O), 52.6 (CH₃).

Synthesis of diisopropyl 2-diazomalonate (1b):

Synthesized in accordance with *General Procedure a* using triethylamine (4.40 mL, 31.9 mmol, 2 equiv.), 4-acetamidobenzenesulfonyl azide (4.60 g, 19.1 mmol), and diisopropyl malonate (3.00 mL, 15.9 mmol). The crude

compound was purified *via* column chromatography using hexane/ethyl acetate (80:20 v/v) as eluent. The desired product (**1b**) was obtained as a yellow liquid. Yield: 2.96 g, 87%, 13.8 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 5.15 (hept, *J* = 6.2 Hz, 2H, CH), 1.29 (d, *J* = 6.3 Hz, 12H, CH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 160.8 (C=O), 69.5 (CH), 22.0 (CH₃); HRMS (ES+) [M+Na]⁺ [C₉H₁₄N₂O₄Na]⁺: calculated 237.0851, found 237.0854.

Synthesis of dibenzyl 2-diazomalonate (1c):^[5]

Synthesized in accordance with *General Procedure a* using triethylamine (2.90 mL, 21.1 mmol, 2 equiv.), 4-acetamidobenzenesulfonyl azide (3.04 g, 12.6 mmol), and dibenzyl malonate (2.60 mL, 10.5 mmol). The crude compound

was purified *via* column chromatography using hexane/ethyl acetate (80:20 v/v) as eluent. The desired product (**1c**) was obtained as a white solid. Yield: 2.8 g, 85%, 9.02 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.42–7.31 (m, 10H, Ar–H), 5.28 (s, 4H, CH₂); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 161.0 (C=O), 135.4, 128.8, 128.6, 128.4, 67.2 (CH₂).

Synthesis of di-tert-butyl 2-diazomalonate (1d):^[6]

Synthesized in accordance with *General Procedure a* using triethylamine (2.90 mL, 21.1 mmol, 2 equiv.), 4-acetamidobenzenesulfonyl azide (3.04 g, 12.6 mmol), and di-*tert*-butyl malonate (2.3 mL, 10.5 mmol). The crude compound was

purified *via* column chromatography using hexane/ethyl acetate (80:20 v/v) as eluent. The desired product (**1d**) was obtained as a colorless oil. Yield: 2.1 g, 8.67 mmol, 83%.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 1.48 (s, 18H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 160.4 (C=O), 82.8, (CH), 28.3 (CH₃).

Synthesis of methyl 2-(4-chlorophenyl)-2-diazoacetate (1e):^[7]

Synthesized in accordance with *General Procedure a* using 1,8diazabicyclo[5.4.0]undec-7-ene (2.4 mL, 16.2 mmol), 4-COOMe acetamidobenzenesulfonyl azide (3.12 g, 13.0 mmol), and methyl 2-(4-chlorophenyl)acetate (2 g, 10.8 mmol). The crude compound was

purified *via* column chromatography using hexane/ethyl acetate (20:1 v/v) as eluent. The desired product (**1e**) was obtained as an orange solid. Yield: 2.12 g, 93%, 10.1 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 7.43–7.40 (m, 2H, Ar–H), 7.36–7.33 (m, 2H, Ar–H), 3.87 (s, 3H, COOCH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 165.4 (C=O), 131.6, 129.2, 125.1, 124.2, 52.2 (CH₃).

Synthesis of methyl 2-diazo-2-phenylacetate (1f):^[7]

Synthesized in accordance with *General Procedure a* using 1,8diazabicyclo[5.4.0]undec-7-ene (2.9 mL, 20.0 mmol), 4acetamidobenzenesulfonyl azide (3.84 g, 16.0 mmol), and methyl 2phenylacetate (2 g, 13.3 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (20:1 v/v) as eluent. The desired product (**1f**) was obtained as a yellow solid. Yield: 1.92 g. 82%, 10.9 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 7.49–7.47 (m, 2H, Ar–H), 7.40–7.37 (m, 1H, Ar–H), 7.21– 7.17 (m, 2H, Ar–H), 3.87 (s, 3H, COOCH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 165.7 (C=O), 129.0, 125.9, 125.6, 124.1, 52.1 (CH₃).

1.3 Synthesis of alkyne-esters

General Procedure b: Corresponding alkyne (1.2 equiv.) was dissolved in dry tetrahydrofuran (25 mL) and the reaction mixture was cooled to 0 °C. *n*-BuLi (2.5 M in hexanes, 1.2 equiv.) was added dropwise to the reaction mixture at 0 °C. The reaction mixture was stirred for 1 h at ambient temperature. The mixture was cooled down to 0 °C and the aldehyde (1 equiv.) was added dropwise, allowed the reaction mixture to warm to room temperature and stirred for additional 2 h at ambient temperature. 4-Fluorobenzoyl chloride (1.2 equiv.) was added to the reaction mixture dropwise at 0 °C. The reaction was stirred at ambient temperature for 15 min. Saturated aqueous NH₄Cl solution was used to quench the reaction. The organic layer was extracted with ethyl acetate (3×25 mL). The combined organic fractions were washed with brine solution and dried over MgSO₄ and concentrated using vacuum. The crude compound was purified *via* column chromatography using silica gel (Merck, 60 Å, 230–400 mesh particle size) and hexane/ethyl acetate as eluent.

1.3.1 Synthesis and spectral characterization of alkyne-ester compounds

Synthesis of 1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2a):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (2.80 mL, 19.3 mmol), *n*-BuLi (7.70 mL, 19.3 mmol), 4-fluorobenzaldehyde (2.00 g, 16.1 mmol), and 4-fluorobenzoyl chloride (2.30 mL, 19.3 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2a**) was obtained as a yellow oil. Yield: 4.33 g, 78%, 12.6 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 8.10–8.07 (m, 2H, Ar–H), 7.61–7.58 (m, 2H, Ar–H), 7.13– 7.06 (m, 4H, Ar–H), 6.70 (s, 1H, CH), 0.22 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.1 (d, $J_{C-F} = 254.5 \text{ Hz}$), 164.4 (C=O), 163.1 (d, $J_{C-F} = 248.2 \text{ Hz}$), 133.0 (d, $J_{C-F} = 3.2 \text{ Hz}$), 132.6 (d, $J_{C-F} = 9.4 \text{ Hz}$), 129.9 (d, $J_{C-F} = 8.5 \text{ Hz}$), 126.0 (d, $J_{C-F} = 3.1 \text{ Hz}$), 115.7 (dd, $J_{C-F} = 21.9$, 3.7 Hz), 101.0 (C=C), 93.2 (C=C), 65.9 (CH), -0.1 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -104.93 (Ar–F), -112.45 (Ar–F); IR ν_{max} (cm⁻¹): 3076, 2964, 2179 (C=C), 1724 (C=O), 1602, 1506, 1413, 1367, 1251, 1230, 1101, 1083; HRMS (EI+) [M]⁺ [C₁₉H₁₈F₂O₂Si]⁺: calculated 344.1044, found 344.1039.

Synthesis of 1-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2b):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (2 mL, 13.8 mmol), *n*-BuLi (5.5 mL, 13.8 mmol), 4-(trifluoromethyl)benzaldehyde (2 g, 11.5 mmol), and 4-fluorobenzoyl chloride (1.6 mL, 13.8 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2b**) was obtained as off–

white solid. Yield: 3.40 g, 75%, 8.61 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.11–8.08 (m, 2H, Ar–H), 7.73–7.65 (m, 4H, Ar–H), 7.14– 7.10 (m, 2H, Ar–H), 6.75 (s, 1H, CH), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.2 (d, $J_{C-F} = 254.9$ Hz), 164.3 (C=O), 140.9, 132.7 (d, $J_{C-F} = 9.4$ Hz), 131.2 (q, $J_{C-F} = 32.5$ Hz), 128.2, 125.9 (d, $J_{C-F} = 3.8$ Hz), 125.88, 125.84, 122.6, 115.8 (d, $J_{C-F} = 22.1$ Hz), 100.3 (C=C), 93.9 (C=C), 65.9 (CH), -0.1 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -62.71 (3F, Ar–CF₃), -104.59 (1F, Ar–F); IR ν_{max} (cm⁻¹): 3026, 2986, 2123 (C=C), 1724 (C=O), 1604, 1506, 1413, 1163, 1045; HRMS (EI+) [M]⁺ [C₂₀H₁₈F₄O₂Si]⁺: calculated 394.1012, found 394.1008.

Synthesis of 1-(4-bromophenyl)-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2c):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (1.9 mL, 13.0 mmol), *n*-BuLi (5.2 mL, 12.97 mmol), 4-bromobenzaldehyde (2 g, 10.8 mmol), and 4-fluorobenzoyl chloride (1.5 mL, 13.0 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2c**) was obtained as a yellow liquid. Yield: 3.07 g, 70 %, 7.57 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ: 8.10–8.06 (m, 2H, Ar–H), 7.54–7.47 (m, 4H, Ar–H), 7.13– 7.08 (m, 2H, Ar–H), 6.67 (s, 1H, CH), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 166.1 (d, $J_{C-F} = 254.7$ Hz), 164.4 (C=O), 136.1, 132.6 (d, $J_{C-F} = 9.4$ Hz), 131.9, 129.6, 125.9 (d, $J_{C-F} = 3.0$ Hz), 123.3, 115.7 (d, $J_{C-F} = 22.0$ Hz), 100.7 (C=C), 93.4 (C=C), 65.9 (CH), -0.1 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ: -104.77 (Ar–F); IR ν_{max} (cm⁻¹): 3053, 2960, 2141 (C=C), 1722 (C=O), 1602, 1506, 1487, 1315, 1290, 1153, 1153, 1058; HRMS (EI+) [M]⁺ [C₁₉H₁₈BrFO₂Si]⁺: calculated 404.0243, found 404.0238.

Synthesis of 1-(4-chlorophenyl)-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2d):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (2.4 mL, 17.1 mmol), *n*-BuLi (6.8 mL, 17.1 mmol), 4-chlorobenzaldehyde (2 g, 14.2 mmol), and 4-fluorobenzoyl chloride (2 mL, 17.1 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2d**) was obtained as a yellow liquid. Yield: 4.01 g, 78%, 11.1 mmol).

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.09–8.07 (m, 2H, Ar–H), 7.55–7.53 (m, 2H, Ar–H), 7.38– 7.36 (m, 2H, Ar–H), 7.12–7.09 (m, 2H, Ar–H), 6.68 (s, 1H, CH), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.1 (d, $J_{C-F} = 254.6$ Hz), 164.4 (C=O), 135.6, 135.0, 132.6 (d, $J_{C-F} = 9.4$ Hz), 129.3, 129.0, 125.9 (d, $J_{C-F} = 3.0$ Hz), 115.7 (d, $J_{C-F} = 22.1$ Hz), 100.7 (C=C), 93.4 (C=C), 65.9 (CH), -0.1 (Si(CH₃)₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -104.84 (Ar–F); IR v_{max} (cm⁻¹): 3053, 2960, 2150 (C=C), 1724 (C=O), 1602, 1506, 1490, 1411, 1315, 1290, 1153, 1043; HRMS (EI+) [M]⁺ [C₁₉H₁₈ClFO₂Si]⁺: calculated 360.0749, found 360.0743. Synthesis of 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2e):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (3.2 mL, 22.6 mmol), *n*-BuLi (9.1 mL, 22.8 mmol), benzaldehyde (2 g, 18.8 mmol), and 4-fluorobenzoyl chloride (2.7 mL, 22.6 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2e**) was obtained as a yellow liquid. Yield: 5.11 g, 83%, 15.6 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.11–8.08 (m, 2H, Ar–H), 7.61–7.59 (m, 2H, Ar–H), 7.42– 7.37 (m, 3H, Ar–H), 7.12–7.08 (m, 2H, Ar–H), 6.72 (s, 1H, CH), 0.20 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.0 (d, $J_{C-F} = 254.3$ Hz), 164.5 (C=O), 137.0, 132.6 (d, $J_{C-F} = 9.4$ Hz), 129.1, 128.8, 127.9, 126.2 (d, $J_{C-F} = 3.0$ Hz), 115.6 (d, $J_{C-F} = 22.0$ Hz), 101.2 (C=C), 93.0 (C=C), 66.6 (CH), -0.1 (s, 9H, Si(CH₃)₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -105.17 (Ar–F); IR ν_{max} (cm⁻¹): 3062, 2960, 2177 (C=C), 1720 (C=O), 1602, 1506, 1454, 1411, 1345, 1256, 1125, 1054; HRMS (EI+) [M]⁺ [C₁₉H₁₉FO₂Si]⁺: calculated 326.1138, found 326.1133.

Synthesis of 1-(4-fluorophenyl)-3-phenylprop-2-yn-1-yl 4-fluorobenzoate (2f):

Synthesized in accordance with *General Procedure b* using phenylacetylene (2.1 mL, 19.3 mmol), *n*-BuLi (7.8 mL, 19.3 mmol), 4-fluorobenzaldehyde (2 g, 16.1 mmol), and 4-fluorobenzoyl chloride (2.3 mL, 19.3 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2f**) was obtained as a white solid. Yield: 4.55 g, 81%, 13.1 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.13–8.10 (m, 2H, Ar–H), 7.69–7.66 (m, 2H, Ar–H), 7.50 (dt, *J* = 7.7, 1.5 Hz, 2H, Ar–H), 7.38–7.31 (m, 3H, Ar–H), 7.12 (t, *J* = 8.7 Hz, 4H, Ar–H), 6.92 (s, 1H, CH); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.1 (d, *J*_{C–F} = 254.6 Hz), 164.6 (C=O), 163.1 (d, *J*_{C–F} = 248.2 Hz), 133.2 (d, *J*_{C–F} = 3.2 Hz), 132.6 (d, *J*_{C–F} = 9.4 Hz), 132.0, 129.9 (d, *J*_{C–F} = 8.5 Hz), 129.1, 128.4, 126.0 (d, *J*_{C–F} = 3.0 Hz), 122.0, 87.7 (C=C), 85.3 (C=C), 66.2 (CH); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -104.85 (Ar–F), -112.34 (Ar–F); IR v_{max} (cm⁻¹): 3076, 2964, 2179 (C=C), 1724 (C=O), 1651, 1523, 1454, 1413, 1367, 1251, 1153, 1083; HRMS (EI+) [M]⁺ [C₂₂H₁₄F₂O₂]⁺: calculated 348.0962, found 348.0954.

Synthesis of 1,3-diphenylprop-2-yn-1-yl 4-fluorobenzoate (2g):

Synthesized in accordance with *General Procedure b* using phenylacetylene (2.5 mL, 22.6 mmol), *n*-BuLi (9.1 mL, 22.6 mmol), benzaldehyde (2 g, 18.8 mmol), and 4-fluorobenzoyl chloride (2.7 mL, 22.6 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2g**) was obtained as a yellow solid. Yield: 4.98 g, 80%, 15.1 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.16–8.11 (m, 2H, Ar–H), 7.69 (dt, *J* = 6.1, 1.7 Hz, 2H, Ar–H), 7.51 (dt, *J* = 6.1, 2.2 Hz, 2H, Ar–H), 7.47–7.40 (m, 3H, Ar–H), 7.35–7.30 (m, 3H, Ar–H), 7.12 (td, *J* = 8.6, 1.6 Hz, 2H, Ar–H), 6.95 (s, 1H, CH); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.0 (d, *J*_{C-F} = 254.4 Hz), 164.6 (C=O), 137.2, 132.6 (d, *J*_{C-F} = 9.4 Hz), 132.0, 129.1, 129.0, 128.8, 128.4, 127.9, 126.2 (d, *J*_{C-F} = 3.0 Hz), 122.2, 115.7 (d, *J*_{C-F} = 22.0 Hz), 87.5 (C=C), 85.6 (C=C), 66.9 (CH); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -105.03 (Ar–F); IR v_{max} (cm⁻¹): 3053, 2983, 2156 (C=C), 1720 (carbonyl C=O stretching), 1602, 1508, 1490, 1442, 1321, 1232, 1153, 1062; HRMS (EI+) [M]⁺ calculated for [C₂₂H₁₅FO₂]⁺: calculated 330.1056, found 330.1050.

Synthesis of 1-(4-methoxyphenyl)-3-(trimethylsilyl)prop-2-yn-1-yl 4-fluorobenzoate (2h):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (2.5 mL, 17.6 mmol), *n*-BuLi (7.0 mL, 17.6 mmol), 4-methoxybenzaldehyde (2 g, 14.7 mmol), and 4-fluorobenzoyl chloride (2.8 mL, 17.6 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2h**) was obtained as a yellow liquid. Yield: 4.0 g, 76%, 11.2

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.10–8.06 (m, 2H, Ar–H), 7.56–7.53 (m, 2H, Ar–H), 7.11– 7.07 (m, 2H, Ar–H), 6.93 – 6.91 (m, 2H, Ar–H), 6.69 (s, 1H, CH), 3.82 (s, 3H, OCH₃), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.0 (d, $J_{C-F} = 254.2$ Hz), 164.5 (C=O), 160.2, 132.6 (d, $J_{C-F} = 9.3$ Hz), 129.5, 129.3, 126.3 (d, $J_{C-F} = 3.0$ Hz), 115.6 (d, $J_{C-F} = 22.1$ Hz), 114.1, 101.5 (C=C), 92.6 (C=C), 66.4 (CH₃), 55.4 (CH), -0.1 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -105.31 (Ar–F); IR ν_{max} (cm⁻¹): 3062, 2960, 2177 (C=C), 1720 (C=O), 1602, 1506, 1454, 1411, 1345, 1256, 1125, 1054; HRMS (ES+) [M+Na]⁺ [C₂₀H₂₁O₃FNaSi]⁺: calculated 379.1142, found 379.1155.

Synthesis of 1-(2,6-difluorophenyl)-3-phenylprop-2-yn-1-yl 4-fluorobenzoate (2i):

Synthesized in accordance with *General Procedure b* using trimethylsilylacetylene (2.4 mL, 16.9 mmol), *n*-BuLi (6.8 mL, 16.9 mmol), 2,6-difluorobenzaldehyde (2 g, 14.1 mmol), and 4-fluorobenzoyl chloride (2.7 mL, 16.9 mmol). The crude compound was purified *via* column chromatography using hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2i**) was obtained as a yellow solid. Yield: 3.6 g, 70%, 9.8 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.10 (dd, J = 8.3, 5.6 Hz, 2H, Ar–H), 7.36–7.29 (m, 1H, Ar–H), 7.10 (t, J = 8.6 Hz, 2H, Ar–H), 7.01 – 7.00 (m, 1H, Ar–H), 6.94 (t, J = 8.2 Hz, 2H, Ar–H), 0.18 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.1 (d, $J_{C-F} = 254.5$ Hz), 164.1 (C=O), 161.1 (dd, $J_{C-F} = 253.8$, 6.8 Hz), 132.7 (d, $J_{C-F} = 9.5$ Hz), 131.0 (t, $J_{C-F} = 10.3$ Hz), 125.9 (d, $J_{C-F} = 3.0$ Hz), 115.7 (d, $J_{C-F} = 21.9$ Hz), 114.1 (t, $J_{C-F} = 16.5$ Hz), 112.0 (d, $J_{C-F} = 25.3$ Hz), 99.3 (C=C), 92.1 (C=C), 56.9 (CH), -0.2 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -104.91 (1F, Ar–F), -112.30 (2F, Ar–F); IR v_{max} (cm⁻¹): 3062, 2960, 2177 (C=C), 1720 (C=O), 1602, 1506, 1454, 1411, 1345, 1256, 1125, 1054; HRMS (ES+) [M+Na]⁺ [C₂₀H₁₇O₂F₃NaSi]⁺: calculated 385.0839, found 385.0848.

Synthesis of (E)-1,3-diphenylallyl 2,2,2-trifluoroacetate (2j):

Pyridine (1.4 mL, 14.3 mmol, 1.5 equiv.) was added to a stirred CH_2Cl_2 (25 mL) solution of (*E*)-1,3-diphenylprop-2-en-1-ol (2 g) at 0 °C. The reaction mixture was allowed to stir for 15 min under nitrogen at same temperature. Trifluoroacetic anhydride (2 mL, 14.3 mmol, 1.5 equiv.) was added to the reaction mixture dropwise at 0 °C. The reaction

mixture was allowed to stir over night at ambient temperature and quenched the reaction with saturated aq. NaHCO₃ solution (1 × 30 mL). The organic compounds were extracted with ethyl acetate (3 × 25 mL), the combined organic fractions were washed with brine solution (1 × 30 mL), dried over MgSO₄ and concentrated using vacuum. The crude compound was purified *via* column chromatography using silica gel (Merck, 60 Å, 230–400 mesh particle size) and hexane/ethyl acetate as eluent. The desired compound was obtained as thick liquid which was recrystallized using pentane at -30 °C. White solid was obtained as pure compound. Yield: 2 g, 71%, 6.7 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.46–7.43 (m, 2H, Ar–H), 7.41–7.36 (m, 4H, Ar–H), 7.33–7.29 (m, 3H, Ar–H), 7.26–7.23 (m, 1H, Ar–H), 6.61 (dd, *J* = 15.8, 5.0 Hz, 1H, CH), 6.36 (ddd, *J* = 26.2, 15.9, 7.1 Hz, 1H, CH), 5.11 (dd, *J* = 9.6, 7.2 Hz, 1H, CH); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 141.39, 141.31, 136.7 (d, *J*_{C–F} = 2.1 Hz), 131.6 (d, *J*_{C–F} = 22.7 Hz), 130.5 (d, *J*_{C–F} = 21.1 Hz), 128.69, 128.67, 127.87 (d, *J*_{C–F} = 1.9 Hz), 127.82, 127.2, 126.7 (d, *J*_{C–F} = 2.3 Hz), 79.3, 79.2; ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -75.15 (CF₃); IR v_{max} (cm⁻¹): 3061, 3026, 1651, 1598, 1492, 1448, 1296, 1093, 1068, 1024.

1.4 Synthesis of diaryl esters

General Procedure c: Diaryl alcohol (1 equiv.) was dissolved in pyridine at 0 °C. Acyl chloride (1.2 equiv.) was added to the reaction mixture drop wise at 0 °C The mixture was allowed to stir at ambient temperature overnight. The reaction was quenched with water and extracted with ethyl acetate (3×25 mL). The combined organic fractions were washed with saturated brine solution (1×25 mL) and dried over MgSO₄. All volatiles were removed *in vacuo* and the crude compound was purified *via* column chromatography using silica gel (Merck, 60 Å, 230–400 mesh particle size) and hexane/ethyl acetate as eluent.

1.4.1 Synthesis and spectral characterization of diaryl ester compounds

Synthesis of bis(4-*fluorophenyl*)*methyl* 4-*fluorobenzoate* (2*k*):

Synthesized in accordance with *General Procedure c* using 4fluorobenzoyl chloride (2.7 mL, 23.2 mmol.), bis(4fluorophenyl)methanol (4.4 g, 20.0 mmol), and pyridine (25 mL). All volatiles were removed *in vacuo* and the crude compound was purified *via* column chromatography using silica gel and hexane/ethyl acetate (20:1 v/v) as eluent: The desired product (**2k**) was obtained as a white solid. Yield: 5.81 g, 85%, 17.0 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.15–8.12 (m, 2H, Ar–H), 7.39–7.36 (m, 4H, Ar–H), 7.16–7.12 (m, 2H, Ar–H), 7.08–7.04 (m, 5H, Ar–H and CH, not able to detect distinct singlet peak for CH); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.1 (d, $J_{C-F} = 254.7$ Hz), 164.8 (C=O), 162.6 (d, $J_{C-F} = 247.3$ Hz), 135.8 (d, $J_{C-F} = 3.3$ Hz), 132.4 (d, $J_{C-F} = 9.4$ Hz), 129.0 (d, $J_{C-F} = 8.3$ Hz), 126.2 (d, $J_{C-F} = 3.0$ Hz), 115.8 (d, $J_{C-F} = 22.2$ Hz), 115.7 (d, $J_{C-F} = 21.6$ Hz), 76.4 (CH); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -104.80 (1F, Ar–F), -113.67 (2F, Ar–F); IR ν_{max} (cm⁻¹): 3116, 3074, 1724 (C=O), 1602, 1504, 1413, 1340, 1301, 1265, 1186, 1099; HRMS (EI+) [M]⁺ [C₂₀H₁₃O₂F₃]⁺: calculated 342.0868, found 342.0871.

Synthesis of benzhydryl 4-fluorobenzoate (21):^[8]

Synthesized in accordance with *General Procedure c* using 4-fluorobenzoyl chloride (2.7 ml, 23.2 mmol), diphenylmethanol (3.68 g, 20.0 mmol), and pyridine (25 ml). All volatiles were removed *in vacuo* and the crude product was purified *via* column chromatography using silica gel and hexane/ethyl acetate (20:1 v/v) as eluent. The desired product (**2l**) was obtained as a white solid. Yield: 5.49 g, 89%, 17.8 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.18–8.15 (m, 2H, Ar–H), 7.44–7.42 (m, 4H, Ar–H), 7.38–7.35 (m, 4H, Ar–H), 7.32–7.30 (m, 2H, Ar–H), 7.15–7.11 (m, 3H, Ar–H and CH); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.0 (d, $J_{C-F} = 254.3$ Hz), 164.7 (C=O), 143.9, 140.2, 132.49 (d, $J_{C-F} = 9.3$ Hz), 128.7, 128.6, 127.7, 127.2, 126.68, 126.61, 126.5, 115.7 (d, $J_{C-F} = 22.0$ Hz), 77.7 (CH); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -105.19 (Ar–F); IR ν_{max} (cm⁻¹):

3026, 3030, 1716 (C=O), 1598, 1504, 1454, 1411, 1361, 1294, 1184, 1105, 1089, 1014; HRMS (EI+) [M]⁺ [C₂₀H₁₅O₂F]⁺: calculated 306.1056, found: 306.1056.

Synthesis of bis(4-*methoxyphenyl*)*methyl* 4-*fluorobenzoate* (**2***m*)*:*

Synthesized in accordance with *General Procedure c* using 4-fluorobenzoyl chloride (2.74 mL, 23.2 mmol), bis(4-methoxyphenyl)methanol (4.86 g, 20.0 mmol), and pyridine (25 ml). All volatiles were removed *in vacuo* and the crude product was purified *via* column chromatography using silica gel and hexane/ethyl acetate (90:10 v/v) as eluent. The desired product (**2m**) was obtained as a colorless oil. Yield: 5.46 g,

76%, 14.9 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.13 (ddd, J = 8.9, 5.4, 1.4 Hz, 2H, Ar–H), 7.34–7.32 (m, 4H, Ar–H), 7.12 (td, J = 8.5, 1.4 Hz, 2H, Ar–H), 7.04 (s, 1H, CH), 6.90–6.87 (m, 4H, Ar–H), 3.80 (s, 6H, OCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 165.9 (d, $J_{C-F} = 254.0$ Hz), 164.8 (C=O), 159.4, 132.6, 132.4 (d, $J_{C-F} = 9.3$ Hz), 128.6, 126.7 (d, $J_{C-F} = 3.0$ Hz), 115.6 (d, $J_{C-F} = 22.0$ Hz), 114.0, 77.1 (CH), 55.4 (OCH₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ: -105.46 (Ar–F); IR ν_{max} (cm⁻¹): 3116, 3074, 1724 (C=O), 1002, 1413, 1340, 1301, 1263, 1186, 1099, 1014; HRMS (EI+) [M+Na]⁺ [C₂₂H₁₉O₄FNa]⁺: calculated 389.1165, found 389.1166.

Synthesis of (4-chlorophenyl)(phenyl)methyl 4-fluorobenzoate (2n):

Synthetized in accordance with *General Procedure c* using 4fluorobenzoyl chloride (2.7 mL, 23.2 mmol, 1.16 equiv.), 4chlorobenzohydrol (4.37 g, 20.0 mmol, 1 equiv.), and pyridine (25 ml). All volatiles were removed *in vacuo* and the crude product was purified *via* column chromatography using silica gel and hexane/ethyl acetate (90:10 v/v) as eluent. The desired product (**2n**) was obtained as a white solid. Yield 5.59 g, 82%, 16.4 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.17–8.11 (m, 2H, Ar–H), 7.42–7.30 (m, 9H, Ar–H), 7.16–7.11 (m, 2H, Ar–H), 7.07 (s, 1H, CH); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.1 (d, $J_{C-F} = 254.6$ Hz), 164.6 (C=O), 139.7, 138.8, 134.1, 132.4 (d, $J_{C-F} = 9.4$ Hz), 128.9, 128.8, 128.6, 128.4,

127.2, 126.3 (d, $J_{C-F} = 3.0 \text{ Hz}$), 115.8 (d, $J_{C-F} = 22.1 \text{ Hz}$), 77.0 (CH); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -104.96 (Ar–F); IR ν_{max} (cm⁻¹): 3053, 2970, 1722 (C=O), 1602, 1506, 1490, 1415, 1367, 1263, 1232, 1151, 1105, 1087, 1012; HRMS (EI+) [M]⁺ [C₂₀H₁₄ClFO₂]⁺: calculated 340.0666, found 340.0661.

Synthesis of phenyl(p-tolyl)methyl 4-fluorobenzoate (20):

Synthetized in accordance with *General Procedure c* using 4-fluorobenzoyl chloride (2.7 mL, 23.2 mmol, 1.16 equiv.), (4-methylphenyl)(phenyl)methanol (3.97 g, 20 mmol, 1 equiv.), and pyridine (25 ml). All volatiles were removed *in vacuo* and the crude product was purified *via* column chromatography using silica gel and hexane/ethyl acetate (90:10 v/v) as eluent. The desired product (**20**) was obtained as a white solid. Yield: 4.99 g. 78%, 15.6 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.18–8.13 (m, 2H, Ar–H), 7.42 (d, J = 7.1 Hz, 2H, Ar–H), 7.36 (t, J = 7.5 Hz, 2H, Ar–H), 7.31 (t, J = 6.8 Hz, 3H, Ar–H), 7.17 (d, J = 7.7 Hz, 2H, Ar–H), 7.13 (t, J = 8.7 Hz, 2H, Ar–H), 7.08 (s, 1H, CH), 2.34 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.0 (d, $J_{C-F} = 254.1$ Hz), 164.8 (C=O), 140.4, 138.0, 137.3, 132.5 (d, $J_{C-F} = 9.3$ Hz), 129.4, 128.7, 128.1, 127.3, 127.1, 126.7 (d, $J_{C-F} = 3.0$ Hz), 115.7 (d, $J_{C-F} = 22.0$ Hz), 77.7 (CH), 21.3 (CH₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -105.39 (Ar–F); IR v_{max} (cm⁻¹): 3053, 1718 (C=O), 1602, 1506, 1450, 1411, 1309, 1261, 1236, 1151, 1107, 1087, 1014; HRMS (EI+) [M]⁺ [C₂₁H₁₇FO₂]⁺: calculated 320.1213, found 320.1207.

Synthesis of cyclohexyl(phenyl)methyl 4-fluorobenzoate (2p):

Synthetized in accordance with *General Procedure c* using 4-fluorobenzoyl chloride (3.4 mL, 28.9 mmol, 1.1 equiv.), cyclohexyl(phenyl)methanol (5 g, 26.3 mmol, 1 equiv.), and pyridine (18 mL). All volatiles were removed *in vacuo* and the crude compound was purified *via* column chromatography using silica gel and hexane/ethyl acetate (95:5 v/v) as eluent. The desired product (**2p**) was obtained as a white solid. Yield: 5.4 g, 17.4 mmol, 66%.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.12–8.08 (m, 2H, Ar–H), 7.37–7.32 (m, 4H, Ar–H), 7.29–7.26 (m, 1H, Ar–H), 7.13–7.10 (m, 2H, Ar–H), 5.73 (d, J = 7.5 Hz, 1H, CH), 1.95–1.88 (m, 2H, CH₂), 1.78–1.65 (m, 3H, CH₂), 1.50–1.48 (m, 1H, CH), 1.29–1.12 (m, 4H, CH₂), 1.02 (qd, J = 12.3, 3.8 Hz, 1H, CH); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 165.8 (d, $J_{C-F} = 254.5$ Hz), 165.0, 139.7, 132.2 (d, $J_{C-F} = 10.0$ Hz), 128.3, 127.9, 127.1, 126.9 (d, $J_{C-F} = 3.0$ Hz), 115.6 (d, $J_{C-F} = 22.6$ Hz), 81.1, 43.3, 29.2, 29.1, 26.4, 26.05, 26.00; ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -105.88 (Ar–F); IR ν_{max} (cm⁻¹): 2939, 2848, 1720 (C=O), 1600, 1504, 1448, 1292, 1253, 1238, 1219, 1153, 1107, 1087, 1053, 1012; HRMS (EI+) [M]⁺ [C₂₀H₂₁O₂F]⁺: calculated 312.1526, found 312.1519.

2. Product Characterization

2.1 General procedure d for C-C coupling reactions: Tris(pentafluorophenyl)borane (B(C₆F₅)₃) (10–20 mol%) was dissolved in TFT (0.5 mL) and added to a TFT solution (0.5 mL) of the α -diazoester (1 equiv.). The aryl ester (0.2 mmol, 1.1 equiv.) was also dissolved in TFT (0.5 mL) and then added to the reaction mixture dropwise. The reaction tube was sealed in the glove box under nitrogen atmosphere and heated at 65 °C for 18–24 h. All volatiles were removed *in vacuo* and the crude compound was purified *via* preparative thin layer chromatography using hexane/ethyl acetate as eluent.

2.2 Synthesis and spectral characterization of products

Synthesis of dimethyl 2-(1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3a):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2a** (38 mg, 0.11 mmol) in TFT to afford **3a**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3a** was obtained as a pale-yellow solid. Yield: 27 mg. 81%, 0.08 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.43–7.39 (m, 2H, Ar–H), 7.07–7.02 (m, 2H, Ar–H), 3.85 (s, 3H, COOCH₃), 3.61 (s, 3H, COOCH₃), 0.23 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 165.5 (C=O), 164.1 (C=O), 163.5 (d, J_{C-F} = 251.4 Hz), 135.7, 132.8 (d, J_{C-F} = 3.4 Hz), 131.6, 130.2 (d, J_{C-F} = 8.6 Hz), 115.6 (d, J_{C-F} = 21.9 Hz), 111.9 (C=C), 102.0 (C=C), 52.6 (OCH₃), -0.3 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ: -110.80 (Ar–F); IR ν_{max} (cm⁻¹): 3027, 2954, 2232 (C=C), 1724 (C=O), 1600, 1575, 1508, 1436, 1313, 1301, 1249, 1217, 1161, 1056; HRMS (EI+) [M]⁺ [C₁₇H₁₉FO₄Si]⁺: calculated 334.1037, found 334.1031.

Synthesis of dibenzyl 2-(1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3b):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1c** (31 mg, 0.10 mmol), and alkynyl aryl ester **2a** (38 mg, 0.11 mmol) in TFT to afford **3b** The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3b** was obtained as a pale-yellow liquid. Yield: 34 mg, 71%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.16–7.14 (m, 6H, Ar–H), 7.08–7.06 (m, 4H, Ar–H), 6.89 –6.86 (m, 2H, Ar–H), 6.72–6.69 (m, 2H, Ar–H), 5.10 (s, 2H, CH₂), 4.83 (s, 2H, CH₂), 0.00 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 164.9 (C=O), 163.5 (d, *J*_{C-F} = 251.4 Hz), 163.3 (C=O), 136.0, 135.5, 134.8, 132.8 (d, *J*_{C-F} = 3.4 Hz), 131.7, 130.3 (d, *J*_{C-F} = 8.6 Hz), 128.7, 128.6, 128.6, 128.5, 128.3, 128.1, 115.5 (d, *J*_{C-F} = 22.0 Hz), 112.4 (C=C), 102.1 (C=C), 67.4 (CH₂), 67.2 (CH₂), -0.4 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -110.81 (Ar–F); IR v_{max} (cm⁻¹): 3016, 2933, 2210 (C=C), 1721 (C=O), 1603, 1565, 1525, 1416, 1353, 1310, 1275, 1235, 1155, 1035; HRMS (ES+) [M+Na]⁺ [C₂₉H₂₇FO₄SiNa]⁺: calculated 509.1560, found 509.1562.

Synthesis of diisopropyl 2-(1-(4-fluorophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3c):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1b** (22 mg, 0.10 mmol), and alkynyl aryl ester **2a** (38 mg, 0.11 mmol) in TFT to afford **3c**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as

eluent. The desired compound **3c** was obtained as a pale-yellow liquid. Yield: 32 mg, 83%, 0.08 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.44–7.40 (m, 2H, Ar–H), 7.04–7.01 (m, 2H, Ar–H), 5.18 (hept, J = 6.3 Hz, 1H, CH), 4.94 (hept, J = 6.3 Hz, 1H, CH), 1.33 (d, J = 6.3 Hz, 6H, CH₃), 1.08

(d, J = 6.3 Hz, 6H, CH₃), 0.22 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 164.5 (C=O), 163.4 (d, $J_{C-F} = 249.4$ Hz), 163.3 (C=O), 134.1, 133.2 (d, $J_{C-F} = 3.3$ Hz), 130.3 (d, $J_{C-F} = 8.4$ Hz), 115.4 (d, $J_{C-F} = 21.8$ Hz), 110.9 (C=C), 102.2 (C=C), 69.48 (CH), 69.41 (CH), 21.8 (CH₃), 21.4 (CH₃), -0.3 (Si(CH₃)₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -111.47 (Ar–F); IR ν_{max} (cm⁻¹): 2981, 2897, 2254 (C=C), 1720 (C=O), 1610, 1541, 1456, 1412, 1325, 1247, 1217, 1135, 1051; HRMS (ES+) [M+Na]⁺ [C₂₁H₂₇FO₄SiNa]⁺: calculated 413.1560, found 413.1560.

Synthesis of dimethyl 2-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3d):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3d**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **3d**

was obtained as a pale-yellow solid, Yield: 23 mg, 73%, 0.07 mmol.

¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.43–7.41 (m, 2H, Ar–H), 7.38–7.35 (m, 3H, Ar–H), 3.86 (s, 3H, COOCH₃), 3.58 (s, 3H, COOCH₃), 0.23 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 165.7 (C=O), 164.2 (C=O), 136.9, 131.6, 129.7, 128.4, 128.1, 111.8 (C=C), 102.1 (C=C), 52.6 (CH₃), 52.5 (CH₃), -0.3 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 3010, 2958, 2254 (C=C), 1732 (C=O), 1651, 1558, 1516, 1433, 1410, 1372, 1321, 1247, 1150, 1052; HRMS (ES+) [M+Na]⁺ [C₁₇H₂₀O₄SiNa]⁺: calculated 339.1029, found 339.1032.

Synthesis of dibenzyl 2-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3e):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1c** (31 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3e**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3e** was obtained as a light-yellow solid. Yield: 32 mg, 68%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ: 7.22–7.12 (m, 7H, Ar–H), 7.10–7.01 (m, 6H, Ar–H), 6.83– 6.81 (m, 2H, Ar–H), 5.10 (s, 2H, CH₂), 4.80 (s, 2H, CH₂), 0.00 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 165.1 (C=O), 163.4 (C=O), 137.2, 137.0, 135.6, 134.9, 131.6, 129.7, 128.6, 128.5, 128.46, 128.45, 128.35, 128.32, 128.2, 128.1, 112.3 (C=C), 102.3 (C=C), 67.4 (CH₃), 67.2 (CH₃), -0.3 (Si(CH₃)₃); IR ν_{max} (cm⁻¹): 2981, 2925, 2254 (C=C), 1740 (C=O), 1651, 1532, 1512, 1492, 1456, 1417, 1355, 1249, 1201, 1162, 1048; HRMS (ES+) [M+Na]⁺ [C₂₉H₂₈O₄SiNa]⁺: calculated 491.1655, found 491.1660.

Synthesis of diisopropyl 2-(1-phenyl-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3f):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1b** (22 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3f**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3f** was obtained as a pale colorless liquid. Yield: 28 mg, 75%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.44–7.41 (m, 2H, Ar–H), 7.34 (dt, *J* = 3.7, 1.4 Hz, 3H, Ar–H), 5.19 (hept, *J* = 6.5 Hz, 1H, CH), 4.92 (hept, *J* = 6.5 Hz, 1H, CH), 1.33 (d, *J* = 6.3 Hz, 6H, CH₃), 1.04 (d, *J* = 6.3 Hz, 6H, CH₃), 0.22 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 164.7 (C=O), 163.4 (C=O), 137.3, 135.2, 133.2, 129.3, 128.3, 110.7 (C=C), 102.3 (C=C), 69.3 (CH), 69.2 (CH), 21.8 (CH₃), 21.3 (CH₃), -0.2 (Si(CH₃)₃; IR v_{max} (cm⁻¹): 3030, 2981, 2250 (C=C), 1714 (C=O), 1651, 1541, 1512, 1492, 1391, 1303, 1246, 1180, 1145, 1049; HRMS (ES+) [M+Na]⁺ [C₂₁H₂₈O₄SiNa]⁺: calculated 395.1655, found 395.1667.

Synthesis of dimethyl 2-(1-(4-chlorophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3g):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2d** (40 mg, 0.11 mmol) in TFT to afford **3g** The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3g** was obtained as an off-white solid. Yield: 28 mg, 80%, 0.08 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.37–7.31 (m, 4H, Ar–H), 3.85 (s, 3H, COOCH₃), 3.61 (s, 3H, COOCH₃), 0.23 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 165.3 (C=O), 164.1 (C=O), 135.8, 135.6, 135.3, 131.9, 129.5, 128.7, 112.1 (C=C), 101.8 (C=C), 52.7 (OCH₃), 52.6 (OCH₃), -0.3 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 3033, 2915, 2215 (C=C), 1722 (C=O), 1640, 1530, 1525, 1465, 1409, 1376, 1314, 1255, 1221, 1162, 1039; HRMS (EI+) [M]⁺ [C₁₇H₁₉O₄ClSi]⁺: calculated 350.0741, found 350.0738.

Synthesis of diisopropyl 2-(1-(4-chlorophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (**3h**):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1b** (22 mg, 0.10 mmol), and alkynyl aryl ester **2d** (40 mg, 0.11 mmol) in TFT to afford **3h**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3h** was obtained as a pale-yellow solid. Yield: 34 mg, 83%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.38–7.35 (m, 2H, Ar–H), 7.33–7.30 (m, 2H, Ar–H), 5.18 (hept, *J* = 6.4 Hz, 1H, CH), 4.94 (hept, *J* = 6.4 Hz, 1H, CH), 1.33 (d, *J* = 6.3 Hz, 6H, CH₃), 1.09 (d, *J* = 6.3 Hz, 6H, CH₃), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 164.3 (C=O), 163.2 (C=O), 135.6, 135.5, 134.0, 133.4, 129.7, 128.5, 111.0 (C=C), 101.9 (C=C), 69.54 (CH) 69.50 (CH), 21.8 (CH₃), 21.4 (CH₃), -0.3 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 3010, 2915, 2230 (C=C), 1720 (C=O), 1643, 1560, 1526, 1461, 1423, 1350, 1322, 1241, 1221, 1152, 1065; HRMS (ES+) [M+Na]⁺ [C₂₁H₂₇ClO₄SiNa]⁺: calculated 429.1265, found 429.1265.

Synthesis of dimethyl 2-(1-(4-bromophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3i):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2c** (45 mg, 0.11 mmol) in TFT to afford **3i**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3i** was obtained as a light-yellow solid. Yield: 34 mg, 87%, 0.08 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ: 7.53–7.50 (m, 2H, Ar–H), 7.33–7.28 (m, 2H, Ar–H), 3.88 (s, 3H, COOCH₃), 3.64 (s, 3H, COOCH₃), 0.25 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ: 165.3 (C=O), 164.1 (C=O), 135.79, 135.70, 131.9, 131.7, 129.8, 124.1, 112.2, 101.7, 52.73 (CH₃), 52.70 (CH₃), -0.3 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 3025, 2920, 2210 (C=C), 1725 (C=O), 1650, 1545, 1512, 1478, 1412, 1382, 1325, 1245, 1201, 1182, 1047; HRMS (ES+) [M+Na]⁺ [C₁₇H₁₉BrO₄SiNa]⁺: calculated 417.0134, found 417.0139.

Synthesis of diisopropyl 2-(1-(4-bromophenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene)malonate (3j):

The desired compound **3j** was obtained as a yellow liquid. Yield: 36 mg, 80%, 0.07 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.49–7.46 (m, 2H, Ar–H), 7.31–7.28 (m, 2H, Ar–H), 5.18 (hept, *J* = 6.3 Hz, 1H, CH), 4.94 (hept, *J* = 6.3 Hz, 1H, CH), 1.33 (d, *J* = 6.3 Hz, 6H, CH₃), 1.09 (d, *J* = 6.3 Hz, 6H, CH₃), 0.21 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 164.3 (C=O), 163.2 (C=O), 136.1, 134.0, 133.4, 131.5, 129.9, 123.7, 111.1 (C=C), 101.9 (C=C), 69.55 (CH), 69.51 (CH), 21.8 (CH₃), 21.4 (CH₃), -0.3 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 3030, 2970, 2252 (C=C), 1722 (C=O), 1620, 1558, 1539, 1487, 1456, 1375, 1296, 1217, 1105, 1049; HRMS (ES+) [M+Na]⁺ [C₂₁H₂₇O₄BrSiNa]⁺: calculated 473.0760, found 473.0759.

Synthesis of dimethyl 2-(1-(4-(trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ylidene) malonate (**3***k*):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2b** (43 mg, 0.11 mmol) in TFT to afford **3k**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3k** was obtained as a pale-yellow liquid. Yield: 25 mg, 65%, 0.06 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.63–7.61 (m, 2H, Ar–H), 7.53–7.51 (m, 2H, Ar–H), 3.87 (s, 3H, COOCH₃), 3.60 (s, 3H, COOCH₃), 0.23 (s, 9H, Si(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 164.9 (C=O), 164.0 (C=O), 140.3, 135.4, 132.8, 129.0, 128.5, 125.4 (q, *J*_{C-F} = 3.7 Hz), 112.7 (C=C), 101.4 (C=C), 52.8 (CH₃), 52.7 (CH₃), -0.3 (Si(CH₃)₃); ¹⁹F NMR (376 MHz, CDCl₃,

298 K) δ : -62.83 (Ar–CF₃); IR ν_{max} (cm⁻¹): 3025, 2920, 2215 (C=C), 1725 (C=O), 1650, 1545, 1512, 1478, 1412, 1382, 1325, 1245, 1201, 1182, 1047; HRMS (ES+) [M+Na]⁺ [C₁₈H₁₉F₃O₄SiNa]⁺: calculated 407.0902, found 407.0901.

Synthesis of dimethyl 2-(1,3-diphenylprop-2-yn-1-ylidene)malonate (31):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2h** (36 mg, 0.11 mmol) in TFT to afford **3l**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The

desired compound **3I** was obtained as a pale-yellow solid. Yield: 20 mg, 63%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.54–7.50 (m, 4H, Ar–H), 7.41–7.35 (m, 6H, Ar–H), 3.89 (s, 3H, COOCH₃), 3.60 (s, 3H, COOCH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 166.1 (C=O), 164.1 (C=O), 137.7, 137.3, 132.3, 130.4, 129.8, 129.7, 128.59, 128.57, 128.0, 122.3, 105.0 (C=C), 88.1 (C=C), 52.65 (CH₃), 52.61 (CH₃); IR v_{max} (cm⁻¹): 3014, 2970, 2252 (C=C), 1734 (C=O), 1633, 1558, 1489, 1435, 1365, 1234, 1205, 1095, 1043; HRMS (EI+) [M]⁺ [C₂₀H₁₆O₄]⁺: calculated 320.1049, found 320.1040.

Synthesis of diisopropyl 2-(1,3-diphenylprop-2-yn-1-ylidene)malonate (3m):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1b** (22 mg, 0.10 mmol), and alkynyl aryl ester **2h** (36 mg, 0.11 mmol) in TFT to afford **3m**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent. The desired compound **3m** was obtained as an off-white

solid. Yield: 25 mg, 67%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.52–7.49 (m, 4H, Ar–H), 7.39–7.32 (m, 6H, Ar–H), 5.22 (hept, J = 6.4 Hz, 1H, CH), 4.95 (hept, J = 6.4 Hz, 1H, CH), 1.34 (d, J = 6.3 Hz, 6H, CH₃), 1.08 (d, J = 6.3 Hz, 6H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.0 (C=O), 163.3 (C=O), 137.6, 136.0, 132.2, 132.1, 129.5, 129.4, 128.5, 128.4, 128.2, 122.5, 103.9 (C=C), 88.2 (C=C), 69.28 (CH), 69.25 (CH), 21.9 (CH₃), 21.4 (CH₃); IR v_{max} (cm⁻¹): 2981, 2920, 2200 (C=C), 1720

(C=O), 1651, 1558, 1512, 1490, 1412, 1396, 1247, 1211, 1178, 1037; HRMS (ES+) [M+Na]⁺ [C₂₄H₂₄O₄Na]⁺: calculated 399.1572, found 399.1581.

Synthesis of dimethyl 2-(1-(4-fluorophenyl)-3-phenylprop-2-yn-1-ylidene)malonate (3n):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkynyl aryl ester **2i** (38 mg, 0.11 mmol) in TFT to afford **3n** The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (90:10 v/v) as eluent.

The desired compound **3n** was obtained as an off-white solid. Yield: 24 mg, 70%, 0.07 mmol. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 7.53–7.48 (m, 4H, Ar–H), 7.39–7.33 (m, 3H, Ar–H), 7.10– 7.05 (m, 2H, Ar–H), 3.89 (s, 3H, COOCH₃), 3.63 (s, 3H, COOCH₃); ¹³C NMR (101 MHz, CDCl₃, 298 K) δ : 165.8 (C=O), 164.1 (C=O), 163.6 (d, $J_{C-F} = 251.4$ Hz), 136.3, 133.4 (d, $J_{C-F} = 3.5$ Hz), 132.3, 130.8, 130.2 (d, $J_{C-F} = 8.5$ Hz), 129.9, 128.6, 122.4, 115.6 (d, $J_{C-F} = 22.0$ Hz), 104.9 (C=C), 88.1 (C=C), 52.57 (CH₃), 52.53 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃, 298 K) δ : -110.96 (Ar–F); IR v_{max} (cm⁻¹): 3051, 2945, 2198 (C=C), 1734 (C=O), 1637, 1598, 1541, 1506, 1489, 1408, 1375, 1332, 1278, 1203, 1190, 1089; HRMS (EI+) [M]⁺ [C₂₀H₁₅FO₄]⁺: calculated 338.0954, found 338.0949.

Synthesis of methyl 2-(4-chlorophenyl)-3-(4-fluorophenyl)-5-(trimethylsilyl)pent-2-en-4-ynoate (**30**):

Synthetized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1e** (21 mg, 0.10 mmol), and alkynyl aryl ester **2a** (38 mg, 0.11 mmol) in TFT to afford **3o**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent.

The desired compound **30** was obtained as a mixture of isomers (1:0.4) which appeared as a yellow liquid. Yield: 18 mg, 46%, 0.46 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.62–7.59 (m, Ar–H), 7.46–7.42 (m, Ar–H), 7.37–7.34 (m, Ar–H), 7.19–7.16 (m, Ar–H), 7.08–7.01 (m, Ar–H), 6.91–6.86 (m, Ar–H), 3.85 (s, CH₃, minor isomer), 3.56 (s, 3H, CH₃, major isomer), 0.24 (s, Si(CH₃)₃, minor isomer), 0.12 (s, 9H, Si(CH₃)₃,

major isomer); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 169.1 (C=O), 168.5 (C=O), 163.0 (d, $J_{C-F} = 239.4 \text{ Hz}$), 162.5 (d, $J_{C-F} = 252 \text{ Hz}$), 139.6, 139.4, 134.7, 134.4, 134.39, 134.38, 134.35, 133.4, 132.49, 132.46, 131.6 (d, $J_{C-F} = 8.3 \text{ Hz}$), 131.0, 130.4, 129.9 (d, $J_{C-F} = 8.3 \text{ Hz}$), 128.8, 128.4, 126.5, 126.3, 115.5 (d, $J_{C-F} = 25.2 \text{ Hz}$), 115.4 (d, $J_{C-F} = 25.2 \text{ Hz}$), 105.4, 104.3, 103.6, 103.5, 52.6 (CH₃), 52.4 (CH₃), -0.1 (Si(CH₃)₃, minor isomer), -0.4 (Si(CH₃)₃ major isomer); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -112.38 (Ar–F, minor isomer), -112.54 (Ar–F, major isomer); IR ν_{max} (cm⁻¹): 3053, 2954, 1742 (C=O), 1720 (C=O), 1598, 1504, 1431, 1319, 1263, 1215, 1157, 1089, 1068, 1012; HRMS (ES+) [M+H]⁺ [C₂₁H₂₁O₂FSiCl]⁺: calculated 387.0983, found 387.0985.

Synthesis of methyl 2,3-diphenyl-5-(trimethylsilyl)pent-2-en-4-ynoate (3p):

Synthetized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1f** (18 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3p**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The desired compound **3p** was

obtained as a mixture of isomers (1:0.4) which appeared as a yellow liquid. Yield: 12 mg, 36%, 0.12 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.67–7.64 (m, Ar–H), 7.48–7.44 (m, Ar–H), 7.40–7.33 (m, Ar–H), 7.21–7.16 (m, Ar–H), 7.11–7.08 (m, Ar–H), 7.07–7.03 (m, Ar–H), 6.88–6.83 (m, Ar–H), 3.86 (s, COOCH₃, minor isomer), 3.57 (s, 3H, COOCH₃, major isomer), 0.24 (s, Si(CH₃)₃, minor isomer), 0.10 (s, 9H, Si(CH₃)₃, major isomer); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 169.5 (C=O), 168.9 (C=O), 163.8, 163.4, 161.8, 161.4, 141.0, 140.9, 135.9, 134.9, 134.6, 131.66, 131.60, 129.5, 129.4, 129.0, 128.9, 128.5, 128.4, 128.9, 125.56, 125.50, 115.5, 115.2, 115.1, 104.4, 103.8, 103.7, 103.3, 52.5 (CH₃, minor isomer), 52.3 (CH₃, major isomer), -0.1 (Si(CH₃)₃, minor isomer)₃), -0.4 (Si(CH₃)₃, major isomer); IR v_{max} (cm⁻¹): 3055, 2956, 1759 (C=O), 1720 (C=O), 1600, 1504, 1433, 1263, 1217, 1157, 1070, 1035, 1018.

Synthesis of methyl (E)-2-(4-chlorophenyl)-3-phenyl-5-(trimethylsilyl)pent-2-en-4-ynoate (3q):

Synthetized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1e** (21 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3q** as major isomer. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate (92:8 v/v) as eluent. The

desired compound **3q** (major isomer) was obtained as a yellow liquid. Yield: 11 mg, 30%, 0.30 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.64–7.61 (m, 2H, Ar–H), 7.47–7.44 (m, 2H, Ar–H), 7.39– 7.33 (m, 5H, Ar–H), 3.53 (s, 3H, COOCH₃), 0.12 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 169.3, 139.5, 138.3, 134.6, 134.5, 130.5, 128.7, 128.5, 128.3, 128.0, 127.4, 105.1, 103.6, 52.3 (CH₃), -0.4 Si(CH₃)₃; IR v_{max} (cm⁻¹): 2933, 2848, 1718 (C=O), 1656, 1492, 1444, 1433, 1323, 1263, 1249, 1213, 1091, 1068, 1029, 1012; HRMS (ES+) [M+H]⁺ [C₂₁H₂₂O₂SiCl]⁺: calculated 369.1078, found 369.1075.

Synthesis of methyl (Z)-2-(4-chlorophenyl)-3-phenyl-5-(trimethylsilyl)pent-2-en-4-ynoate (**3**q'):

Synthetized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1e** (21 mg, 0.10 mmol), and alkynyl aryl ester **2e** (36 mg, 0.11 mmol) in TFT to afford **3q'** as minor isomer. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/ethyl acetate

(92:8 v/v) as eluent. The desired compound **3q'** (minor isomer) was obtained as a yellow liquid. Yield: 5 mg, 13%, 0.13 mmol. Isomeric ratio: 1:0.4.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.22–7.18 (m, 5H, Ar–H), 7.16–7.13 (m, 2H, Ar–H), 7.03–7.00 (m, 2H, Ar–H), 3.86 (s, 3H, COOCH₃), 0.23 (s, 9H, Si(CH₃)₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 168.7 (C=O), 139.4, 136.5, 134.3, 133.6, 131.0, 129.7, 128.6, 128.4, 128.3, 127.5, 104.0, 103.8, 52.6 (CH₃), -0.1 (Si(CH₃)₃); IR v_{max} (cm⁻¹): 2954, 2899, 1720 (C=O), 1489, 1433, 1263, 1249, 1209, 1091; HRMS (ES+) [M+H]⁺ [C₂₁H₂₂O₂SiCl]⁺: calculated 369.1078, found 369.1078.

Synthesis of dimethyl (E)-2-(1,3-diphenylallylidene)malonate (3r):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1a** (16 mg, 0.10 mmol), and alkene ester **2j** (34 mg, 0.11 mmol) in TFT to afford **3r**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (90:10 v/v) as eluent. The desired compound **3r**

was obtained as a colorless oil. Yield: 23 mg, 71%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.14 (d, *J* = 15.9 Hz, 1H, CH), 7.44–7.39 (m, 5H, Ar–H), 7.33–7.29 (m, 4H, Ar–H), 7.25–7.24 (m, 1H, Ar–H), 6.45 (d, *J* = 15.9 Hz, 1H, CH), 3.87 (s, 3H, CH₃), 3.44 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.8 (C=O), 164.9 (C=O), 154.6, 142.8, 136.9, 136.2, 129.5, 128.9, 128.8, 128.6, 128.2, 127.8, 126.7, 124.0, 52.4 (CH₃), 52.1 (CH₃); IR v_{max} (cm⁻¹): 3331, 2927, 1704 (C=O), 1604, 1558, 1485, 1394, 1342, 1263, 1232, 1184, 1101, HRMS (ES+) [M+Na]⁺ [C₂₀H₁₈O₄Na]⁺: calculated 345.1103, found 345.1107.

Synthesis of diisopropyl (E)-2-(1,3-diphenylallylidene)malonate (3s):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (5 mg, 0.01 mmol), diazoester **1b** (21 mg, 0.10 mmol), and alkene ester **2j** (34 mg, 0.11 mmol) in TFT to afford **3s**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (90:10 v/v) as eluent.

The desired compound **3s** was obtained as a colorless oil. Yield: 29 mg, 77%, 0.08 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 8.15 (d, *J* = 16.0 Hz, 1H, CH), 7.42–7.37 (m, 5H, Ar–H), 7.33–7.26 (m, 5H, Ar–H), 6.40 (d, *J* = 16.0 Hz, 1H, CH), 5.20 (hept, *J* = 6.3 Hz, 1H, CH), 4.80 (hept, *J* = 6.3 Hz, 1H, CH), 1.34 (d, *J* = 6.3 Hz, 6H, CH₃), 0.98 (d, *J* = 6.3 Hz, 6H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.7 (C=O), 164.1 (C=O), 152.9, 141.8, 137.0, 136.4, 129.28, 129.24, 128.8, 128.4, 128.1, 127.7, 127.0, 125.7, 69.0 (CH), 68.5 (CH), 21.9 (CH₃), 21.3 (CH₃); IR ν_{max} (cm⁻¹): 2981, 1703 (C=O), 1610, 1573, 1467, 1386, 1323, 1228, 1105, 1051; HRMS (ES+) [M+Na]⁺ [C₂₄H₂₆O₄Na]⁺: calculated 401.1729, found 401.1730. Synthesis of 1-(4-chlorophenyl)-2-methoxy-2-oxoethyl 4-fluorobenzoate (4a):^[9]

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.15–8.11 (m, 2H, Ar–H), 7.52–7.49 (m, 2H, Ar–H), 7.42–7.39 (m, 2H, Ar–H), 7.16–7.11 (m, 2H, Ar–H), 6.12 (s, 1H, CH), 3.76 (s, 3H, COOCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 169.0 (C=O), 166.3 (d, $J_{C-F} = 255.1$ Hz), 164.9 (C=O), 135.6, 132.7 (d, $J_{C-F} = 9.5$ Hz), 132.5, 129.3, 129.1, 125.4 (d, $J_{C-F} = 3.0$ Hz), 115.9 (d, $J_{C-F} = 22.1$ Hz), 74.3 (CH), 53.0 (CH₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -104.28 (Ar–F).

Synthesis of 2-methoxy-2-oxo-1-phenylethyl 4-fluorobenzoate (4b):^[9]

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 8.17–8.13 (m, 2H, Ar–H), 7.59–7.55 (m, 2H, Ar–H), 7.46–7.40 (m, 3H, Ar–H), 7.16–7.11 (m, 2H, Ar–H), 6.15 (s, 1H, CH), 3.76 (s, 3H, COOCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 169.4 (C=O), 166.3 (d, $J_{C-F} = 254.8$ Hz), 165.0 (C=O), 134.0, 132.7 (d, $J_{C-F} = 9.5$ Hz), 129.5, 129.0, 127.8, 125.6 (d, $J_{C-F} = 3.0$ Hz), 115.8 (d, $J_{C-F} = 22.1$ Hz), 75.1 (CH), 52.9 (CH₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -104.58 (Ar–F).

Synthesis of dimethyl 2-(bis(4-fluorophenyl)methylene)malonate (**6a**):^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1a** (16 mg, 0.10 mmol), and diaryl ester **2k** (35 mg, 0.11 mmol) in TFT to afford **6a**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent. The desired compound **6a**

was obtained as a pale-yellow solid. Yield: 26 mg, 78%, 0.08 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.17–7.13 (m, 4H, Ar–H), 7.05–7.01 (m, 4H, Ar–H), 3.63 (s, 6H, COOCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.3 (C=O), 163.6 (d, $J_{C-F} = 250.5$ Hz), 154.4, 135.8 (d, $J_{C-F} = 3.5$ Hz), 131.3 (d, $J_{C-F} = 8.5$ Hz), 125.7, 115.6 (d, $J_{C-F} = 21.9$ Hz), 52.5 (CH₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ: -110.81 (Ar–F).

Synthesis of dibenzyl 2-(bis(4-fluorophenyl)methylene)malonate (6b):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1c** (31 mg, 0.10 mmol), and diaryl ester **2k** (35 mg, 0.11 mmol) in TFT to afford **6b**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (85:15 v/v) as eluent.

The desired compound **6b** was obtained as a colorless oil. Yield: 39 mg, 81%, 0.08 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.34–7.27 (m, 6H, Ar–H), 7.13–7.11 (m, 4H, Ar–H), 7.07– 7.03 (m, 4H, Ar–H), 6.90–6.85 (m, 4H, Ar–H), 5.07 (s, 4H, CH₂); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.6 (C=O), 163.6 (d, *J*_{C-F} = 250.5 Hz), 154.5, 135.7 (d, *J*_{C-F} = 3.3 Hz), 135.1, 131.3 (d, *J*_{C-F} = 8.5 Hz), 128.7, 128.6, 128.5, 115.5 (d, *J*_{C-F} = 21.8 Hz), 67.3 (CH₂); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -110.84 (Ar–F); IR v_{max} (cm⁻¹): 3066, 3035, 1718 (C=O), 1600, 1504, 1454, 1408, 1375, 1319, 1259, 1220, 1157, 1066. HRMS (ES+) [M+Na]⁺ [C₃₀H₂₂F₂ O₄Na]⁺: calculated 507.1384, found 507.1385.

Synthesis of diisopropyl 2-(bis(4-fluorophenyl)methylene) malonate (6c):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1b** (22 mg, 0.10 mmol), and diaryl ester **2k** (35 mg, 0.11 mmol) in TFT to afford **6c**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent.

The desired compound **6c** was obtained as a while solid. Yield: 34 mg, 87%, 0.09 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.19–7.15 (m, 4H, Ar–H), 7.04–6.99 (m, 4H, Ar–H), 4.97 (hept, *J* = 6.3 Hz, 2H, CH), 1.12 (d, *J* = 6.3 Hz, 12H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.3 (C=O), 163.4 (d, *J*_{C-F} = 249.9 Hz), 152.5, 136.0 (d, *J*_{C-F} = 3.3 Hz), 131.3 (d, *J*_{C-F} = 8.4 Hz), 127.7, 115.5 (d, *J*_{C-F} = 21.8 Hz), 69.2 (CH), 21.5 (CH₃); ¹⁹F NMR (471 MHz, CDCl₃, 298 K) δ : -111.51 (Ar–F); IR v_{max} (cm⁻¹): 2983, 2937, 1720 (C=O), 1600, 1506, 1373, 1315, 1226, 1161, 1105, 1070; HRMS (ES+) [M+Na]⁺ [C₂₂H₂₂F₂O₄Na]⁺: calculated 411.1384, found 411.1385. *Synthesis of dimethyl* 2-(*diphenylmethylene*) *malonate* (**6***d*):^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1a** (16 mg, 0.10 mmol), and diaryl ester **2l** (31 mg, 0.11 mmol) in TFT to afford **6d**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent. The desired compound **6d** was obtained as a

pale-yellow oil. Yield: 21 mg, 73%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.38–7.31 (m, 6H, Ar–H), 7.19–7.17 (m, 4H, Ar–H), 3.61 (s, 6H, COOCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.5 (C=O), 156.7, 140.0, 129.5, 129.2, 128.3, 125.6, 52.4 (CH₃).

Synthesis of diisopropyl 2-(diphenylmethylene) malonate (6e): ^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1b** (22 mg, 0.10 mmol), and diaryl ester **2l** (31 mg, 0.11 mmol) in TFT to afford **6e**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent.

The desired compound **6e** was obtained as a white solid. Yield: 27 mg, 76%, 0.07 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.36–7.29 (m, 6H, Ar–H), 7.21–7.19 (m, 4H, Ar–H), 4.94 (hept, *J* = 6.3 Hz, 2H, CH), 1.08 (d, *J* = 6.3 Hz, 12H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.6 (C=O), 154.8, 140.3, 129.2, 129.1, 128.2, 127.4, 69.0 (CH), 21.4 (CH₃).

Synthesis of dimethyl 2-(bis(4-methoxyphenyl)methylene) malonate (6f):^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1a** (16 mg, 0.10 mmol), and diaryl ester **2m** (37 mg, 0.11 mmol) in TFT to afford **6f**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl

ether (70:30 v/v) as eluent. The desired compound **6f** was obtained as a white solid. Yield: 25 mg, 70%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.12–7.09 (m, 4H, Ar–H), 6.86–6.83 (m, 4H, Ar–H), 3.82 (s, 6H, COOCH₃), 3.62 (s, 6H, OCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 167.2 (C=O), 160.9 (C=O), 156.8, 132.6, 131.3, 123.0, 113.7, 55.4 (CH₃), 52.3 (CH₃).

Synthesis of diisopropyl 2-(bis(4-methoxyphenyl)methylene) malonate (6g):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1b** (22 mg, 0.10 mmol), and diaryl ester **2m** (37 mg, 0.11 mmol) in TFT to afford **6g**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl

ether (75:25 v/v) as eluent. The desired compound 6g was obtained as a white solid. Yield: 32 mg, 78%, 0.08 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.13–7.11 (m, 4H, Ar–H), 6.84–6.81 (m, 4H, Ar–H), 4.97 (hept, J = 6.3 Hz, 2H, CH), 3.81 (s, 6H, OCH₃), 1.13 (d, J = 6.3 Hz, 12H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.2 (C=O), 160.6 (C=O), 154.9, 132.9, 131.3, 125.1, 113.6, 68.7(CH), 55.4 (CH₃), 21.6 (CH₃); IR ν_{max} (cm⁻¹): 2981, 2935, 1705 (C=O), 1602, 1508, 1463, 1246, 1166, 1107, 1074, 1031; HRMS (ES+) [M+Na]⁺ [C₂₄H₂₈O₆Na]⁺: calculated 435. 1784, found 435.1785.

Synthesis of dimethyl 2-((4-chlorophenyl)(phenyl)methylene) malonate (**6***h*):^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1a** (16 mg, 0.10 mmol), and diaryl ester **2n** (34 mg, 0.11 mmol) in TFT to afford **6h**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (85:15 v/v) as eluent. The desired compound **6h**

was obtained as a colorless oil. Yield: 25 mg, 75%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.40–7.29 (m, 5H, Ar–H), 7.17–7.15 (m, 2H, Ar–H), 7.13– 7.10 (m, 2H, Ar–H), 3.64 (s, 3H, COOCH₃), 3.60 (s, 3H, COOCH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.3 (C=O), 166.2 (C=O), 155.3, 139.6, 138.4, 135.7, 130.6, 129.7, 129.2, 128.7, 128.5, 125.9, 52.5 (CH₃), 52.4 (CH₃). Synthesis of diisopropyl 2-((4-chlorophenyl)(phenyl)methylene) malonate (6i):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1b** (22 mg, 0.10 mmol), and diaryl ester **2n** (34 mg, 0.11 mmol) in TFT to afford **6i**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent.

The desired compound **6i** was obtained as a white solid. Yield: 32 mg, 84%, 0.08 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.37–7.28 (m, 5H, Ar–H), 7.19–7.16 (m, 2H, Ar–H), 7.15– 7.12 (m, 2H, Ar–H), 5.01–4.90 (m, 2H, CH), 1.12 (d, *J* = 6.3 Hz, 6H, CH₃), 1.08 (d, *J* = 6.3 Hz, 6H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.4 (C=O), 165.2 (C=O), 153.5, 139.8, 138.6, 135.3, 130.6, 129.4, 129.2, 128.5, 128.4, 127.8, 69.2 (CH), 69.1 (CH), 21.5 (CH₃), 21.4 (CH₃); IR v_{max} (cm⁻¹): 2980, 2935, 1718 (C=O), 1598, 1506, 1487, 1448, 1371, 1355, 1315, 1236, 1166, 1105, 1070, 1014; HRMS (ES+) [M+Na]⁺ [C₂₂H₂₃ClO₄Na]⁺: calculated 409.1183, found 409.1184.

Synthesis of dibenzyl 2-((4-chlorophenyl)(phenyl)methylene)malonate (6j):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1c** (31 mg, 0.10 mmol), and diaryl ester **2n** (34 mg, 0.11 mmol) in TFT to afford **6j**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent.

¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.30–7.18 (m, 9H, Ar–H), 7.12–7.09 (m, 2H, Ar–H), 7.07– 7.04 (m, 4H, Ar–H), 7.02–7.00 (m, 2H, Ar–H), 6.98–6.96 (m, 2H, Ar–H), 5.02 (s, 2H, CH₂), 4.99 (s, 2H, CH₂); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 165.7 (C=O), 165.6 (C=O), 155.4, 139.6, 138.4, 135.6, 135.1, 135.0, 130.6, 129.7, 129.3, 128.7, 128.59, 128.57, 128.53, 128.50, 128.4, 128.3, 67.35 (CH₂), 67.34 (CH₂); IR v_{max} (cm⁻¹): 3034, 1718 (C=O), 1591, 1489, 1452, 1375, 1323, 1261, 1224, 1161, 1066, 1014; HRMS (ES+) [M+Na]⁺ [C₃₀H₂₃ClO₄Na]⁺: calculated 505.1183, found 505.1183.

The desired compound **6** was obtained as a colorless oil. Yield: 36 mg, 75%, 0.07 mmol.

Synthesis of dimethyl 2-(phenyl(p-tolyl)methylene) malonate (6k):^[10]

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1a** (16 mg, 0.10 mmol), and diaryl ester **2o** (32 mg, 0.11 mmol) in TFT to afford **6k**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent. The desired compound **6k**

was obtained as a colorless liquid. Yield: 22 mg, 72%, 0.07 mmol.

¹H NMR (500 MHz, CDCl₃, 298 K) δ: 7.38–7.31 (m, 3H, Ar–H), 7.19–7.16 (m, 2H, Ar–H), 7.14– 7.12 (m, 2H, Ar–H), 7.07–7.05 (m, 2H, Ar–H), 3.64 (s, 3H, COOCH₃), 3.59 (s, 3H, COOCH₃), 2.36 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ: 166.7 (C=O), 166.6 (C=O), 140.3, 139.8, 137.1, 129.4, 129.3, 129.2, 129.1, 128.3, 125.0, 52.4 (CH₃), 52.3 (CH₃), 21.5 (CH₃).

Synthesis of dibenzyl 2-(phenyl(p-tolyl)methylene)malonate (61):

Synthesized in accordance with *General Procedure d* using $B(C_6F_5)_3$ (10 mg, 0.02 mmol), diazoester **1c** (31 mg, 0.10 mmol), and diaryl ester **2o** (32 mg, 0.11 mmol) in TFT to afford **6l**. The crude reaction mixture was purified *via* preparative thin layer chromatography using hexane/diethyl ether (87:13 v/v) as eluent.

The desired compound **6l** was obtained as a colorless oil. Yield: 31 mg, 67%, 0.07 mmol. ¹H NMR (500 MHz, CDCl₃, 298 K) δ : 7.29–7.18 (m, 9H, Ar–H), 7.10–7.08 (m, 2H, Ar–H), 7.03– 6.95 (m, 8H, Ar–H), 5.02 (s, 2H, CH₂), 4.98 (s, 2H, CH₂), 2.28 (s, 3H, CH₃); ¹³C NMR (126 MHz, CDCl₃, 298 K) δ : 166.1 (C=O), 166.0 (C=O), 157.1, 140.3, 139.7, 137.2, 135.3, 135.2, 129.4, 129.0, 128.5, 128.47, 128.46, 128.43, 128.3, 128.24, 128.23, 125.1, 67.16 (CH₂), 67.14 (CH₂), 21.5 (CH₃); IR v_{max} (cm⁻¹): 2976, 2872, 1718 (C=O), 1450, 1379, 1325, 1303, 1259, 1224, 1159, 1109, 1070; HRMS (ES+) [M+Na]⁺ [C₃₁H₂₆O₄Na]⁺: calculated 485.1729, found 485.1729.

3. NMR Spectra

Figure S1: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **1a**

— 7.26

— 3.81

Figure S3: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **1b**

(
	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
	N		N N
	~		
			\sim
	l.		li li

35

Figure S4: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 1b

36
Figure S5: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 1c

Figure S6: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 1c

— 161.0

4 0 0 4		
28.5	7.5	7.2
	~~~~	6
	$\sim$	



	- I	· ·	- I - I		- I - I	1 1	· ·	· ·	1 1	1 1	1 1	- I - I	- I - I	1 1	- I - I	- · ·		- I - I		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S7: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 1d



## Figure S8: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 1d



Figure S9: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 1e

 7.43

 7.43

 7.44

 7.44

 7.44

 7.44

 7.44

 7.44

 7.44

 7.44

 7.44

 7.44

 7.45

 7.45

 7.44

 7.45

 7.44

 7.45

 7.44

 7.44

 7.45

 7.45

 7.46

 7.47

 7.47

 7.48

 7.49

 7.49

 7.40

 7.40

 7.40

 7.40

 7.40

 7.41

 7.41

 7.41

 7.41

 7.42

 7.44

 7.44

 7.45

 7.45

 7.45

 7.45

 7.45

 7.45

 7.45

 7.45

 7.45

 7.45

 7.46

 7.47

 7.47

 7.47

 7.47

 7.47

 7.47

 7.47

 7.47

 7.47

 7.48

 7.48
 </tr



# Figure S10: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 1e

m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
4	0 H N Q	804	4
ம்	-i o, io, 4;	4 - 8	2
i i i i i i i i i i i i i i i i i i i	N N N N	N N O	Ň
÷.	ਜਿਜਿਸ		ίΩ.
1		517	1
	$)   \rangle \langle$		



			- · ·		- · ·						- · ·	- · ·					- , · · ·			Τ
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C



## Figure S12: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 1f





C

Figure S13: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **2a** 

8.10 8.09 8.08 8.08 8.07 8.07 7.61 7.761 7.761 7.758 7.113 7.112 7.112 7.112 7.112 6.706



— 0.22

### Figure S14: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2a





## Figure S15: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound 2a



T - T											1	· ·		· · · ·								·		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S16: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **2b** 

8.11 8.10 8.09 8.09 8.09 8.09 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.71 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.73 7.71 7.73 7.71 7.71 7.71 7.72 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712



--0.21

Figure S17: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2b





Figure S18: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound 2b



Figure S19: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **2c** 



— 0.21

#### Figure S20: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2c

167.39 164.86 164.40	136.18 132.70 132.61 131.99 129.67 125.97 115.85 115.63 115.63	100.72 93.49	77.48 77.16 76.84 65.99
$\langle \langle \rangle \rangle$			



52

--- -0.16

Figure S21: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **2c** 

— -104.77

T														· · · · · ·										<u> </u>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22



Figure S22: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 2d

#### Figure S23: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 2d

167.15 165.13 164.44	135.67 135.09 132.70 132.70 132.63 129.03 125.98 115.84 115.84 115.66	100.79 93.48	77.41 77.16 76.91	65.95	ç
$\leq$			$\checkmark$		





## Figure S24: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 2d

T .	- · ·	1 1		1 1	- I - I	- I - I	· · ·	- I - I		- I - I	1	· · · ·	1 1	- I I						- I I	1	· · · ·		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-27





Figure S26: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 2e

## Figure S27: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 2e

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2.





## Figure S29: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **2f**

	$ \begin{array}{c} 167.40 \\ 164.87 \\ 164.60 \\ 164.43 \\ 161.96 \\ 161.96 \\ \end{array} $	133.24 133.27 133.27 132.61 132.61 132.00 132.00 129.92 129.92 129.92 129.92 129.92 129.92 129.92 129.92 129.92 115.95 115.95 115.74 115.74 115.74	~ 87.74 ~ 85.33	77.48 77.16 76.84	66.27
--	----------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------	-------------------------	-------







Figure S31: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **2g** 



## Figure S32: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **2g**

167.35 164.83 164.64	137.26 132.72 132.62 132.62 132.09 129.17 129.11 125.18 127.95 126.21 115.60 115.60	87.54 85.60	77.48 77.16 76.84	66.93
$\nabla \nabla$		57	$\leq$	



Figure S33: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **2g** 

— -105.03

				1 1			1 1																	1
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-27



Figure S34: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 2h

## Figure S35: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2h

167.27 164.74 164.58 160.25	132.65 132.56 129.55 129.31 126.35 126.35 115.72 115.72 114.12	101.57	92.68	77.48 77.16 76.84	66.44	55.45
$\langle V \rangle$				$\searrow$		



. 170 

-----

Figure S36: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **2h** 

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2.

Figure S37: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 2i



Figure S38: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2i

167.41 164.88 164.18 162.41 162.34 159.89 159.89 159.89	132.81 132.71 131.19 131.19 131.08 130.98 115.82 115.82 115.82 115.82 115.82 115.82 115.99 114.16 113.99 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 111.13 112.13 111.13 112.13 111.13 112.13 112.13 111.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 112.13 11	77.48 77.16 76.84	56.93
		$\leq$	



## Figure S39: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound 2i

— -104.91 — -112.30 2.03-1.00--1 20 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -27 10 -10 -90 0 -20 -30 -40 -50 -60 -70 -80



Figure S40: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 2j
## Figure S41: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 2j





Figure S42: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 2j

<del>, ,</del>		- <u> </u>						· · · ·		·		· · · ·	- I	· · · ·		- T	· · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · ·		·	<b>—</b>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:





#### Figure S44: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 2k

167.3 164.8 164.6 163.8 161.3	$135.9 \\ 132.5 \\ 132.5 \\ 122.0 \\ 126.3 \\ 115.9 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.6 \\ 115.$	77.48 77.16 76.84 76.40
-------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------





# Figure S45: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound 2k

— -104.80 — -113.67







## Figure S47: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 2l

167.05 165.03 164.77	143.96 143.96 132.52 132.52 132.52 128.65 128.65 128.66 126.66 115.65 115.67 115.67	77.75 77.41 77.16 76.91
$\Sigma V$		





## Figure S48: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 21

— -105.19

·	1 1		· · ·	- I I	· · ·	- I I				1	· · ·			- I I		1 1				- I I	· · ·		<u> </u>	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S49: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **2m** 





## Figure S50: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **2m**

	2, CDCI3, 200  K) spectrum of ec		
$\sim$ 166.99 $\gamma$ 164.97 164.87 $\sim$ 159.42	$\int 132.68 \\ 132.47 \\ 132.47 \\ 132.39 \\ 128.62 \\ 128.62 \\ 125.79 \\ 115.78 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ 1114.05 \\ $	77.41 77.19 77.16 76.91	55.43



		- I - I		· · ·			- I - I	· ·		- · ·	· ·	· ·	· · ·	· · ·		- I - I	- · ·		· · ·	Т
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Figure S51: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **2m** 

— -105.46

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22



 8.15

 8.16

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.13

 8.14

 8.15

 8.13

 8.14

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

 8.15

<t



Figure S53: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **2n** 

108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>н ю ю н</u>
. 6. 4		4006
16 16 16	11122222223	72 22
$\leq$		





# Figure S54: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **2n**

— -104.96

1 .		1 .	1 .															· (						· .
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-27

Figure S55: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **20** 



## Figure S56: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 20

- 167.02 - 165.00 - 164.79	140.43 137.39 137.39 137.39 137.35 132.51 132.53 122.42 122.31 128.07 128.07 128.07 128.07 126.67 112.63 115.63	77.68 77.41 77.16 77.16 76.91	
$\nabla Y$			

— 21.29



# Figure S57: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **20**

— -105.39

T	· ·	- · ·	- I I	- I - I	1	· · · ·		1 1	- I - I	1	1		1	· · ·			1	' '	· · ·	· · · ·			- I I	<b>—</b>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:



Figure S58: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **2p** 



#### Figure S59: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **2p**



## Figure S60: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **2p**

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-27







# Figure S63: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **3a**



						· .						· · ·		· I		· · ·	· · · ·		· ·					·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S64: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3b** 

7.16 7.146 7.146 7.07 7.07 6.85 6.85 6.70 6.70 6.70 6.70 6.70	5.10	4.83	0.00





Figure S65: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3b** 

## Figure S66: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **3b**

 ul	 

		1				· .						· · ·	· · ·	· ·	· ·	· · ·	· · ·	· · ·	· .				· ·	· ·
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22



Figure S67: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **3c** 

#### Figure S68: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **3c**

164.53 164.39 163.34 162.41	134.11 133.27 133.24 130.41 130.35	115.49 115.31 110.90	102.21	77.41 77.16 76.91 69.41 69.41	21.83	-0.33
$\forall \sim$	$\searrow$	$\vee$ /		$\lor$	$\searrow$	



Figure S69: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 3c



#### Figure S70: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound 3d

7.43 7.43 7.43 7.41 7.41 7.37 7.37 7.37 7.37 7.37 7.37	7.36 7.35 7.26



— 3.86 — 3.58

--- 0.23

Figure \$71.	13C NMR	(101  MHz)	$CDCl_2 20$	)8 K) 61	nectrum of	compound 3d
I Iguic D/I.		IUI MILL,	$CDCI_3, 2$	0 12) 5	peculum or	compound Su



Figure S72: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3e** 





— 0.00



Figure S73: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3e** 



Figure S74: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3f** 



Figure S75: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3f** 







108

— 0.23


Figure S77: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3g** 



Figure S78: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3h** 



### Figure S79: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3h**

Figure S80: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3i** 

7.53 7.53 7.52	7.52 7.51 7.51 7.51 7.51	7.32 7.32 7.31 7.31 7.31 7.30 7.30 7.29 7.29



— 3.88 — 3.64 — 0.25



# Figure S81: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound **3i**





Figure S83: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **3**j

#### Figure S84: ¹H NMR (400 MHz, CDCl₃, 298 K) spectrum of compound **3**k

7.63	3.87	3.60	1.56
	Ï		Ī

— 0.23





Figure S85: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 3k

Figure S86: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **3**k

— -62.83

20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2;

Figure S87: ¹ <b>H NMR</b> (400 M	MHz, CDCl ₃ , 298 K	) spectrum of compound 31
	(112, 0001), 20011	, speed and of compound of

7.54 7.57 7.57 7.52 7.57 7.57 7.57 7.50 7.40 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.5	3.89	3.60





Figure S88: ¹³C NMR (101 MHz, CDCl₃, 298 K) spectrum of compound 3l











Figure S92:	¹³ C NMR (101	MHz, CDCl ₃	, 298 K) spectrum	of compound 3n

		°P••		• • · · · · · · · · · ·		
165.82 164.90 164.13 162.41	136.39 133.34 133.38 132.32 130.30 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 130.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 132.35 12.35 12.35 12.35 12.35 12.35 12.35 12.35 12.35 12.	$< rac{115.78}{115.56}$	— 104.94	— 88.11	77.48 77.16 76.85	52.57 52.53



# Figure S93: ¹⁹F NMR (376 MHz, CDCl₃, 298 K) spectrum of compound **3n**

 •	

T															- I - I	- I - I								
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22



#### Figure S94: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **30**



#### Figure S95: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **30**

### Figure S96: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **30**

 $<^{-112.38}_{-112.54}$ 





Figure S97: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **3p** 







#### Figure S99: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 3q





### Figure S100: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **3**q



#### Figure S101: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **3q**'

7.26 7.21 7.21 7.21 7.21 7.21 7.22 7.19 7.19 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	



— 0.23



### Figure S102: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **3q**'

Figure S103: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **3r** 

8.16 8.17 7.48 7.48 7.49 7.40 7.40 7.24 7.33 7.33 7.33 7.33 7.33 7.33 7.33 7.3	3.87	3.44









Figure S105: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 3s



# Figure S106: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **3s**



# Figure S108: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 4a

169.00 167.33 165.31 164.88	135.61 132.78 132.78 132.79 132.41 129.14 125.43 125.43 115.99 115.81	77.41 77.16 76.91 74.33	00.53.00
SSE	Y YWY		



	1 1																	1 1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

# Figure S109: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 4a

— -104.28

1 1					· I						1								· · ·	· I	· I		1	
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2:



# Figure S111: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 4b

169.35 167.26 165.24 165.03	133.96 132.78 132.78 132.78 129.05 112.81 112.81 115.91 115.73	77.41 77.16 76.91 75.08	52.87
SYV			



# Figure S112: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 4b



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2;
## Figure S113: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6a**

7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	3.63



# Figure S114: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **6a**

$ \begin{array}{c} 166.28 \\ -164.57 \\ 162.58 \\ -154.42 \\ 135.80 \\ 131.29 \\ 131.29 \\ 131.29 \\ 131.29 \\ 115.56 \\ 115.56 \\ 115.56 \\ 77.41 \\ 77.41 \\ 77.41 \\ 77.41 \\ 77.41 \\ -52.51 \end{array} $	<ul> <li>✓ 166.28</li> <li>─ 164.57</li> <li>✓ 162.58</li> </ul>	— 154.42	$igg< egin{array}{c} 135.83 \ 135.83 \ 135.80 \ & 135.80 \ & 1131.29 \ & 111.29 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 111.23 \ & 1$	< 115.73 < 115.56	77.41 77.16 76.91	— 52.51
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------	----------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------	-------------------------	---------



## Figure S115: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 6a

— -110.81

T						- I - I		- I - I				· ·		· · · · ·				· · · ·	· · ·	· · · ·	· · · ·	· · · · ·	<u> </u>	<b>—</b>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

Figure S116: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6b** 





## Figure S117: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **6b**

165.61 164.55 162.56	154.47	135.74 135.71 135.05 135.05 131.29 131.28 131.28 128.50 128.50 115.63 115.45	77.41 77.16 76.91 67.33
577		$\sim$	



	1 1	1 1	1 1	1 1	1 1	1 1				1 1		1 1		1 1	1 1	1 1	1 1	1 1	1 1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

## Figure S118: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound **6b**

— -110.84

20	10	0	10	20	20	40	, FO	ċo	70	00	00	100	110	120	120	140	100	1.00	170	100	100	200	210	
20	10	U	-10	-20	-30	-40	-50	-60	-/0	-80	-90	-100	-110	-120	-130	-140	-120	-100	-1/0	-100	-190	-200	-210	-2,





## Figure S120: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6c

165.33 164.42 162.43	152.50	136.04 136.04 131.30 131.23 127.66	115.55 115.38	77.41 77.16 76.91 69.22	21.49
512	1	$\vee \vee \prime$	$\vee$		1



## Figure S121: ¹⁹F NMR (471 MHz, CDCl₃, 298 K) spectrum of compound 6c

1 .												· · ·	· · ·	·										
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2



Figure S122: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 6d

## Figure S123: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **6d**

166.52	156.70	140.04	129.48 129.20 128.34 125.55	77.41 77.16 76.91	52.39
			$\backslash / /$		



1 1	1 1				1 1	1 1	1 1				1 1	1 1	1 1						1 1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

Figure S124: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6e** 





## Figure S125: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound **6e**



	· ·	· · ·		1 1	1 1	- I - I	1 1		1 1		1 1		1 1		1 1		1 1		- ·	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

### Figure S126: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 6f

26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	82	62
· · · · · · · · · · · · · · · · · · ·	ς.	ы.



## Figure S127: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6f

167.22	160.86	156.76	132.65 131.29	123.04	113.70	77.41 77.16 76.90	55.41 52.29
I			57				



## Figure S128: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6g**





## Figure S129: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6g

Figure S130: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6h** 

11111111111111111111111111111111111111	64 60
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	52

Figure S131: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6h

166.35 166.16	155.33	139.62 138.41 135.66 130.57 129.16 128.47 128.47 125.88 125.88	77.41 77.16 76.91	52.51 52.46
$\mathbf{\mathbf{\vee}}$			\checkmark	\vee

Figure S132: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 6i

Figure S133: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6i

Figure S134: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound 6j

Figure S135: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6j

165.71 165.56	155.39 139.60 1338.55 135.09 135.09 135.09 135.09 135.09 135.09 128.57 128.57 128.55 128.55 128.55 128.35 1	77.41 77.16 76.91	67.35 67.34
\vee		\checkmark	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$

Figure S136: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6**k

7.38 7.35 7.35 7.35 7.35 7.33 7.33 7.33 7.33	3.64	2.36
	52	

Figure S137: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6k

Figure S138: ¹H NMR (500 MHz, CDCl₃, 298 K) spectrum of compound **6**l

Figure S139: ¹³C NMR (126 MHz, CDCl₃, 298 K) spectrum of compound 6l

166.12 166.01	157.10 139.74 139.72 137.20 135.26 129.42 128.47 128.44 128.43 128.23 128.23 128.23 125.10 125.10	77.41 77.16 76.91 67.16 67.14	21.51
$\mathbf{\mathbf{\vee}}$		\checkmark \checkmark	

4. Crystallographic Data 4.1 Single crystal X-ray diffraction experimental

Single crystals of **3a**, **3n** and **6e** were grown in a fume hood by slow evaporation or vapor diffusion. Crystallographic studies were undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual Atlas three-circle diffractometer using Mo- or Cu-K α radiation and a CCD detector. Measurements were taken at 190.00(10) K (**3a**, **3n**) or 200.01(10) K (**6e**) with temperatures maintained using an Oxford cryostream. Data were collected and integrated and data corrected for absorption using a numerical absorption correction based on Gaussian integration over a multifaceted crystal model within CrysAlisPro.^[11] The structures were solved by direct methods and refined against F2 within SHELXL-2013.^[12] The structures have been deposited with the Cambridge Structural Database (CCDC deposition numbers **1976457**, **1976537** and **1977547**). These can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4.2 Solid-state structures:

Figure S140: Solid-state structure of compound **3a**, thermal ellipsoids drawn at 50% probability level. H-atoms and TMS disorder have been omitted for clarity.

Figure S141: Solid-state structure of compound **3n**, thermal ellipsoids drawn at 50% probability level. H-atoms have been omitted for clarity.

Figure S142: Solid-state structure of compound **6e**, thermal ellipsoids drawn at 50% probability level. Data collected at 200.01(10) K H-atoms have been omitted for clarity.

4.3 X-ray refinement data:

Tuble 51. Crystal data and structure fermior	nent for compound ou.	
Empirical formula	$C_{17}H_{19}FO_4Si$	
Formula weight	334.42	
Temperature	190(10) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 5.9971(11) Å	$\alpha = 85.473(14)^{\circ}.$
	b = 10.4508(18) Å	$\beta = 84.051(14)^{\circ}.$
	c = 14.670(2) Å	$\gamma = 84.797(15)^{\circ}$.
Volume	908.4(3) Å ³	
Z	2	
Density (calculated)	1.223 Mg/m ³	
Absorption coefficient	0.154 mm ⁻¹	
F(000)	352.0	
Crystal size	$0.977 \times 0.216 \times 0.185 \text{ mm}$	n ³
θ range for data collection	4.2060 to 28.3770°.	
Index ranges	-6 \leq h \leq 8, -13 \leq k \leq 12, -	$14 \le 1 \le 19$
Reflections collected	7611	
Independent reflections	4270 [R(int) = 0.0307]	
Completeness to $\theta = 29.659 \circ$	83.0%	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.763	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	4270 / 33 / 213	
Goodness-of-fit on F ²	0.875	
Final R indices [I>2o(I)]	R1 = 0.0620, wR2 = 0.162	15
R indices (all data)	R1 = 0.0913, wR2 = 0.197	75
Extinction coefficient	n/a	
Largest diff. peak and hole	0.441 and -0.378 e.Å ⁻³	

 Table S1. Crystal data and structure refinement for compound 3a.

Empirical formula	$C_{20}H_{15}FO_4$			
Formula weight	338.32			
Temperature	190(10) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	<i>P</i> 2 ₁ /c			
Unit cell dimensions	a = 18.3342(11) Å	$\alpha = 90^{\circ}$.		
	b = 5.7085(5) Å	$\beta = 93.557(6)^{\circ}$.		
	c = 16.2664(11) Å	$\gamma = 90^{\circ}.$		
Volume	1699.2(2) Å ³			
Z	4			
Density (calculated)	1.323 Mg/m ³			
Absorption coefficient	0.099 mm ⁻¹			
F(000)	704			
Crystal size	$0.535\times0.186\times0.053\ mm^3$			
θ range for data collection	4.2750 to 29.0220°.			
Index ranges	$-23 \le h \le 25, -7 \le k \le 6, -22 \le l \le 19$			
Reflections collected	9432			
Independent reflections	4101 [R(int) = 0.0251]			
Completeness to $\theta = 29.795^{\circ}$	84.7%			
Absorption correction	Gaussian			
Max. and min. transmission	1.000 and 0.654			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4095 / 0 / 227			
Goodness-of-fit on F ²	0.934			
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0490, wR2 = 0.1003			
R indices (all data)	R1 = 0.0743, wR2 = 0.1130			
Extinction coefficient	0.0043(6)			
Largest diff. peak and hole	0.248 and -0.184 e.Å ⁻³			

 Table S2. Crystal data and structure refinement for compound 3n.

Empirical formula	$C_{22}H_{24}O_4$			
Formula weight	352.41			
Temperature	200.01(10) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	<i>P</i> 2 ₁ /c			
Unit cell dimensions	a = 10.6266(5) Å	$\alpha = 90^{\circ}$.		
	b = 10.1624(5) Å	$\beta = 93.715(4)^{\circ}$.		
	c = 18.5303(7) Å	$\gamma = 90^{\circ}.$		
Volume	1996.91(15) Å ³			
Z	4			
Density (calculated)	1.172 Mg/m ³			
Absorption coefficient	0.080 mm ⁻¹			
F(000)	752.0			
Crystal size	$0.249\times0.226\times0.209\ mm^3$			
θ range for data collection	3.8490 to 27.9840°.			
Index ranges	$-13 \le h \le 11, -12 \le k \le 12, -23 \le l \le 22$			
Reflections collected	10172			
Independent reflections	4337 [R(int) = 0.0250]			
Completeness to $\theta = 27.100^{\circ}$	98.7%			
Absorption correction	Gaussian			
Max. and min. transmission	1.000 and 0.779			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4337 / 114 / 270			
Goodness-of-fit on F ²	1.005			
Final R indices [I>2 σ (I)]	R1 = 0.0434, wR2 = 0.0821			
R indices (all data)	R1 = 0.0638, wR2 = 0.0917			
Extinction coefficient	0.0169(9)			
Largest diff. peak and hole	0.220 and -0.190 e.Å ⁻³			

 Table S3. Crystal data and structure refinement for compound 6e.

5. Computational Data

5.1 Additional energy profiles

Figure S143: The free energy profile for production of **I2** via coordination of $B(C_6F_5)_3$ to pendant oxygen of the carboxylate group vs production of **I2** via coordination of $B(C_6F_5)_3$ to the bonded oxygen of the carboxylate group.

production of **I2** via coordination of $B(C_6F_5)_3$ to pendant oxygen of the carboxylate group

production of $\mbox{I2}$ via coordination of $B(C_6F_5)_3$ to the bonded oxygen of the carboxylate group

Figure S144: The free energy profile for coordination of the borane to the diazo compound calculated by SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d). The relative free energies are given in kcal/mol.

Figure S145: The free energy profile for the reaction calculated by SMD/M06-2X/def2-TZVP// CPCM/B3LYP/6-31G(d). The relative free energies are given in kcal/mol.

Figure S146: The free energy profile for the reaction calculated by SMD/wB97XD/def2-TZVP// CPCM/B3LYP/6-31G(d). The relative free energies are given in kcal/mol.

5.2 Cartesian coordinates and total energies for all the calculated structures in Toluene.

```
1
E(CPCM/B3LYP/6-31G(d)) = -604.494636 au
H(CPCM/B3LYP/6-31G(d)) = -604.361751 au
G(CPCM/B3LYP/6-31G(d)) = -604.413467 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -604.517252 au
         1.30450500 -0.49667000 0.00004000
С
0
          2.31461200 0.40359500 -0.00021000
0
          1.45563300 -1.69866300 0.00011600
С
         -0.00000500 0.19076600 0.00019200
Ν
         -0.00000400 1.51178100 0.00026300
         0.00002300 2.64319100 0.00031900
Ν
С
         -1.30451600 -0.49665800 0.00012000
0
         -1.45562700 -1.69865500 0.00031100
0
         -2.31461400 0.40361100 -0.00015500
С
         -3.64084600 -0.15626100 -0.00023400
Н
         -3.79688100 -0.76865400 0.89116100
Н
         -4.31496400 0.69992500 0.00012800
Н
         -3.79703900 -0.76799200 -0.89206300
С
         3.64083500 -0.15625500 -0.00048000
Н
         3.79737200 -0.76775700 0.89144900
Н
         3.79656100 -0.76888300 -0.89177000
Н
         4.31495800 0.69992700 -0.00131000
2
E(CPCM/B3LYP/6-31G(d)) = -1374.461266 au
H(CPCM/B3LYP/6-31G(d)) = -1374.115932 au
G(CPCM/B3LYP/6-31G(d)) = -1374.197134 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -1374.480469 au
С
         4.63645100 -1.31310900 1.33493600
С
         3.30121400 -0.92344200 1.31052600
С
         2.67601200 -0.59215500 0.09864500
С
         3.40575100 -0.65527800 -1.09863400
С
         4.74296800 -1.04402900 -1.08757400
С
         5.33378900 -1.36597600 0.13094200
Н
         5.13913100 -1.57309900 2.26033500
         2.72505200 -0.87016300 2.22785700
Н
Н
         2.92549600 -0.40043800 -2.03604300
Н
         5.32722900 -1.10058100 -1.99977500
F
         6.62750200 -1.74244500 0.14562900
С
         1.24463400 -0.18312800 0.14552800
0
         0.58511100 -0.12300500 1.16536400
0
         0.76231000 0.11171100 -1.08581800
С
         -0.63118300 0.55884900 -1.20865900
Н
         -0.72128800 0.63684900 -2.29706600
С
         -1.57797600 -0.46015000 -0.75286700
С
         -2.39358100 -1.31091400 -0.44539800
```

```
Si
         -3.61105200 -2.61104600 0.05000700
С
         -3.94522700 -2.44759300 1.90196600
Н
         -3.02547600 -2.57390800 2.48437600
Н
         -4.36566600 -1.46526000 2.14620000
         -4.66077900 -3.21051200 2.23319400
Н
С
         -2.86147600 -4.30031100 -0.34252000
         -3.55464600 -5.10249700 -0.06021500
Н
Н
         -2.64679100 -4.40336700 -1.41232700
Н
         -1.92562100 -4.45751000 0.20576500
С
         -5.20039100 -2.34297500 -0.93651900
         -5.01928000 -2.41939300 -2.01476300
Н
         -5.95000300 -3.09768100 -0.66781300
Н
Н
         -5.63269900 -1.35584400 -0.73652200
С
         -0.83003900 1.94870300 -0.62087500
С
         -0.33660700 3.04768300 -1.33697600
С
         -1.48003600 2.16566100 0.59942800
С
         -0.47955400 4.34527000 -0.84751600
Н
         0.16714000 2.89048300 -2.28735100
С
         -1.63844100 3.45732100 1.09996500
Н
         -1.86025000 1.31904700 1.15967400
С
         -1.13231300 4.52526800 0.36711700
Н
         -0.10429200 5.20518000 -1.39213900
Н
         -2.14145200 3.64249700 2.04323700
F
         -1.28354700 5.77833800 0.84746100
3
E(CPCM/B3LYP/6-31G(d)) = -1349.448367 au
H(CPCM/B3LYP/6-31G(d)) = -1349.096995 au
G(CPCM/B3LYP/6-31G(d)) = -1349.185014 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -1349.460432 au
С
          0.02575600 2.78978900 -0.09178000
0
         -0.44379200 3.86999900 0.22685700
0
          1.30241700 2.61534900 -0.46240000
С
         -0.79301200 1.54876900 -0.09953800
С
         -2.26647400 1.86986600 -0.05665100
0
         -2.88289300 2.34779800 -0.98653700
0
         -2.80195100 1.57843200 1.13773600
С
         -4.21096700 1.85386900 1.27129100
Н
         -4.78299800 1.24661300 0.56515900
Н
         -4.46172500 1.58767700 2.29765700
Н
         -4.40997800 2.91182000 1.08596200
С
         -0.33685600 0.26109800 -0.09561900
С
          1.04325400 -0.09131000 -0.04156500
С
          2.18530800 -0.52267100 0.02148100
Si
         3.93408200 -1.12026800 0.09978700
          4.10951200 -2.21795300
С
                                1.62766100
Н
          3.87987800 -1.66483900 2.54551200
Н
          3.43897500 -3.08336900 1.57753600
          5.13681700 -2.59391000 1.71094000
Н
```

```
С
          5.07542300 0.37957600 0.22433100
Н
          6.12424200 0.06149900 0.27369400
          4.96526700 1.03654100 -0.64613400
Н
Н
          4.86113900 0.96965000 1.12267500
С
          4.28939300 -2.10136800 -1.47469000
Н
          4.16341900 -1.48016200 -2.36868000
Н
          5.32117300 -2.47425500 -1.46739500
Н
          3.62060000 -2.96460000 -1.56669900
С
         -1.26710200 -0.90993000 -0.13785400
С
         -1.05618700 -2.00741800 0.71458600
С
         -2.33408500 -0.95657200 -1.05127200
С
         -1.90759600 -3.10823200 0.68728600
         -0.22332800 -1.99214900 1.40999500
Н
С
         -3.18652600 -2.05897300 -1.09708300
Н
         -2.49155700 -0.13725400 -1.74398600
С
         -2.96185600 -3.11440300 -0.22114500
Н
         -1.76308100 -3.95412400 1.35094000
н
         -4.00631700 -2.11021400 -1.80566400
F
         -3.78408400 -4.18288300 -0.25914200
С
         2.12609100 3.79492500 -0.42463500
Н
          2.14496900 4.21643600 0.58333900
Н
          3.12040700 3.46171400 -0.72110900
Н
          1.74700100 4.54563100 -1.12255600
5
E(CPCM/B3LYP/6-31G(d)) = -2728.268218 au
H(CPCM/B3LYP/6-31G(d)) = -2727.966091 au
G(CPCM/B3LYP/6-31G(d)) = -2728.077861 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -2728.583837 au
         -0.31193400 0.07159800 0.00389900
В
С
         -0.77390000 -0.66435200 -1.38622400
С
         -1.89097100 -0.30429700 -2.14421300
С
         -0.10123000 -1.79925800 -1.84965200
С
         -2.29380100 -0.98712200 -3.29099800
С
         -0.46271800 -2.50573500 -2.99288100
С
         -1.57311000 -2.09461300 -3.72232100
С
         -0.75901000 1.63698800 0.15017300
С
         -1.30748900 2.22978600 1.28968500
С
         -0.52787000 2.52214000 -0.90878200
С
         -1.63888800 3.58241100 1.36816100
С
         -0.83903300 3.87719400 -0.87281400
С
         -1.40452200 4.41334600 0.27974600
С
         -0.71419200 -0.93835600 1.22790400
С
         -2.07257500 -1.11096100 1.51329800
С
         0.13554800 -1.77634800 1.94906000
С
         -2.56331900 -2.00821500 2.45403100
С
         -0.30966500 -2.69052500 2.90416000
С
         -1.66941600 -2.80925600 3.15969600
         0.96676500 -2.28560000 -1.16924000
F
```

F	0.23830700 -3.58065800	-3.38604600
F	-1.94505200 -2.76005900	-4.82264400
F	-3.37128700 -0.58374900	-3.98052600
F	-2.65323000 0.75075600	-1.79545600
F	0.03131900 2.06969900	-2.05192800
F	-0.59530800 4.66735100	-1.92962700
F	-1.70958200 5.71497100	0.34192600
F	-2.16572900 4.08956700	2.49355300
F	-1.53414200 1.51462700	2.40966000
F	-2.98400400 -0.37037200	0.84774800
F	-3.88015900 -2.11350600	2.68315100
F	-2.11541200 -3.68236900	4.07104300
F	0.56732200 -3.45765000	3.57056800
F	1.48013800 -1.74859100	1.76240500
0	1.27797700 0.13843900	-0.14573500
С	2.13852900 0.56471400	0.65601100
0	1.73700000 1.14292300	1.77027700
С	3.55968700 0.41895100	0.33482600
С	3.93416500 -0.55904900	-0.60664700
С	4.54042500 1.22841000	0.93747200
С	5.27238900 -0.73619900	-0.92991800
Н	3.17072000 -1.18378000	-1.05578800
С	5.87992400 1.06345600	0.61023900
Н	4.27193100 2.02114300	1.63067100
С	6.22195400 0.07907000	-0.31594700
Н	5.58993800 -1.49008500	-1.64149100
Н	6.65354400 1.68338500	1.04873900
F	7.51324700 -0.08590000	-0.62873300
Н	2.47949000 1.32073700	2.37496000
I1		
E(CPCN	A/B3LYP/6-31G(d)) = -3582	2.722318 au
H(CPCI	M/B3LYP/6-31G(d)) = -3582	2.191076 au
G(CPC)	M/B3LYP/6-31G(d)) = -3582	2.339782 au
E(SMD	/M06-2X-D3/def2-TZVP//C	PCM/B3LYP/6-31G(d)) = -3582.987890 au
C	3.22108900 -2.87038900	-1.95857200
C	2.12070600 -2.10973100	-1.58059000
C	1.68537000 -1.04053300	-2.38185800
C	2.37127500 -0.75071400	-3.57861600
C	3.48281900 -1.49266200	-3.95374900
C	3.88648100 -2.54602500	-3.13653200
Н	3.56457300 -3.70296900	-1.35496500
Н	1.60323200 -2.36569100	-0.66735600
н	2.03777600 0.06708800	-4.20582400
Н	4.03306600 -1.27230500	-4.86169700
F	4.95377400 -3.27289100	-3.49960000
C	0.48244600 -0.25435600	-2.04203400
0	0.00535100 -0.02060600	-0.90524500
0	-0.11260300 0.20640100	-3.11980500

С	-1.39113500	0.99342200	-3.13280000
Н	-1.47598700	1.13264100	-4.21529300
С	-2.49545100	0.15967400	-2.68468000
С	-3.42389800	-0.56150700	-2.37036200
Si	-4.80060000	-1.68024600	-1.82087700
С	-5.11809800	-1.39201600	0.01666200
Н	-4.27987700	-1.75525100	0.61976200
Н	-5.24878700	-0.32966000	0.24824100
н	-6.02242300	-1.92641000	0.33267500
С	-4.25139100	-3.45832900	-2.13296300
н	-5.04682500	-4.15672700	-1.84448400
н	-4.02332800	-3.62925700	-3.19114800
Н	-3.35962300	-3.70385700	-1.54678500
С	-6.32804600	-1.24883800	-2.84482700
н	-6.14547000	-1.38830300	-3.91634300
Н	-7.16995100	-1.89228500	-2.56125500
н	-6.63488800	-0.20861800	-2.68700300
С	-1.23558800	2.35567600	-2.48388100
С	-0.22187400	3.20710400	-2.94704700
С	-2.12232800	2.81342800	-1.50534900
С	-0.07800500	4.49017400	-2.42804900
н	0.46470700	2.86545300	-3.71679200
С	-2.00043400	4.10291900	-0.98670100
н	-2.91103800	2.16164600	-1.14626300
С	-0.97674900	4.91655600	-1.45464000
Н	0.70524200	5.15842500	-2.76926800
Н	-2.68182300	4.47519600	-0.22932600
F	-0.85147100	6.16271900	-0.95552300
В	0.51344800	-0.14419400	0.62427400
С	0.04280900	-1.59996700	1.21289400
С	0.25692300	-1.86052600	2.57111300
С	-0.70261000	-2.57694700	0.55140300
С	-0.20354400	-2.99412300	3.22954900
С	-1.19003600	-3.72686200	1.17227000
С	-0.94194400	-3.93899600	2.52169100
С	-0.38621700	0.97830600	1.41816500
С	0.09434100	1.91852800	2.33427700
С	-1.77745900	0.96865000	1.28661500
С	-0.72729600	2.80756300	3.02722400
С	-2.63323000	1.84297100	1.94695200
С	-2.10242700	2.77726300	2.82858700
С	2.11333900	0.18714600	0.60007000
С	3.14118200	-0.62981200	1.07408000
С	2.54775400	1.40761300	0.07099300
С	4.48775900	-0.26764000	1.05125900
С	3.87695500	1.80890900	0.02101500
С	4.86001700	0.96230700	0.52457300
F	-0.99383600	-2.46624600	-0.76733200

F -1.90278300 -4.62523800 0.47158700 F -1.40007900 -5.03758600 3.13267100 F 0.04656600 -3.18125900 4.53320300 F 0.94969200 -0.97001300 3.31185100 F -2.36840400 0.07268000 0.46792600 F -3.95873500 1.79921600 1.72347400 F -2.90246500 3.63283300 3.47607400 F -0.19824400 3.69120800 3.88684600 F 1.40922000 2.01479700 2.61497000 F 2.88630700 -1.86764500 1.55054300 F 5.42490300 -1.10650700 1.51705200 F 6.14742000 1.32342300 0.48803700 F 4.21813000 2.99668100 -0.50063400 F 1.64106900 2.27377400 -0.43474900 I2 E(CPCM/B3LYP/6-31G(d)) = -3582.707006 au H(CPCM/B3LYP/6-31G(d)) = -3582.177614 au G(CPCM/B3LYP/6-31G(d)) = -3582.333295 au E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -3582.954546auС -4.44509300 0.47061300 -2.74390700 С -3.14592100 0.44834300 -2.24016200 С -2.26600200 -0.59152200 -2.57119100 С -2.71243100 -1.60977700 -3.43126200 С -4.00953900 -1.60886400 -3.93266600 С -4.85514100 -0.56145200 -3.57930300 Н -5.13377000 1.27165500 -2.49753100 н -2.82806200 1.25084300 -1.59042900 -2.02402700 -2.40216500 -3.70195700 Н -4.36912000 -2.39471300 -4.58854500 Н F -6.11300600 -0.54803700 -4.06546000 С -0.83841700 -0.64915000 -2.11534800 -0.40675600 0.03517300 -1.08411200 0 -0.03769600 -1.33368400 -2.76961200 0 С 2.76872100 -1.51220600 -1.62588700 С 3.77958300 -0.57231000 -1.66979300 С 4.61263600 0.33368700 -1.69903900 Si 5.78660300 1.79484100 -1.72682300 С 6.97138000 1.59154800 -0.27820000 Н 6.42719900 1.54701400 0.67048900 Н 7.57025700 0.67931800 -0.37562000 Н 7.66018300 2.44381400 -0.23456300 С 4.70349900 3.32601100 -1.57543500 5.32402500 4.22075900 -1.44601400 Н Н 4.08812000 3.46418100 -2.47091300 Н 4.03508400 3.24089000 -0.71326800 С 6.67794700 1.69815600 -3.38711000 5.97490300 1.75210300 -4.22486700 Н Н 7.37151900 2.54353900 -3.47384200

Н	7.25924000	0.77489600	-3.48238300
С	2.86161900	-2.79100500	-1.04467800
С	1.69448000	-3.61303000	-1.05468700
С	4.06007600	-3.27550400	-0.43926100
С	1.72036400	-4.86703900	-0.47834400
Н	0.79110500	-3.22505500	-1.51285200
С	4.09035300	-4.52771400	0.13038800
Н	4.94351300	-2.64545200	-0.43285100
С	2.91700100	-5.30096400	0.10102800
Н	0.84895000	-5.51134000	-0.45814800
Н	4.98076800	-4.93052800	0.59950800
F	2.95220300	-6.50769600	0.65559800
В	-0.92377500	0.44579900	0.28607500
С	-1.28983600	2.05528000	0.33268100
С	-1.68367800	2.63488000	1.54268100
С	-1.08861900	2.96958600	-0.70317800
С	-1.89242400	3.99602700	1.72705700
С	-1.28500600	4.34502100	-0.56465300
C	-1.68635500	4.86418600	0.65861200
С	0.40843600	0.31983700	1.28260700
С	0.43436900	-0.24279700	2.56076600
С	1.62189000	0.89808200	0.89157800
С	1.56810600	-0.27634500	3.37413100
С	2.77322500	0.89143800	1.67390600
С	2.75346300	0.29187800	2.92697100
С	-2.13824100	-0.58836400	0.70331300
С	-3.47185200	-0.26050600	0.94926300
С	-1.86875400	-1.95759700	0.78112800
С	-4.45547200	-1.19844900	1.26531600
С	-2.81210900	-2.93043700	1.08676000
С	-4.12482800	-2.54500200	1.33829800
F	-0.70719200	2.56351100	-1.93469400
F	-1.08347900	5.17008500	-1.60644400
F	-1.87811100	6.18259800	0.80897200
F	-2.27852600	4.48137000	2.91859100
F	-1.88078600	1.84463400	2.62239400
F	1.73049000	1.53448500	-0.29720300
F	3.90966900	1.47258900	1.23115800
F	3.85528200	0.27198500	3.69091100
F	1.52146000	-0.85128600	4.58710500
F	-0.66832500	-0.80124100	3.10151000
F	-3.90741000	1.01484400	0.85352200
F	-5.72185300	-0.80994800	1.48436100
F	-5.05633200	-3.46108600	1.63544400
F	-2.46944200	-4.22941900	1.14502800
F	-0.60915900	-2.40925900	0.54971700
Н	1.79824900	-1.23885900	-2.07015500
I3			

E(CPCM/B3L	YP/6-31G(d)) = -4	187.199604 au	
H(CPCM/B3LYP/6-31G(d)) = -4186.535770 au			
G(CPCM/B3L	VP/6-31G(d)) = -4	1186.720819 au	
E(SMD/M06-2	2X-D3/def2-TZVF	P/(CPCM/B3LYP/6-31G(d)) = -4187.494414 au	
C -3.58	8740000 -1.371385	500 -3.72579300	
C -2 6 ¹	5222200 -0.904863	300 -2 80295100	
C -1 59	8057500 -1 711595	500 -2 39748000	
C -1 4	5601500 -2 999330	00 -2 94614500	
C _2.39		200 -3 85537800	
C -2.30	8900900 -3.480038 4141000 -3.656754	100 4 22244200	
	+141900 -2.030734 1964400 0754330	400 - 4.23244200	
п -4.4. U 2.7	1004400 -0.754550	-4.04995700	
п -2.7		200 -2.406/5100	
H -0.6	1284200 -3.61257	/00 -2.64901400	
H -2.3	1161400 -4.483399	900 -4.27535300	
F -4.34	4/61400 -3.116494	-5.12125000	
C -0.49	9282500 -1.251627	700 -1.46767200	
0 -0.6	7812900 -0.302854	400 -0.58502800	
0 0.62	2154400 -1.778951	100 -1.58050400	
C 3.16	5488600 -0.688646	600 -0.32310700	
C 3.36	5028300 0.717802	00 -0.64049600	
C 3.49	9008400 1.903437	00 -0.88832700	
Si 3.47	7820000 3.740149	00 -1.17645300	
C 4.11	1852000 4.555150	00 0.40050600	
Н 3.50	0107900 4.269449	000 1.25929400	
Н 5.15	5444200 4.267956	00 0.61478300	
H 4.08	8581300 5.647768	300 0.30961900	
C 1.70	065700 4.256713	00 -1.52401400	
Н 1.65	5725200 5.323653	800 -1.77514800	
Н 1.25	5513200 3.693115	500 -2.35026100	
Н 1.07	7748600 4.085876	600 -0.64082500	
C 4.60	0986800 4.108405	00 -2.64353500	
Н 4.25	5674800 3.610402	200 -3.55383200	
H 4.63	3327300 5.186801	00 -2.84234400	
Н 5.6	3896500 3.782334	400 -2.45332000	
C 2.92	2316600 -0.985138	800 1 14754500	
C 2.00	174900 -1 987415	500 1 49136100	
C 3.57	7464500 -0.270612	200 2 16418700	
C 1.75	5762400 _2 295692	200 2.2784400	
н 1//	1/102400 -2.255052 1/100000 -2 /103886	500 0 71030700	
C 2.2/	1516200 -0 576057	200 2 50380900	
	2205200 0 556600	00 1.01574500	
11 4.23 C 2.44	JZJJZUU U.JJUUJU	200 - 2.91067400	
L 2.44	+433/00 -1.331328	500 3.0100/400 500 3.0200/400	
	2008900 -3.04601t		
H 3.8:			
F 2.21	1.885693	000 5.10456200	
в -1.82	2558200 0.278738	SUU U.22135500	
C -2.35	5001900 1.700538	300 -0.44086100	
C -3.32	2969500 2.450055	500 0.21810900	

С	-1.77200500	2.35069600	-1.53338300
С	-3.73424600	3.72234500	-0.16802000
С	-2.13906600	3.63052000	-1.95205200
С	-3.12570000	4.32458700	-1.26567900
С	-1.12378300	0.75409500	1.65743100
С	-1.63523000	0.55187800	2.94114300
C	0.06251900	1.49383800	1.62936100
C	-1.00822200	0.99862200	4.10505000
C	0.72593300	1.95256300	2,76279600
C	0.18828700	1,69852600	4.01856100
C	-2.95582000	-0.90116000	0.43644700
C	-4 28651800	-0.87756000	0.01987400
C C	-2 57730200	-2 09205200	1 06454400
C C	-5 18118600	-1 9287/800	0 22183500
C C	-3 /29/5800	-1.52874800	1 28591000
C C	4 75204000	2 00200700	0.86206800
C C	-4.73204000	-5.06266700	
г г		1.70204000	-2.27759500
r r	-1.53090500	4.19917200	-3.00910700
г г	-3.49050600	5.55522200	-1.05479200
F F	-4.68906900	4.38011800	0.51090100
	-3.93495800	1.93443400	1.31132100
F	0.62880000	1.82698000	0.44746000
F _	1.88654000	2.63242200	2.65580600
F	0.81363500	2.12505800	5.12662200
F _	-1.5510/600	0.75455200	5.31023300
F	-2.79885900	-0.10449100	3.13621600
F	-4.78794500	0.17900900	-0.65837500
F	-6.44934100	-1.83860100	-0.21250500
F	-5.59540700	-4.10565500	1.06302500
F	-2.99278100	-4.27851400	1.90389000
F	-1.30373300	-2.24702400	1.50440700
С	4.53511200	-1.26783900	-2.46031200
0	5.70541800	-0.70997600	-2.74117700
0	3.64348300	-1.54807500	-3.20934300
С	4.40249900	-1.53926800	-0.92687500
Ν	5.59759800	-1.07310200	-0.27212800
Ν	6.43279000	-0.62530200	0.30388000
С	4.23423300	-3.06251300	-0.63201800
0	3.36961000	-3.70043000	-1.16300100
0	5.12855400	-3.46759700	0.25950000
С	5.02527100	-4.85862500	0.68090900
Н	5.12496200	-5.51185300	-0.18684600
Н	5.84735700	-5.00066200	1.37909600
Н	4.06217000	-5.01542000	1.16846000
С	5.92128000	-0.35465200	-4.13740200
н	5.86127700	-1.25144500	-4.75546300
н	5.16793400	0.37145000	-4.44575300
н	6.91941900	0.07724200	-4.16491000

```
Н
          2.31510400 -1.09537000 -0.91094700
N_2
E(CPCM/B3LYP/6-31G(d)) = -109.520971 au
H(CPCM/B3LYP/6-31G(d)) = -109.512065 au
G(CPCM/B3LYP/6-31G(d)) = -109.533819 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -109.529218 au
          0.0000000 0.0000000 0.55258000
Ν
Ν
          0.0000000 0.0000000 -0.55258000
TS<sub>1</sub>
E(CPCM/B3LYP/6-31G(d)) = -3582.714535 au
H(CPCM/B3LYP/6-31G(d)) = -3582.184350 au
G(CPCM/B3LYP/6-31G(d)) = -3582.334293 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -3582.971851 au
С
          3.64883600 -1.72097100 -2.51636600
С
          2.40348800 -1.27974300 -2.07951900
С
          1.81487000 -0.13608600 -2.64034400
С
          2.49065700 0.56112800 -3.65685400
С
          3.74348400 0.13977100 -4.08910700
          4.30011000 -0.99744900 -3.51025900
С
Н
          4.11326700 -2.60963400 -2.10312600
          1.87075400 -1.84325700 -1.32544100
Н
Н
          2.03648500 1.43871000 -4.10173000
Н
          4.28712600 0.67168400 -4.86227100
F
         5.50779600 -1.41385300 -3.93107700
С
          0.47386800 0.30506400 -2.17488000
         -0.02228100 0.07451800 -1.07659300
0
0
         -0.16382700 0.98916500 -3.13890300
         -1.54524200 1.46935900 -2.96256400
С
Н
         -1.73064800 1.86788400 -3.96676500
С
         -2.47089500 0.36021200 -2.74667500
С
         -3.26060700 -0.56085900 -2.64559000
Si
         -4.41516200 -1.99687700 -2.43934500
С
         -5.30591300 -1.80575400 -0.78656100
Н
         -4.59757900 -1.65755800 0.03383400
Н
         -5.98121500 -0.94227400 -0.80185700
Н
         -5.90728600 -2.69676000 -0.56826000
С
         -3.39131400 -3.58181400 -2.49967100
Н
         -4.03526400 -4.45320500 -2.32706000
Н
         -2.92145500 -3.70537200 -3.48245000
Н
         -2.59702400 -3.59282000 -1.74687800
С
         -5.65600900 -1.96607900 -3.86389400
Н
         -5.15469500 -2.05454500 -4.83442300
Н
         -6.36090600 -2.80190300 -3.77377100
Н
         -6.23815100 -1.03749500 -3.86776500
С
         -1.63221000 2.62757700 -1.97663000
С
         -0.70492700 3.67367800 -2.08191000
С
         -2.66518100 2.72337800 -1.04028700
```

С	-0.79245800	4.79093300	-1.25551300
н	0.09723900	3.61455700	-2.81159000
С	-2.77389700	3.84264800	-0.21266500
н	-3.38975500	1.92045800	-0.95246900
С	-1.83218700	4.85600200	-0.33361200
Н	-0.07677900	5.60360900	-1.32001200
Н	-3.56895800	3.92994300	0.52050700
F	-1.92841000	5.93925400	0.46612400
В	0.59883700	-0.30961100	1.05440700
C	0.40030400	-1.88906100	1.27067400
C	0.65775500	-2.33578600	2.57060200
C	-0.10123500	-2.85836900	0.40473000
C	0.45478300	-3.64105200	2.99870300
C	-0.32562600	-4.17869100	0.79432900
C	-0.04887400	-4.57494100	2.09668600
C	-0.59640200	0.54065300	1.66347400
C	-0.41881600	1.56984800	2.59624400
C	-1.93047100	0.21869700	1.38300800
C	-1.47673800	2.25518900	3.18704700
C	-3.01138900	0.89240100	1.93855900
C	-2.78297200	1.92015700	2.84722900
C	2.04580600	0.30969200	0.88790300
C	3.23165300	-0.41455100	1.07810700
C	2,23436600	1.65256600	0 52159300
C	4,50104800	0.14401800	0.94879200
c C	3 48283900	2 24100800	0.36909800
C	4.62811200	1.48069500	0.59175800
F	-0.40073300	-2.56994200	-0.87743700
F	-0.82214500	-5.06262500	-0.08427800
F	-0.26015900	-5.83827800	2 47995500
F	0.72923600	-4.00304400	4 25879200
F	1.13655300	-1.45140800	3.47410800
F	-2,22039400	-0.77355000	0.52365400
F	-4.26733500	0.57955000	1 58377100
F	-3.81105900	2.59145700	3.37397600
F	-1.24665900	3.23305100	4.07257500
F	0.81457000	1.93515400	2.98892600
F	3,20469800	-1.72172400	1 39251000
F	5.59509400	-0.60139700	1.15043900
F	5.83588700	2.02984200	0.45320300
F	3.59538600	3.52623300	0.00921300
F	1,17435300	2,43928200	0.27004400
TS ₂	1117 100000	2110520200	
F(C	PCM/R3I YP/6-31	G(d)) = -3582	9 696387 au
	PCM/R3I VP/6_31	G(d) = -3582	2 170188 au
G(CPCM/B3LVP/6-31G(d)) = -3582.314871 au			
E(SMD/M06.2V, D2/dof) T7VD//CDCM/D2I, VD/6.21C(d)) = 2502.040627 cm			
E(S)	2 EE 200400	$12 - 12 V \Gamma//C$	1 CM(U) = -3582.949627 d
L	3.33300400	-2.39098000	-2.23322300

С	2.38509100	-1.79329600	-1.77380900
С	1.78426200	-0.75226300	-2.50181000
С	2.37354700	-0.32403500	-3.70848200
С	3.55033000	-0.90189900	-4.16454900
С	4.11852400	-1.93196400	-3.41857300
Н	4.02438900	-3.20013600	-1.68680900
н	1.94561600	-2.15381100	-0.85501500
н	1.91281700	0.47281100	-4.27960000
н	4.02695100	-0.57276900	-5.08117500
F	5.25012300	-2.50101600	-3.86008200
С	0.50979900	-0.14049900	-2.07511400
0	0.05974400	-0.02080600	-0.90992200
0	-0.18640800	0.29001500	-3.10366800
C	-1 91792800	1 07501200	-3 00521700
н	-2 06871400	1 25151200	-4 07502300
C	-2 88856900	0.08902000	-2 55673500
C C	-3 70/96900	-0 75713600	-2 2/301100
C Ci	-3.70490900	-0.75713000	-2.24301100
С С	-4.90339100 E 1722/100	1 00250200	-1.09709100
с u	-3.17224100	2 19/17600	0.10385000
п u	-4.20070700 E 42212200	-2.16417000	0.71403800
	-5.42512500	-0.87687600	0.45414700
	-5.98/84000	-2.50008400	0.48781100
	-4.15467200	-3.74301700	-2.12068700
н	-4.84323500	-4.54863100	-1.83685200
н	-3.95567400	-3.83546800	-3.19438900
Н	-3.21350800	-3.90042800	-1.58349900
C	-6.51990100	-1./8325000	-2.63653600
H	-6.3/050500	-1.84965700	-3./2014200
Н	-7.26157400	-2.54005300	-2.35296500
Н	-6.94600500	-0.79834900	-2.41399700
С	-1.90328300	2.41505800	-2.29452200
С	-1.02533000	3.40781900	-2.75353400
С	-2.79441800	2.71221900	-1.25965700
С	-1.01835700	4.67383400	-2.17605500
Н	-0.33748400	3.19094400	-3.56622100
С	-2.81004000	3.98184000	-0.68133100
Н	-3.47888300	1.95043700	-0.90325800
С	-1.91772900	4.93862700	-1.14742300
Н	-0.34053600	5.45043500	-2.51357000
Н	-3.49710600	4.23028200	0.12036400
F	-1.92550800	6.16662600	-0.59092400
В	0.64851200	-0.14872800	0.59002900
С	0.38962400	-1.67752500	1.12201200
С	0.69618300	-1.97049600	2.45568500
С	-0.25812000	-2.70966800	0.44170400
С	0.41056100	-3.18192300	3.07332100
С	-0.57015300	-3.93895900	1.02208600
С	-0.23632900	-4.17925300	2.34809800

С	-0.34639800 0.81393900 1.47495500
С	0.05499500 1.76463800 2.41796500
С	-1.73021700 0.63474200 1.39823500
С	-0.83819000 2.51039400 3.18719500
С	-2.65689700 1.36309100 2.13552500
С	-2.20653700 2.31582500 3.04184100
С	2.19209800 0.38266800 0.51942300
С	3.33397400 -0.31872600 0.91023100
С	2.44701400 1.67100500 0.03632600
С	4.62270700 0.21118500 0.85259600
С	3.71242600 2.23872900 -0.04573300
С	4.81494400 1.50096200 0.37482600
F	-0.62070500 -2.57673100 -0.85713800
F	-1.19706100 -4.88730100 0.30537200
F	-0.52615200 -5.35353600 2.92006500
F	0.74119300 -3.39510800 4.35485300
F	1.30609200 -1.03429000 3.21276200
F	-2.24207600 -0.29047300 0.55906300
F	-3.97551800 1.16258300 1.96273300
F	-3.07623300 3.03321200 3.76314900
F	-0.38428200 3.41371900 4.06903700
F	1.35917300 2.01324100 2.65094400
F	3.25677600 -1.59921600 1.33283600
F	5.67702700 -0.52299500 1.23767800
F	6.04452800 2.02298100 0.30579200
F	3.87932000 3.48256000 -0.51939100
F	1.41767300 2.43789500 -0.38844000
TS	3
E(CPCM/B3LYP/6-31G(d)) = -4187.200417 au
H(CPCM/B3LYP/6-31G(d)) = -4186.537134 au
G	CPCM/B3LYP/6-31G(d)) = -4186.721294 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -4187.470976 au
(-3.00284900 -1.13785900 -4.05561500
C	-2.25060100 -0.62912600 -2.99810800
C	-1.03776700 -1.22677100 -2.62815800
C	-0.58580800 -2.34439100 -3.35103100
C	-1.33360300 -2.87498500 -4.39695200
C	-2 53290200 -2 25550500 -4 73414600
н	-3.94048800 -0.68037700 -4.35259600
н	-2 62415300 0.23688900 -2 47082600
н	0.36306400 -2.79391300 -3.08182800
н	-1 00093800 -3.74590800 -4.95174100
F	-3.26086800 -2.75572400 -5.75353800
, C	-0.13371800 -0.69326100 -1.55216400
õ	-0.56374100 -0.05383400 -0.50420100
0 0	1.08754800 -0.87998200 -1.70358200
C	3.05356400 -0.66063600 -0.64360400
C	2.96722000 0.76065300 -0.67413400
-	

С	2.97133800	1.98155100	-0.64312700
Si	2.93820900	3.84428300	-0.54858800
С	3.41397600	4.30519300	1.21750600
н	2.71014600	3.86929200	1.93434800
н	4.42159400	3.95647100	1.47148600
Н	3.39486500	5.39457000	1.34453700
С	1.20770800	4.45492700	-0.96542000
Н	1.21253800	5.54959300	-1.03756900
Н	0.83568500	4.05125200	-1.91151300
н	0.50238800	4.16607400	-0.18096700
С	4.20914100	4.48695600	-1.78923000
Н	3.95561400	4.18543300	-2.81191700
Н	4.24054200	5.58301400	-1.76281600
н	5,21634100	4.11895400	-1.56308600
C	2.61144700	-1.41349100	0.54093800
C	2 36071100	-2 79567800	0 42298500
C C	2.30071100	-0 78412500	1 78496900
C C	1 94267600	-3 53470200	1 52051000
н	2 47744000	-3 28158400	-0 53974000
C	2.47744000	-1 517//700	2 80352100
ч	2.01750400	0.28676700	1 87729100
C C	1 78180/00	-2 88016600	2 7/128300
с ц	1 72120700	-2.88010000	1 11150100
	1.72139700	1 04041600	2 95902500
F	1 37931/00	-3 59151300	3.85892500
r R	-1 878/5/00	0.20665900	0.22030400
C	-2 55583100	1 62002000	-0 30325100
C C	-2.55585100	2 133/1900	0.35662800
C C	-2 022/1800	2.13341300	-1 27016900
C C	-2.02241800	2.47423400	0.09017000
C C	-2 5/1973300	3 73180900	-1 56686900
C C	-2.54575500	<i>A</i> 18953500	-0.88088500
C C	-3.00013200	4.18555500	1 78885700
C C	-1.41034300	0.32802800	2.04460000
	-2.03096200	0.04087800	2.94400000
C C	1 62271500	0.26206500	2.03994900
C C	-1.02271300	1 74227500	4.23000900
	0.09550600	1.74527500	3.31107300
	-0.54093800	1.21447200	4.42813400
	-2.81409600	-1.14447400	0.11/01000
	-4.09968300	-1.24012000	-0.41485400
	-2.298/9800	-2.35744900	0.58467200
	-4.82865300	-2.42798500	-0.4/186300
C	-2.983/3400	-3.56612200	0.54656000
L F	-4.26890800	-3.60155/00	0.01526/00
r r	-0.94462500	2.11863200	-2.00986100
	-1.9/608300	4.50383200	-2.50660600
F	-4.18662200	5.3945/800	-1.15249600
F	-5.32391700	3.79990400	0.76262800

F	-4.27129700 1.39931100	1.32314200		
F	0.29455600 2.00328900	1.01534000		
F	1.15279000 2.56657900	3.47035400		
F	-0.12059100 1.52348700	5.66340100		
F	-2.26133000 -0.14724000	5.30408100		
F	-3.10487200 -0.77430200	2.87505700		
F	-4.71210500 -0.16461400	-0.95987100		
F	-6.06035700 -2.44751200	-1.00717200		
F	-4.95129800 -4.75390000	-0.03448800		
F	-2.42262700 -4.69221400	1.01968100		
F	-1.05649800 -2.39630500	1.12335700		
С	5.45043700 -0.27600100	-1.99440300		
0	6.17573600 0.83730200	-1.88985700		
0	5.07770200 -0.80401700	-3.01200300		
С	5.08665800 -0.83351000	-0.62679200		
Ν	5.51506800 -0.05703700	0.40582200		
Ν	5.70096900 0.63245200	1.26875500		
С	5.34569600 -2.31179100	-0.41052700		
0	5.12747400 -3.13812500	-1.26128700		
0	5.78691100 -2.53658600	0.82824500		
С	6.00341400 -3.92628900	1.18453400		
Н	6.71679300 -4.37964500	0.49447000		
Н	6.40205100 -3.89849900	2.19692300		
Н	5.05442200 -4.46422300	1.15423600		
С	6.51979200 1.48147100	-3.14467600		
Н	7.11435900 0.80134100	-3.75685700		
Н	5.60950600 1.76606200	-3.67473900		
Н	7.09813000 2.35899800	-2.86218700		
Н	3.10247700 -1.18861800	-1.58621200		
TS ₄				
E(CPCM/B3LYP/6-31G(d)) = -4187.194716 au				
H(CP	CM/B3LYP/6-31G(d)) = -4186	5.533166 au		
G(CP	CM/B3LYP/6-31G(d)) = -4186	5.718403 au		
E(SM	D/M06-2X-D3/def2-TZVP//C	PCM/B3LYP/6-31G(d)) = -4187.486114 au		
С	-3.37657300 -1.42750900	-3.78900400		
С	-2.48645000 -0.92397000	-2.84187300		
С	-1.39906200 -1.69070000	-2.40222100		
С	-1.21049300 -2.97520400	-2.94047000		
С	-2.09978100 -3.49840200	-3.87326900		
С	-3.16945000 -2.70893500	-4.28455500		
Н	-4.21963000 -0.84220100	-4.14014500		
Н	-2.64964900 0.07152600	-2.45394000		
Н	-0.35551600 -3.55774800	-2.61657700		
Н	-1.97411000 -4.49394600	-4.28573100		
F	-4.03187600 -3.20454300	-5.19625900		
С	-0.35980900 -1.18303000	-1.44559600		
0	-0.60578500 -0.26659500	-0.55147000		
0	0.78570100 -1.65326200	-1.55328000		

С	3.16536300	-0.61829000	-0.26701800
С	3.32135900	0.75872700	-0.71992100
С	3.41602100	1.91589200	-1.08790200
Si	3.33847600	3.70773300	-1.57595000
С	2.82864400	4.66692400	-0.03414800
н	1.96822400	4.19620800	0.45141400
Н	3.64488600	4.70225900	0.69678200
н	2.56159700	5.69932600	-0.29011900
С	2.07676400	3.87644800	-2.96617000
н	2.39620200	3.32358900	-3.85734700
н	1.08986700	3.50224000	-2.67653600
Н	1.96852900	4.93092300	-3.24949600
C	5.05264600	4.23898400	-2.16832600
н	5 37293800	3 66445900	-3 04514600
н	5.04263800	5 29869600	-2 45156900
н	5 80743400	4 11183800	-1 38380200
C	2 91670400	-0 78885600	1 23127400
C C	2.01070400	-1 77813200	1 6697//00
C C	2.02440300	0.03588600	2 172/0300
C C	1 70062400	1 06724200	2.17240300
с u	1.79003400	-1.90734300	0.04641000
	1.46207500	-2.37084300	2 52602000
	3.32008000	-0.14069900	3.33003900
	4.18675900	0.84968800	1.84445700
	2.45490300	-1.15308300	3.94069900
н	1.08356500	-2./10/5600	3.38202300
H F	3.79835700	0.48827000	4.27760700
	2.23318300	-1.32849600	5.25/99/00
В	-1.81337600	0.24044200	0.23160100
C	-2.40431500	1.63530900	-0.42837900
C	-3.45991800	2.30428000	0.19978900
С	-1.82298200	2.34706000	-1.47893800
С	-3.93191900	3.55438500	-0.18230000
С	-2.25655100	3.60699000	-1.89277900
С	-3.31819700	4.21863900	-1.24076300
С	-1.18099700	0.74424300	1.68537400
С	-1.72692900	0.50992700	2.94943700
С	-0.04134600	1.55489400	1.69870100
С	-1.17395700	0.99517000	4.13490400
С	0.54692300	2.05500400	2.85580200
С	-0.02221400	1.76990000	4.09098900
С	-2.87224300	-1.01012400	0.39804100
С	-4.18529400	-1.06745200	-0.06893200
С	-2.44341900	-2.17964300	1.03392500
С	-5.01879100	-2.17410800	0.09426500
С	-3.23368600	-3.30779600	1.21790700
С	-4.54221000	-3.30355300	0.74595300
F	-0.78336500	1.83976600	-2.18403500
F	-1.64168000	4.23547300	-2.91114700

F	-3.74884700	5.42885400	-1.62496000
F	-4.95767800	4.13244900	0.46400300
F	-4.07428200	1.72839300	1.25672200
F	0.55032000	1.92094500	0.53814100
F	1.66013100	2.81070200	2.78869600
F	0.53161300	2.23746800	5.21994800
F	-1.74597000	0.71779400	5.31896700
F	-2.85407900	-0.21784100	3.10112000
F	-4.72614700	-0.04056100	-0.76173000
F	-6.27247000	-2.16071900	-0.38784500
F	-5.32614600	-4.37845300	0.90887300
F	-2.75099800	-4.39362900	1.84619600
F	-1.17943100	-2.25833900	1.51952500
С	4.51493200	-1.36735200	-2.33567300
0	5.69699400	-0.83709000	-2.61119800
0	3.66347300	-1.72841800	-3.10377400
C	4,25652800	-1.51566100	-0.82310400
N	5 73906200	-0 90103300	-0 10334300
N	6.49363900	-0.32625800	0 46166700
C	4 21152600	-2 98307600	-0.36178700
0	3 33632100	-3 69535500	-0 77986300
0	5 18102200	-3 28810400	0.48626300
c	5 16219100	-4 64872300	1 00650100
н	5 23338700	-5 35731600	0.18023400
н	6 03213800	-4 71133400	1 65664700
н	4 23927700	-4 80726800	1.55601800
Ċ	5 98262300	-0 63391800	-4 02462300
н	5 95552200	-1 59280500	-4 54416600
н	5 24471200	0.04853900	-4 44864100
н	6 98010200	-0 20032200	-4 04908300
н	2 25456300	-1 05066500	-0.80218800
6	2.23450500	1.05000500	0.00210000
	DCM/B3I VD/6 31	G(d)) = 2012	607172
	$\frac{CM}{D2L} \frac{D3L}{D} D$	G(u) = -2012 G(d) = -2012	.03/1/2 du
	$\frac{1}{10000000000000000000000000000000000$	G(u) = -2812	
G(C)	$\frac{PCM/B3LIP/0-31}{PCM/B3LIP/0-31}$	G(d) = -2812	
E(SI	/ID/M06-2X-D3/de	$e_12-1ZVP//C$	PCM/B3LYP/6-31G(d)) = -2812.656965 au
0	-0.75849800	-0.60426900	-0.84885900
В	0.32990900	0.16895400	0.08905300
C	-0.42509200	0.30518900	1.53304400
C	-0.2/942100	1.44281000	2.33328300
С	-1.23834700	-0.68390000	2.08853500
С	-0.91396000	1.61097300	3.56141900
C	-1.89825400	-0.55840400	3.30764900
C	-1.73749100	0.60380600	4.05218300
C	0.43531200	1.60110500	-0.69835300
С	1.62663500	2.24060800	-1.05235800
С	-0.72361100	2.30580300	-1.04636100
С	1.67657600	3.45883700	-1.72863200

С	-0.71784500 3.52109600 -1.72551400
С	0.49553000 4.10396100 -2.07305000
С	1.71845000 -0.68055100 0.11513600
С	2.44329200 -0.99350900 1.26553700
С	2.30539400 -1.11343500 -1.07764900
С	3.65107100 -1.69431800 1.24321100
С	3.49868400 -1.81857500 -1.14788200
С	4.18204900 -2.11152900 0.03017100
F	-1.41973600 -1.87261100 1.45376800
F	-2.67366500 -1.55118400 3.77064400
F	-2.35677100 0.74598500 5.23002800
F	-0.73110100 2.73050200 4.27636100
F	0.53047400 2.45034900 1.94847700
F	-1.93704200 1.82462500 -0.71232500
F	-1.86958400 4.13707300 -2.03650100
F	0.52498800 5.27342800 -2.72394400
F	2.85714300 4.01388600 -2.04396100
F	2.82697000 1.71111700 -0.73636700
F	2.01322100 -0.62041400 2.48818500
F	4.29961300 -1.96746700 2.38561900
F	5.33562700 -2.78945900 -0.00939700
F	3.99828700 -2.21689400 -2.32861400
F	1.68734200 -0.85144200 -2.25246000
С	-1.01419000 -1.79400100 -1.12376900
0	-0.12512000 -2.73265100 -0.89333200
С	-0.46918200 -4.12689800 -0.69794000
Н	-1.47376800 -4.21799900 -0.28160700
Н	-0.37789300 -4.66632400 -1.64228200
Н	0.26638600 -4.49898800 0.01368200
С	-2.29773700 -2.08400700 -1.74978100
С	-3.53188400 -1.28439100 -1.50645400
0	-3.65134900 -0.49122800 -0.60378900
0	-4.47789700 -1.60691800 -2.40262100
С	-5.75043600 -0.94269700 -2.23222600
Н	-6.38624800 -1.33754600 -3.02327200
Н	-6.16627800 -1.17164500 -1.24871600
Н	-5.62574400 0.13693600 -2.33741200
Ν	-2.36684900 -3.06373200 -2.63697200
Ν	-2.45718500 -3.88112100 -3.41212200
TS 1-6	
E(CPCM/	B3LYP/6-31G(d)) = -2812.692674 au
H(CPCM/	(B3LYP/6-31G(d)) = -2812.375464 au
G(CPCM/	(B3LYP/6-31G(d)) = -2812.496454 au
E(SMD/M	$106-2X-D3/def^2-TZVP/(CPCM/B3LYP/6-31G(d)) = -2812.652522 au$
0	-0.62655200 0.24738200 1.20500700
B	0.60455100 -0.36056900 -0.49006100
C	-0 54050300 -0 12314100 -1 57149400
C C	-0.95068400 -1.11120100 -2.47386000
C	0.55000400 -1.11120100 -2.47300500

С	-1.20347100	1.10249600	-1.70270800
С	-1.95030800	-0.91306200	-3.42330800
С	-2.21580800	1.33659500	-2.62459100
С	-2.59219900	0.31797100	-3.49529400
С	0.82979400	-1.83073900	0.07444000
С	2.09516500	-2.40952000	0.23292300
С	-0.24548600	-2.65380000	0.44278400
С	2.29368900	-3.69321500	0.73559000
С	-0.08535500	-3.93434800	0.96056000
С	1.19536900	-4.45899000	1.10826100
С	1.78523700	0.69930100	-0.39064600
С	2.19572800	1.48866000	-1.47085300
C	2.50964500	0.89250700	0.79279000
C	3.23795800	2.41032900	-1.39131900
C	3.54396700	1.81115200	0.91613500
C	3,91321200	2,57590300	-0.18790900
F	-0 87335400	2 14247900	-0.90605000
F	-2 82279200	2 53038300	-2 68881100
F	-3 55702500	0 52496000	-4 39589100
F	-2 29519000	-1 89624300	-4 26562200
F	-0.36467300	-2 32302400	-2 47940700
F	-1 509/9600	-2 22644600	0 30076900
F	-1 1507/900	-4 67065400	1 30737700
, с	1 26608500	-5.60055600	1.50757700
F	3 5312/600	-// 1930/100	0.86032700
, с	2 21020500	-4.13304100	-0 12221800
	1 60272600	1 27506000	2 67441600
r c	2 50107500	2 12446000	2.07441000
r c	4 01061000	2.12440900	-2.40247300
r c	4.91001000	3.45982800	-0.08988500
r c	4.19074000	1.90394900	2.08039300
r C		1 20205500	1 90142600
	-0.88350300	1.20393300	1.00143000
C C	0.03401300	2.24943000	2.90085000
с ц	-0.30843100	3.04348400	1 60868700
ц	-0.26856000	2 0/788500	2 08270400
ц	0.20850000	1 18510100	1 46002400
C II	-2 1010/200	4.18519100	2 46414800
C C	-2.19194200	0.74020500	2.40414800
0	-3.42124800	0.14930300	0.06409400
0	-3.32003700	0.13309400	0.90498400
C C	-4.40777900 E 67200000	0.30173300	2.91741700
с ц	-3.072000U	0.30494000	2.20201900
п u	-0.34034000	0.33020900	3.39208400
п	-0.04848300 E E6112000	0.73020100	1.03290200
	-2.20112900	-0.77525500	
IN NI	-2.20203400	2.14034800	3.30101400
IN TC	-2.33072900	2.73334200	4.54/59/00
1 36-7			

E(CPCM/B3LYP/6-31G(d)) = -2812.675082 au			
H(CPCM/B3LYP/6-31G(d)) = -2812.360811 au			
G(CPCM/B3LYP/6-31G(d)) = -2812.483944 au			
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -2812.945107 au			
O -1.02547000 0.71226900 0.41531600			
B 0.25612700 -0.09160100 -0.12617600			
C 1.22040700 -0.58900900 1.10048000			
C 2.33792800 -1.36541000 0.77632400			
C 1.15626000 -0.21136000 2.44049700			
C 3.29993200 -1.76910500 1.69411700			
C 2.09428200 -0.59385200 3.39924100			
C 3.17744100 -1.37747800 3.02436200			
C 1.09237600 1.05919000 -0.93266800			
C 1.71930000 0.87802000 -2.16723600			
C 1.32094400 2.30496700 -0.33879700			
C 2.48155300 1.86297900 -2.79241300			
C 2.06947000 3.31802000 -0.93121900			
C 2.65524500 3.09468400 -2.17241500			
C -0.43301400 -1.25934600 -1.04000100			
C -0.48846100 -2.61519300 -0.70644100			
C -1.12191100 -0.92511800 -2.21183100			
C -1.12639000 -3.57616700 -1.48932400			
C -1.77314700 -1.84994600 -3.02133700			
C -1.77334600 -3.19231300 -2.65725700			
F 0.13989500 0.56168900 2.90529300			
F 1.95836200 -0.20363700 4.67648700			
F 4.09031200 -1.75283700 3.92897500			
F 4.34153600 -2.52223300 1.31193700			
F 2.51637000 -1.76247700 -0.50190700			
F 0.82103300 2.57210300 0.88671300			
F 2.24263100 4.49603500 -0.31111300			
F 3.38396000 4.05268400 -2.75983700			
F 3.04990300 1.63069600 -3.98610700			
F 1.61347100 -0.29041100 -2.83243400			
F 0.06917000 -3.07668400 0.43202500			
F -1.13725900 -4.86448000 -1.11203600			
F -2.39791300 -4.10026800 -3.41668900			
F -2.40687100 -1.45920900 -4.13803700			
F -1.18505100 0.36114300 -2.61528700			
C -1.89087000 0.34025100 1.25200600			
O -1.90480500 -0.91252500 1.64240900			
C -2.36976700 -1.33768000 2.94986500			
H -2.40356200 -0.48876600 3.63297700			
H -3.34932500 -1.80374300 2.84426600			
H -1.63897300 -2.07592500 3.27868000			
C -2.74940000 1.34207500 1.81496800			
C -3.21980500 2.51318500 1.13335200			
0 -2.28120100 3.27406400 0.92804900			

```
0
         -4.49819100 2.71350800 0.88101100
С
         -4.82696800 4.00498800 0.29743800
         -5.91244700 4.00919800 0.22157900
Н
Н
         -4.47736600 4.80699700 0.94978600
Н
         -4.36794600 4.09225900 -0.68869500
Ν
         -4.65786700 0.26663900 2.02313400
Ν
         -5.69384500 0.09081400 2.36484900
7
E(CPCM/B3LYP/6-31G(d)) = -2703.159102 au
H(CPCM/B3LYP/6-31G(d)) = -2702.854352 au
G(CPCM/B3LYP/6-31G(d)) = -2702.973519 au
E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -2703.421369 au
0
         -0.78741400 0.24306000 1.26880700
          0.14394500 0.01032700 -0.01975400
В
С
          1.36101300 -1.02554500 0.33231700
С
          2.25573200 -1.35345300 -0.69110300
С
          1.71291300 -1.52554500 1.58548000
С
          3.38912900 -2.13738400 -0.51501200
С
          2.83907600 -2.31746100 1.81076600
С
          3.68538000 -2.62621500 0.75423700
С
          0.82837800 1.48089800 -0.23973400
С
          0.99803300 2.11079200 -1.47458800
С
          1.39750900 2.15975900 0.84303300
С
          1.64488100 3.33560500 -1.62964200
          2.04616800 3.38635900 0.73344400
С
С
          2.16982400 3.98182500 -0.51701200
С
         -0.91979100 -0.45603700 -1.17213600
С
         -0.99059100 -1.72252000 -1.75686900
С
         -1.92166700 0.42775300 -1.58946400
С
         -1.94624400 -2.07977700 -2.70797800
С
         -2.89538300 0.11341300 -2.53131400
С
         -2.90646500 -1.15597000 -3.09985200
F
         0.96031000 -1.26886000 2.68372800
F
         3.11111600 -2.77642400 3.04298000
F
         4.77168700 -3.38394400 0.95264300
F
         4.19784300 -2.42059200 -1.54719700
F
         2.02388500 -0.89431900 -1.94026700
F
         1.35308100 1.61989800 2.08044500
F
         2.56203900 3.98915300 1.81650800
F
         2.79306700 5.16004400 -0.64799300
F
         1.76569800 3.89400900 -2.84436900
F
         0.53260500 1.54929700 -2.60917800
F
         -0.13053800 -2.70168100 -1.41074200
F
         -1.95643300 -3.31607500 -3.23134100
F
         -3.83658200 -1.48522300 -4.00475500
F
         -3.82384700 1.01536300 -2.88792700
F
         -1.98193900 1.67205000 -1.06771500
С
         -1.49477300 -0.59881400 1.87320800
```

0 -1.53969300 -1.85070100 1.47752400 С -2.32466000 -2.80798400 2.23937400 Н -2.00189200 -2.79913600 3.28365600 Н -3.38866000 -2.57587000 2.15193300 Н -2.11337100 -3.77181400 1.78085000 С -2.17522900 -0.24105900 3.07970700 С -3.29053300 0.57876800 3.19545500 0 -2.61332000 1.63075900 3.16770800 0 -4.55685300 0.37444300 3.35390600 С -5.38731900 1.56621400 3.55546000 Н -6.38399600 1.17541000 3.74465000 Н -5.01448200 2.12776600 4.41273000 Н -5.36928100 2.17551700 2.65134500 TS_{1'} E(CPCM/B3LYP/6-31G(d)) = -3582.685130 au H(CPCM/B3LYP/6-31G(d)) = -3582.155656 au G(CPCM/B3LYP/6-31G(d)) = -3582.303775 au E(SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d)) = -3582.947571 au -0.89287700 1.23455900 -1.58825300 С 0 -0.18895800 1.66534600 -2.45812800 0 -0.29463000 0.85411000 -0.31918400 С 0.56856700 2.00683700 0.24734600 Н 0.65766100 1.67653800 1.27893000 С 1.88872800 2.05557100 -0.35201800 С 3.03213600 2.14056800 -0.76249100 Si 4.76013400 2.21382500 -1.43256300 С 5.29556600 4.02482600 -1.45964400 Н 4.67335600 4.61322000 -2.14343100 5.22849700 4.47942600 -0.46478500 Н Н 6.33602800 4.10986000 -1.79666400 С 4.73702800 1.49114300 -3.17523800 5.76095900 1.34640200 -3.54146400 Н 4.22708500 0.52331200 -3.20393600 Н Н 4.22331900 2.16295900 -3.87235200 С 5.87104600 1.20420800 -0.28812700 5.54362500 0.15976900 -0.23533600 Н Н 6.90568100 1.21388800 -0.65231700 5.86962600 1.60909500 0.73021500 Н С -0.21105500 3.30333900 0.22071300 С -1.19373400 3.52427100 1.19847000 С 0.04376900 4.30124000 -0.72987400 С -1.91626100 4.71406900 1.22791500 Н -1.40570900 2.75923800 1.93942100 С -0.66848700 5.49807100 -0.71135800 Н 0.80812700 4.14055400 -1.48206300 С -1.63774400 5.68230500 0.26858100 н -2.67662100 4.90008500 1.97862900

Н	-0.48104400	6.28135200	-1.43787100
F	-2.32760200	6.83916500	0.29363900
В	-0.00747900	-0.87898700	0.39874400
С	-1.34017500	-1.74086100	0.05368300
С	-1.68817500	-1.99689500	-1.27953200
С	-2.05200600	-2.51187800	0.98292200
С	-2.68229300	-2.88108400	-1.67936700
С	-3.04962500	-3.41843800	0.62625100
С	-3.36794600	-3.60907800	-0.71215000
С	0.26300900	-0.45773400	1.94062900
С	1.52445800	-0.50507100	2.55792600
С	-0.75585500	0.00817800	2.78392900
C	1.74454900	-0.17715000	3.89555300
C	-0.57907900	0.35813500	4.11634500
C	0.68687800	0.25626500	4.68412900
C	1.22286900	-1.65407300	-0.33963500
C	1.58820600	-2.87564200	0.24432100
C	1.88287000	-1.37388500	-1.53459900
C	2.54694300	-3.73712900	-0.27147700
C	2.85517200	-2.21002900	-2.08632400
C	3.19606500	-3.39719200	-1.45457900
F	-1.02299900	-1.36552900	-2.27329200
F	-2.96257400	-3.05569300	-2.97740700
F	-4.31058900	-4.48725500	-1.06519200
F	-3.68738900	-4.12450400	1.56946400
F	-1.78347100	-2.45423100	2.29998900
F	-2.01102200	0.17378900	2.30862400
F	-1.60944500	0.80328700	4.84680800
F	0.88346100	0.58722900	5.96126300
F	2.97516200	-0.25661400	4.41567200
F	2.62792700	-0.85445000	1.87468100
F	1.61182100	-0.26376000	-2.23826300
F	3.46323700	-1.86610200	-3.23460300
F	4.12569600	-4.20535200	-1.97592200
F	2.84751000	-4.88337600	0.35582300
F	0.98813900	-3.26496800	1.39304700
С	-2.36394700	1.16949400	-1.65417700
С	-3.19237200	1.05871000	-0.52804900
С	-2.94108000	1.33631700	-2.92849400
C	-4.57620200	1.12971700	-0.66474700
н	-2.76107100	0.93458300	0.45383700
С	-4.31911700	1.39655200	-3.07679200
н	-2.29347200	1.42491800	-3.79344300
С	-5.11435300	1.30316600	-1.93545600
н	-5.23442300	1.06147800	0.19443800
н	-4.78337900	1.52444200	-4.04847300
F	-6.44862800	1.39127700	-2.06996200
			· · · · ·

TS_{2'}

E(CPC)	E(CPCM/B3LYP/6-31G(d)) = -3582.681792 au				
H(CPC	H(CPCM/B3LYP/6-31G(d)) = -3582.153075 au				
G(CPC)	M/B3LYP/6-31	G(d)) = -3582	2.302007 au		
E(SMD	/M06-2X-D3/de	ef2-TZVP//C	PCM/B3LYP/6-31G(d)) = -3582.940794 au		
Ċ	0.38355800	1.00411500	-0.87898900		
0	1.20598200	0.08560100	-0.95235000		
0	-0.83010100	0.92836900	-0.40107700		
С	3.26938300	0.22161800	0.84076800		
Н	2.31995400	-0.12110300	1.24183500		
С	4.09132700	-0.76452400	0.32187400		
С	4.75169800	-1.71356200	-0.09619500		
Si	5.66266300	-3.23518600	-0.70256100		
С	7.37052700	-3.18064900	0.09435900		
Н	7.30523700	-3.21406700	1.18736500		
Н	7.95398900	-4.05032900	-0.23197900		
Н	7.92145700	-2.27790500	-0.19041500		
С	5.75797000	-3.05373800	-2.57685000		
Н	6.27881500	-3.92195500	-2.99908200		
Н	4.75966400	-3.01077200	-3.02519200		
Н	6.30719300	-2.15299200	-2.87043700		
С	4.66662000	-4.75086300	-0.17113400		
Н	5.27837400	-5.41985200	0.44443400		
Н	3.77970700	-4.47845200	0.40890100		
Н	4.32788400	-5.31644700	-1.04624300		
С	3.57761300	1.59043400	0.95389700		
С	2.61033500	2.45863100	1.54225900		
С	4.81862400	2.12663100	0.50133400		
С	2.87648700	3.80603800	1.68286000		
Н	1.65623800	2.05576000	1.86874200		
С	5.08711800	3.47008300	0.63910500		
Н	5.54955900	1.46265400	0.05154500		
С	4.10856100	4.28667600	1.22800300		
Н	2.16095700	4.49190000	2.12120300		
Н	6.02055100	3.91141300	0.30881100		
F	4.37107600	5.58278300	1.35947000		
В	-1.75720200	-0.20802100	0.02011900		
С	-2.94596600	-0.08947000	-1.12352800		
С	-2.59163300	-0.26417200	-2.46570300		
С	-4.27353000	0.29391600	-0.93311800		
С	-3.46273100	-0.10646900	-3.53603900		
С	-5.18693100	0.46348200	-1.97627900		
C	-4.78142700	0.26212700	-3.28768300		
С	-2.25999200	0.11123400	1.55974600		
C	-3.17404100	-0.75240500	2.16993800		
С	-1.78665200	1.12356100	2.39435500		
С	-3.61213800	-0.62987100	3.48318400		
С	-2.19457800	1.28595000	3.71895100		
С	-3.11538500	0.40517600	4.26966900		

С	-1.00808200	-1.68399700	0.08169400
С	-1.36900800	-2.84332300	-0.60780000
С	0.08513900	-1.85584700	0.93064300
С	-0.66442500	-4.04650300	-0.52261700
С	0.83080500	-3.02083600	1.03586900
С	0.45200500	-4.13542200	0.29735200
F	-1.32401600	-0.61934600	-2.77965800
F	-3.04857800	-0.30183400	-4.79983600
F	-5.64393700	0.42425000	-4.30149700
F	-6.45307100	0.83337800	-1.71795800
F	-4.76837300	0.54800200	0.29859100
F	-0.86494500	2.02960000	1.97223600
F	-1.69421500	2.28538700	4.46817000
F	-3.51789400	0.54725000	5.54105500
F	-4.50172800	-1.49396800	3.99887400
F	-3.69164700	-1.77754600	1.45709700
F	0.50358800	-0.81995000	1.71223200
F	1.92743100	-3.07317000	1.82052000
F	1.16218800	-5.27199500	0.37441700
F	-1.05854600	-5.11809600	-1.22952600
F	-2.44139000	-2.87028300	-1.42441400
С	0.73726600	2.38854000	-1.34092800
С	-0.05838000	3.50010800	-1.02211500
С	1.89969500	2.57071500	-2.10503100
С	0.30296800	4.77501900	-1.45052800
Н	-0.95092800	3.35686600	-0.42481300
С	2.26824600	3.83746200	-2.54965400
Н	2.50242900	1.70330700	-2.35150000
С	1.46103500	4.91915200	-2.20929300
Н	-0.29470900	5.64830400	-1.21086600
н	3.15587400	3.99758000	-3.15282200
F	1.81482800	6.15141900	-2.62989000

5.3 Computational details

Gaussian 16^[13] was used to fully optimize all the structures reported in this paper at the B3LYP level^[14] of density functional theory (DFT) using the CPCM solvation model ^[15] in toluene. The 6-31G(d) basis set^[16] was chosen for all atoms. Frequency calculations were carried out at the same level of theory as those for the structural optimization. Transition structures were located using the Berny algorithm and intrinsic reaction coordinate (IRC) calculations^[17] were used to confirm the connectivity between transition structures and minima. To further refine the energies obtained from the CPCM/B3LYP/6-31G(d) calculations and to consider dispersive interactions,^[18] we carried out single-point energy calculations using the M06-2X-D3 functional method^[19] for

all of the structures with a larger basis set def2-TZVP^[20] and the SMD solvation model^[21] in toluene. All thermodynamic data were calculated at the standard state (298.15 K and 1 atm). To estimate the corresponding Gibbs free energies, entropy corrections were calculated at the B3LYP level and added to the single-point potential energies. To adjust relative free energies of all stationary points from 1 atm to 1 M standard state, the conversion factor of 1.89 kcal/mol were employed. To further confirm the accuracy of the results obtained from SMD/M06-2X-D3/def2-TZVP//CPCM/B3LYP/6-31G(d), other single-point calculations were carried out using the SMD/M06-2X/def2-TZVP and SMD/wB97XD^[22]/def2-TZVP levels of theory. The energy profiles obtained by these additional single point calculations are depicted in Figures S143 and S144. The overall activation free energy of the reaction is calculated to be 29.2, 31.1 and 31.8 kcal/mol using single point calculations obtained by M06-2X-D3, M06-2X, and wB97XD, respectively. These results indicate that the functional dependence is essentially insignificant.

6. References:

- M. Santi, D. M. C. Ould, J. Wenz, Y. Soltani, R. L. Melen, T. Wirth, *Angew. Chem. Int. Ed.* 2019, 58, 7861–7865.
- [2] J. R. Lawson, L. C. Wilkins, R. L. Melen, *Chem. Eur. J.* 2017, 23, 10997–11000.
- [3] R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, R. Goodfellow, P. Granger, Magn. Reson. Chem. 2002, 40, 489–505.
- [4] X. Wang, K. Nozaki, J. Am. Chem. Soc. 2018, 140, 15635–15640.
- [5] S. Racine, F. de Nanteuil, E. Serrano, J. Waser, Angew. Chem. Int. Ed. 2014, 53, 8484–8487.
- [6] A.-C. Chany, L. B. Marx, J. W. Burton, Org. Biomol. Chem. 2015, 13, 9190–9193.
- [7] J. Hao, Y. Xu, Z. Xu, Z. Zhang, W. Yang, Org. Lett. 2018, 20, 7888–7892.
- [8] M. T. La, H.-K. Kim, *Tetrahedron. Lett.* **2018**, *59*, 1855–1859.
- [9] W. Zhao, P. K. Yan, A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 616–619.
- [10] J.-L. Shi, Q. Luo, W. Yu, B. Wang, Z.-J. Shi, J. Wang, Chem. Commun. 2019, 55, 4047– 4050.
- [11] CrysAlisPro, Agilent Technoligies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET).
- [12] SHELXL-2013, G.M. SHeldrick, University of Göttingen, Germany (2013).

- [13] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- [14] (a) C. T. Lee, W. T. Yang, R. G. Parr, *Phys. Rev. B.* 1988, *37*, 785–789; (b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett.* 1989, 157, 200–206; (c) A. D. J. Becke, *Chem. Phys.* 1993, *98*, 5648–5652.
- [15] V. Barone, M. J. Cossi, Phys. Chem. A. 1998, 102, 1995–2001.
- [16] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta J. A.* **1973**, 28, 213–222.
- [17] (a) K. J. Fukui, *Phys. Chem.* 1970, 74, 4161–4163; (b) K. Fukui, *Acc. Chem. Res.* 1981, 14, 363–368.
- [18] S. Grimme, J. Antony, S. Ehrlich, H. J. Krieg, Chem. Phys. 2010, 132, 154104–154124.
- [19] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167.
- [20] F. Weigend, F. Furche and R. J. Ahlrichs, Chem. Phys. 2003, 119, 12753-12762.
- [21] A. V. Marenich, C. J. Cramer, D. G. J. Truhlar, Phys. Chem. B. 2009, 113, 6378–6396.
- [22] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.