

Supporting Information

Photoinduced Olefin Diamination with Alkylamines

Sebastian Govaerts⁺, Lucrezia Angelini⁺, Charlotte Hampton, Laia Malet-Sanz, Alessandro Ruffoni,* and Daniele Leonori*

anie_202005652_sm_miscellaneous_information.pdf

1 Table of Contents

2	Gene	eral Experimental Details	3
3	Start	ing Material Synthesis	4
4	Olefi	n Aminochlorination	10
	4.1 R	eaction Optimization	10
	4.2 St	ıbstrate Scope	
	4.3 M	echanistic Considerations	
	4.3.1	Protonation of N-Chloropiperidine	
	4.3.2	Quantum Yield Determination	
5	Aziri	dinium Formation and Ring-Opening Studies	33
	5.1 Az	ziridinium Formation	
	5.2 Az	ziridinium Ring-Opening	
6	Olefi	n Diamination	36
	6.1 R	eaction Optimization	
	6.2 R	eaction Scope	
7	Amir	nohydroxylation and Diamination of Styrenes	49
	7.1 A	minohydroxylation – Substrate Scope	49
	7.2 Di	iamination – Substrate Scope	

8	Olefin Aziridination		58
	8.1	Substrate Scope	58
9	D	iversification of β-Chloroamines	61
	9.1	Substrate Scope	61
10	0	lefin Aminochlorination Scale-Up by Batch-to-Flow	66
	10.1	General Experimental Details	66
	10.2	General Flow Procedure	67
11	N	MR Spectra	69
12	R	eferences	167

2 General Experimental Details

All required fine chemicals were used directly without purification unless stated otherwise. All air and moisture sensitive reactions were carried out under nitrogen atmosphere using standard Schlenk manifold technique. THF was distilled from sodium/benzophenone, CH₂Cl₂ and was distilled from CaH₂, CH₃CN was distilled from activated 4Å molecular sieves, Et₃N was distilled over KOH. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were acquired at various field strengths as indicated and were referenced to CHCl₃ (7.27 and 77.0 ppm for ¹H and ¹³C respectively). ¹H NMR coupling constants are reported in Hertz and refer to apparent multiplicities and not true coupling constants. Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, p = pentet, sx = sextet, sp = septet, m = multiplet, dd = doublet of doublets, etc.), proton assignment (determined by 2D NMR experiments: COSY, HSQC and HMBC) where possible. High-resolution mass spectra were obtained using a JEOL JMS-700 spectrometer or a Fissions VG Trio 2000 quadrupole mass spectrometer. Spectra were obtained using electron impact ionization (EI) and chemical ionization (CI) techniques, or positive electrospray (ES). Infra-red spectra were recorded using a JASCO FT/IR 410 spectrometer, ATI Mattson Genesis Seris FTIR or Bruker Alpha-P spectrometer as evaporated films or liquid films. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60 F254. Compounds were visualized by exposure to UV-light or by dipping the plates in ninhydrin stain followed by heating. Flash column chromatography was performed using Merck Silica Gel 60 (40–63 μ m). All mixed solvent eluents are reported as v/v solutions. UV/Vis spectra were obtained using an Agilent 6453 spectrometer and 1 mm High Precision Cell made of quartz from Hellma Analytics. The LEDs used are Kessil H150-blue. All the reactions were conducted in CEM 10 mL glass microwave tubes.

3 Starting Material Synthesis

N-Methoxy-N-methylpent-4-enamide (S1)

A mixture of 100 mL *N*,*O*-dimethylhydroxylamine hydrochloride (0.90 g, 9.27 mmol, 1.1 equiv.), CH₂Cl₂ (20 mL) and pyridine (1.70 mL, 21.0 mmol, 2.5 equiv.) was cooled to 0 °C, treated with pent-4-enoyl chloride (1.0 g, 8.43 mmol, 1.0 equiv.), warmed to room temperature and stirred for 4 h. The mixture was diluted with EtOAc (30 mL), and washed with 2 N aqueous HCl (20 mL) and brine (20 mL). The organic layer was dried (MgSO₄), filtered and evaporated to give **S1** (1.15 g, 95%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 5.82 (1H, ddt, *J* = 17.2, 10.0, 6.4 Hz), 5.03 (1H, ddt, *J* = 17.2, 1.7, 1.6 Hz), 4.95 (1H, ddt, *J* = 10.0, 1.6, 1.4 Hz), 3.65 (3H, s), 3.14 (3H, s), 2.49 (2H, t, *J* = 7.6 Hz), 2.40–2.29 (2H, m). Data in accordance with literature.^[1]

Pent-4-en-1-yl Benzoate (S2)

A solution of 4-pentenol (0.6 g, 7.0 mmol, 1.0 equiv.) and TMEDA (0.6 mL, 4.17 mmol, 0.6 equiv.) in CH₂Cl₂ (20 mL) was cooled to -78 °C, treated with BzCl (0.90 mL, 7.65 mmol, 1.1 equiv.) and allowed to warm to room temperature overnight. Aqueous 1 M KOH (20 mL) was added, the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by column chromatography on silica gel eluting petrol–EtOAc (99:1) gave **S2** (0.96 g, 75%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14–7.96 (2H, m), 7.63–7.50 (1H, m), 7.49–7.40 (2H, m), 5.85 (1H, ddt, *J* = 16.9, 10.2, 6.6 Hz), 5.08 (1H, ddt, *J* = 17.1, 1.6, 1.4 Hz), 5.02 (1H, ddt, *J* = 10.2, 1.6, 1.4 Hz), 4.34 (2H, t, *J* = 6.6 Hz), 2.32–2.15 (2H, m), 1.94–1.80 (2H, m). Data in accordance with literature.^[2]

N-Allyl-4-methylbenzenesulfonamide (S3)

NHTs

A solution of TsCl (1.05 g, 5.5 mmol, 1.1 equiv.) in CH_2Cl_2 (5 mL) was cooled to 0 °C and treated with Et₃N (0.74 mL, 5.3 mmol, 1.05 equiv.) and allylamine (0.37 mL, 5.0 mmol, 1.0 equiv.). The mixture was allowed to warm to room temperature overnight.

Aqueous 1 M HCl (5 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were dried (MgSO₄), filtered and evaporated to give **S3** (1.1 g, quantitative) as a solid. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.68 (2H, m), 7.41–7.20 (2H, m), 5.85–5.64 (1H, m), 5.26–5.05 (2H, m), 4.62 (1H, br s), 3.67–3.58 (2H, m), 2.61–2.22 (3H, m). Data in accordance with literature.^[3]

Benzyl (S)-2-(((benzyloxy)carbonyl)amino)pent-4-enoate (S4)

A solution of L-allyl glycine (0.50 g, 4.34 mmol, 1.0 equiv.), and NaHCO₃ (1.02 g, 12.1 mmol, 2.8 equiv.) in H₂O (10 mL) was treated with CbzCl (0.93 mL, 6.51 mmol, 1.5 equiv.) and stirred for 4 h. Et₂O (10 mL) was added and the layers were separated. The aqueous layer was acidified with 1 N aqueous HCl (20 mL) and extracted with Et₂O (30 mL x 3). The combined organic layers were dried (MgSO₄), filtered and evaporated to give **S4** (0.62 g, 56%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ 9.72 (1H, br s), 7.44–7.27 (5H, m), 5.72 (1H, ddt, *J* = 16.9, 10.3, 7.2 Hz), 5.36 (1H, d, *J* = 8.2 Hz), 5.23–5.05 (4H, m), 4.50 (1H, dt, *J* = 8.0, 5.8 Hz), 2.71–2.38 (2H, m). Data in accordance with literature.^[4]

Benzyl (S)-2-(((benzyloxy)carbonyl)amino)pent-4-enoate (S5)

A solution of **S4** (0.62 g, 2.49 mmol, 1.0 equiv.) and K₂CO₃ (0.516 g, 3.75 mmol, 1.5 equiv.) in DMF (5 mL) was treated with BnBr (0.44 mL, 3.75 mmol, 1.5 equiv.) and heated under reflux for 18 h. The mixture was cooled to room temperature and diluted with H₂O (10 mL) and EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered and evapoarted. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave **S5** (0.66 g, 79%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.27 (10H, m), 5.64 (1H, ddt, *J* = 17.5, 10.6, 7.2 Hz), 5.32 (1H, d, *J* = 8.2 Hz), 5.25–5.12 (2H, m), 5.13–5.02 (4H, m), 4.51 (1H, dt, *J* = 8.2, 5.8 Hz), 2.67–2.41 (2H, m). Data in accordance with literature.^[5]

(R)-Quinolin-4-yl((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl Benzoate (S6)

A solution of cinchonidine (2.0 g, 6.8 mmol, 1.0 equiv.) and TMEDA (0.61 mL, 4.10 mmol, 0.6 equiv.) in CH₂Cl₂ (40 mL) was cooled to -78 °C, treated with BzCl (0.87 mL, 7.5 mmol, 1.1 equiv.) and allowed to warm to room temperature overnight. The mixture was diluted with aqueous 1 M KOH (20 mL), the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by column chromatography on silica gel, eluting with CH₂Cl₂-MeOH-37% aq. NH₃ (97:3:0.5), gave S6 (2.2 g, 81%) as a foam. Rf 0.40 [CH₂Cl₂:MeOH 97:3]; FT-IR: v_{max} (film)/cm⁻¹ 2940, 2862, 1718, 1266; ¹H NMR (500 MHz, CDCl₃) δ 8.87 (1H, d, J = 4.5 Hz), 8.33 (1H, d, J =8.5 Hz), 8.14 (1H, d, J = 8.4 Hz), 8.12–8.06 (2H, m), 7.72 (1H, ddd, J = 8.4, 6.7, 1.3) Hz), 7.63 (1H, ddd, J = 8.4, 6.7, 1.4 Hz), 7.60–7.55 (1H, m), 7.47 (3H, dd, J = 8.7, 6.4 Hz), 6.80 (1H, d, J = 6.8 Hz), 5.84 (1H, ddd, J = 17.5, 10.3, 7.4 Hz), 5.05–4.95 (2H, m), 3.50 (1H, q, J = 7.5 Hz), 3.22 (1H, dddd, J = 13.4, 10.3, 5.5, 2.5 Hz), 3.07 (1H, dd, J = 13.9, 10.1 Hz), 2.72–2.59 (2H, m), 2.35–2.22 (1H, m), 2.00–1.92 (1H, m), 1.91– 1.86 (1H, m), 1.81-1.66 (2H, m), 1.57 (1H, dddt, J = 13.4, 11.0, 5.6, 2.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 150.1, 148.8, 145.5, 141.8, 133.5, 130.6, 129.9, 129.8, 129.3, 128.7, 127.0, 126.1, 123.4, 118.6, 114.6, 74.8, 60.1, 56.9, 42.6, 39.8, 28.0, 27.8, 24.4; HRMS (ESI⁺): Found M⁺ 398.1986, [C₂₆H₂₆N₂O₂]⁺ requires 398.1994.

1-(3-(Allyloxy)propyl)-4-chlorobenzene (S7)

A suspension of NaH (0.47 g, 11.7 mmol, 2.0 equiv., 60% wt. in mineral oil) in THF (10 mL) was cooled to 0 °C and treated with 3-(4-chlorophenyl)propanol (1.0 g, 5.86 mmol, 1.0 equiv.). The mixture was stirred for 1 h and, treated with allyl bromide (0.60 mL, 7.0 mmol, 1.2 equiv.) and allowed to warm to room temperature overnight. The mixture was cooled to 0 °C and diluted with saturated aqueous NH₄Cl (10 mL). Et₂O (10 mL) was added, the layers were separated and the aqueous layer was extracted with Et₂O (10 mL x 3). The combined organic layers were dried (MgSO₄), filtered and

evaporated **S7** (1.14 g, 93%) as an oil. FT-IR: v_{max} (film)/cm⁻¹ 2935, 2857, 1491, 1090; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.21 (2H, m), 7.16–7.07 (2H, m), 5.93 (1H, ddt, J= 17.2, 10.3, 5.6 Hz), 5.28 (1H, ddt, J = 17.2, 1.7, 1.6 Hz), 5.18 (1H, ddt, J = 10.4, 1.6, 1.5 Hz), 3.96 (2H, dt, J = 5.6, 1.4 Hz), 3.43 (2H, t, J = 6.3 Hz), 2.68 (2H, t, J = 7.5 Hz), 1.96–1.79 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 135.0, 131.6, 130.0, 128.5, 117.0, 72.0, 69.3, 31.8, 31.4; HRMS (ESI⁺): found MH⁺ 211.0882, [C₁₂H₁₆ClO]⁺ requires 211.0982.

1-(4-(tert-Butyl)phenyl)but-3-en-1-ol (S8)

A solution of *tert*-butyl benzaldehyde (1.67 mL, 10.0 mmol, 1.0 equiv.) in THF (25 mL) was cooled to 0 °C and treated with allyl–MgBr (12.0 mL, 12.0 mmol, 1.2 equiv., 1 M in Et₂O). The mixture was allowed to warm to room temperature overnight, quenched with saturated aqueous NH₄Cl solution (20 mL) and extracted with Et₂O (30 mL x 3). The organic phase was dried (MgSO₄), filtered and evaporated to give **S8** (2.1 g, quantitative) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.35 (2H, m), 7.33–7.28 (2H, m), 5.84 (1H, ddt, *J* = 17.2, 10.2, 7.1 Hz), 5.25–5.04 (2H, m), 4.78–4.62 (1H, m), 2.59–2.45 (2H, m), 2.04 (1H, br s), 1.33 (9H, s). Data in accordance with literature.^[6]

1-(4-(tert-Butyl)phenyl)but-3-en-1-yl Benzoate (S9)

A solution of **S8** (719 mg, 3.52 mmol, 1.0 equiv.) and TMEDA (0.32 mL, 2.11 mmol, 0.6 equiv.) in CH₂Cl₂ (5 mL) was cooled to -78 °C and treated with BzCl (0.60 mL, 3.87 mmol, 1.1 equiv.). The mixture was allowed to warm to room temperature overnight. Aqueous 1 M KOH (5 mL) was added, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (5 mL x 3). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by column chromatography on silica gel eluting with petrol–EtOAc (98:2) gave **S9** (0.80 g, 74%) as an oil. FT-IR: v_{max} (film)/cm⁻¹ 2961, 1716, 1266; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (2H, d, *J* = 7.5 Hz), 7.56 (1H, t, *J* = 7.3 Hz), 7.43 (2H, t, *J* = 7.6 Hz), 7.42–7.35 (4H, m), 6.06 (1H, dd, *J* = 7.9, 5.6 Hz), 5.81 (1H, ddt, *J* = 17.1, 10.2, 6.9 Hz), 5.15 (1H, dd, *J* = 17.4, 1.5 Hz),

5.07 (1H, dd, J = 10.3 Hz, 1.1 Hz), 2.89–2.76 (1H, m), 2.75–2.66 (1H, m), 1.31 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 150.9, 137.2, 133.6, 133.0, 130.6, 129.7, 128.4, 126.3, 125.5, 118.1, 75.7, 41.0, 34.6, 31.4. HRMS (ESI⁺): found M⁺ 308.1757, [C₂₁H₂₄O₂]⁺ requires 308.1776.

1-(4-Fluorophenyl)but-3-en-1-ol (S10)

A solution of 4-fluorobenzaldehyde (0.87 mL, 8.0 mmol, 1.0 equiv.) in THF (10 mL) was cooled to 0 °C and treated with allyl–MgCl (5.0 mL, 10.0 mmol, 1.25 equiv., 2 M in THF). The mixture was allowed to warm to room temperature and monitored by TLC until completion (2 h). Saturated aqueous NH₄Cl solution (10 mL) and Et₂O (20 mL) were added. The layers were separated and the aqueous layer was extracted with Et₂O (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by column chromatography on silica gel eluting with petrol–EtOAc (97:3) gave **S10** (1.2 g, 86%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.29 (2H, m), 7.19–6.97 (2H, m), 5.79 (1H, dddd, *J* = 17.0, 10.5, 7.6, 6.6 Hz), 5.21–5.15 (1H, m), 5.14 (1H, d, *J* = 1.2 Hz), 4.73 (1H, dd, *J* = 7.7, 5.4 Hz), 2.61–2.39 (3H, m). Data in accordance with literature.^[7]

1-(4-Fluorophenyl)but-3-en-1-one (S11)

To a solution of **S10** (482 mg, 2.9 mmol) in CH₂Cl₂ (15 mL) was added Celite (0.8 g) followed by PCC (935 mg, 4.35 mmol, 1.5 equiv.). The mixture was stirred at room temperature for 4 h, and then filtered through a short pad Celite washing with CH₂Cl₂ (20 mL). The combined filtrates were evaporated and the residue was purified by column chromatography on silica gel eluting petrol–EtOAc (90:10) to give **S11** (341 mg, 73%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.93 (2H, m), 7.21–7.05 (2H, m), 6.07 (1H, ddt, *J* = 17.0, 10.3, 6.7 Hz), 5.32–5.15 (2H, m), 3.82–3.65 (2H, m). Data in accordance with literature. ^[7]

7-Allyl-1,3-dimethyl-3,7-dihydro-*1H*-purine-2,6-dione (S12)

A suspension of theophylline (810 mg, 4.5 mmol, 1.0 equiv.) and K₂CO₃ (700 mg, 5.0 mmol, 1.1 equiv.) in DMF (8 mL, 0.6 M) was treated with allyl bromide (430 μ L, 5.0 mmol, 1.1 equiv.) at room temperature. The mixture was warmed to 40 °C, stirred for 4 h and then cooled to room temperature. The crude was diluted with EtOAc (20 mL) and H₂O (20 mL). The layers were separated and the aqueous layer was washed with EtOAc (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated to give **S12** (600 mg, 60%) as a solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (1H, s), 6.05 (1H, ddt, *J* = 16.4, 11.0, 5.8 Hz), 5.42–5.15 (2H, m), 4.95 (2H, d, *J* = 5.9 Hz), 3.60 (3H, s), 3.41 (3H, s). Data in accordance with literature.^[8]

1-(Allyloxy)-2-benzylbenzene (101)

A suspension of 2-benzylphenol (1.00 g, 5.43 mmol, 1.0 equiv.) and K₂CO₃ (2.25 g, 16.28 mmol, 3.0 equiv.) in acetone (40 mL) was stirred at room temperature for 30 min, treated with allyl bromide (0.70 mL, 8.15 mmol, 1.5 equiv.) and heated under reflux for 12 h. The mixture was evaporated, diluted with EtOAc (20 mL) and aqueous 1 M KOH (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered and evaporated to give **101** (1.22 g, quantitative) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.21 (4H, m), 7.29–7.20 (2H, m), 7.08 (1H, dd, *J* = 7.5, 1.7 Hz), 6.92–6.79 (2H, m), 6.01 (1H, ddt, *J* = 17.3, 10.3, 5.0 Hz), 5.36 (1H, dd, *J* = 17.3, 1.8 Hz), 5.23 (1H, dd, *J* = 10.5, 1.7 Hz), 4.52 (2H, d, *J* = 5.1), 4.00 (2H, s). Data in accordance with literature.^[9]

4 Olefin Aminochlorination

4.1 Reaction Optimization

A tube equipped with a stirring bar was charged with $Ru(bpy)_3(PF_6)_2$ (1.0 mg, 1.0 µmol, 1 mol%) and *N*-chlorosuccinimide (NCS). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). Piperidine **1** (12 µL, 0.12 mmol, 1.2 equiv.) and the solvent (0.5 mL, 0.2 M, dry and degassed by bubbling through with N₂ for 20 min) were added and the mixture was stirred in the dark for 1 h at room temperature. 4-Phenyl-1-butene **10** was added along with an additional 0.5 mL of the same solvent, followed by the acid. The blue LEDs were immediately switched on and the mixture was stirred under irradiation for 1 h. KOH (1.0 M, 3 mL) and EtOAc (3 mL) were added and the mixture was shaken vigorously. 1,3,5-Trimethoxybenzene (17 mg, 0.1 mmol, 1.0 equiv.) was added and the layers were dried (MgSO₄), filtered and evaporated. CDCl₃ (0.4 mL) was added and the mixture was analysed by ¹H NMR spectroscopy to determine the NMR yield. Table **S1** reports all the experiments performed.

Entry	Bronsted acid (equiv.)	Solvent	Yield (%)			
1	HClO ₄	CH ₂ Cl ₂	89			
2	HClO ₄	HFIP	_			
3	TFA	CH ₂ Cl ₂	96			
4	AcOH	CH ₂ Cl ₂	_			
5	TFA	CH ₂ Cl ₂	92			
6	TFA	CH ₂ Cl ₂	48			
7	_	CH ₂ Cl ₂	_			
8 ^a	TFA	CH ₂ Cl ₂	37			
9 ^b	TFA	CH ₂ Cl ₂	_			
a) Reaction was run without Ru(bpy) ₃ (PF ₆). b) Reaction was run in the dark						

Table S1.

4.2 Substrate Scope

General Procedure for the Olefin Aminochlorination Using Free Amines – GP1

A dry tube equipped with a stirring bar was charged with NCS (1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (1 mol%) and the amine if solid (1.2 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x 3). CH₂Cl₂ (0.2 M) (dry and degassed by bubbling through with N_2 for 20 min) and the amine (1.2 equiv.) if liquid were added and the mixture was stirred for 1 h at room temperature. The mixture was cooled to 0 °C and a solution of the olefin (1.0 equiv.) in CH₂Cl₂ (0.2 M) and TFA (6 equiv.) were added. The LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. Aqueous 1 M KOH and EtOAc were added and the mixture was shaken vigorously. The aqueous layer was extracted with EOAc (x 3), the combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by flash column or preparative thin-layer chromatography on silica gel gave the products.

General Procedure for the Olefin Aminochlorination Using Ammonium Salts – GP2

A dry tube equipped with a stirring bar was charged with NCS (1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (1 mol%) and the ammonium salt (1.0 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). CH₂Cl₂ (0.2 M) (dry and degassed by bubbling through with N₂ for 20 min) and (*i*-Pr)₂NEt (1.1 equiv.) were added and the mixture was stirred for 60 min in the dark. The mixture was cooled to 0 °C and a solution of the olefin (1.0 equiv.) in CH₂Cl₂ (0.2 M) and TFA (6 equiv.) were added. The LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. Aqueous 1 M KOH and EtOAc were added and the mixture was shaken vigorously. The aqueous layer was extracted with EOAc (x 3), the combined organic layers were dried (MgSO₄), filtered

and evaporated. Purification by flash column or preparative thin-layer chromatography on silica gel gave the products.

1-(2-Chloro-4-phenylbutyl)piperidine (11)

Following **GP1**, **1** (12 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **11** (23 mg, 91%) as an oil. $R_f 0.60$ [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2938, 2859, 2651, 2341, 1495, 1454, 1303, 1259, 1156, 1029; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.27 (2H, m), 7.24–7.18 (3H, m), 3.95 (1H, dddd, J = 11.0, 9.6, 4.0, 3.5 Hz), 2.93 (1H, ddd, J = 14.1, 9.5, 4.8 Hz), 2.75 (1H, ddd, J = 13.8, 9.3, 7.2 Hz), 2.64 (1H, dd, J = 13.1, 6.5 Hz), 2.52 (1H, dd, J = 13.1, 7.3 Hz), 2.38 (4H, br s), 2.33–2.17 (1H, m), 1.92 (1H, dtd, J = 14.3, 9.4, 4.9 Hz), 1.55 (4H, p, J = 5.6 Hz), 1.47–1.34 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 128.7, 128.5, 126.1, 66.0, 59.5, 55.1, 38.0, 32.5, 26.0, 24.4; HRMS (HESI): found MH⁺ 252.1512, [C₁₅H₂₃NCl]⁺ requires 252.1514.

1-(2-Chloro-4-phenylbutyl)-2,6-syn-dimethylpiperidine (12)

Following **GP1**, (*2S*,*6R*)-2,6-dimethylpiperidine (16 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **12** (15 mg, 55%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2359, 2341, 1455, 1258, 1086, 1019; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (2H, t, *J* = 7.3 Hz), 7.20 (3H, dd, *J* = 18.1, 7.6 Hz), 3.89–3.82 (1H, m), 2.96 (1H, dd, *J* = 14.0, 9.3, 4.4 Hz), 2.87 (1H, dd, *J* = 15.1, 5.8 Hz), 2.82–2.66 (2H, m), 2.57–2.49 (1H, m), 2.50–2.42 (1H, m), 2.38–2.28 (1H, m), 1.79 (1H, dtd, *J* = 14.4, 9.9, 4.3 Hz), 1.67–1.60 (1H, m), 1.50–1.42 (2H, m), 1.38–1.28 (1H, m), 1.28–1.17 (2H, m), 1.06 (3H, d, *J* = 6.2 Hz), 1.01 (3H, d, *J* = 6.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 128.7, 128.5, 126.1, 62.8, 58.5, 57.9, 38.0, 33.1, 24.6, 22.2, 22.1; HRMS (ASAP): Found MH⁺ 280.1822, [C₁₇H₂₇NCl]⁺ requires 280.1827.

1-(2-Chloro-4-phenylbutyl)-2,2,6,6-tetramethylpiperidine (13)

Following **GP1**, 2,2,6,6-tetramethylpiperidine (20 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **13** (6.5 mg, 21%) as an oil. R_f 0.35 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2926, 2359, 2341, 1455, 1381, 1258, 1174, 1089, 1021; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.27 (2H, m), 7.24–7.15 (3H, m), 3.93–3.84 (1H, m), 2.99 (1H, ddd, J = 13.7, 9.2, 4.3 Hz), 2.89 (1H, dd, J = 15.6, 5.4), 2.79–2.61 (2H, m), 2.58–2.43 (1H, m), 1.82–1.65 (1H, m), 1.55 (1H, br s), 1.51 (1H, br s), 1.38 (4H, t, J = 6.0 Hz), 1.00 (6H, s), 0.92 (6H, s); ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 128.7, 128.5, 126.0, 65.7, 55.0, 52.5, 41.4, 37.2, 33.5, 25.8, 17.9; HRMS (ASAP): Found MH⁺ 308.2133 C₁₉H₃₁NCl requires 308.2140.

1-(2-Chloro-4-phenylbutyl)piperidin-3-ol (14)

Following **GP2**, adding NaCl (6 mg, 0.1 mmol) to the reaction mixture, 3hydroxypiperidine hydrochloride (16 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **14** (12 mg, 45%) as an oil. dr: 1:1. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 3334, 2359, 2341, 1634, 1260, 1017; ¹H NMR (500 MHz, CDCl₃, diastereomers) δ 7.30 (2H, t, J = 7.5 Hz), 7.23–7.19 (3H, m), 3.96–3.87 (1H, m), 3.85–3.72 (1H, m), 2.92 (1H, ddd, J = 14.0, 9.2, 4.9 Hz), 2.75 (1H, dt, J = 13.9, 8.1 Hz), 2.71–2.61 (1H, m), 2.61–2.54 (1H, m), 2.54–2.44 (3H, m), 2.29 (1H, q, J = 10.0, 9.5 Hz), 2.24–2.15 (1H, m), 1.99–1.85 (1H, m), 1.83–1.72 (1H, m), 1.61–1.53 (2H, m), 1.63–1.45 (1H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 141.2 (x 2), 128.6 (x 2), 126.2 (x 2), 66.2, 66.1, 65.0, 64.8, 61.1, 60.7, 59.5, 59.2, 54.3, 54.1, 37.9 (x 2), 32.5 (x 2), 31.5 (x 2), 21.7, 21.6; HRMS (ASAP): Found MH⁺ 268.1460 C₁₅H₂₃NOCl requires 268.1463.

4-Azido-1-(2-chloro-4-phenylbutyl)piperidine (15)

Following **GP2**, 4-azidopiperidine hydrochloride (15 mg, 0.12 mmol) and **10** (10 μ L, 0.1 mmol) gave **15** (23 mg, 79%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max}

(film)/cm⁻¹ 2847, 2360, 1644, 1259, 1015; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (2H, t, J = 7.6 Hz), 7.25–7.18 (3H, m), 3.90 (1H, dtd, J = 9.7, 7.0, 3.0 Hz), 3.42–3.34 (1H, m), 2.93 (1H, ddd, J = 13.9, 9.2, 4.8 Hz), 2.80–2.70 (3H, m), 2.67 (1H, dd, J = 13.3, 6.5 Hz), 2.56 (1H, dd, J = 13.2, 7.2 Hz), 2.32–2.13 (3H, m), 1.97–1.89 (1H, m), 1.90–1.82 (2H, m), 1.65 (2H, dtt, J = 15.8, 9.6, 4.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 128.5, 128.5, 126.1, 64.8, 59.2, 57.5, 51.9, 51.4, 37.8, 32.4, 30.8, 30.7; HRMS (ASAP): Found MH⁺ 293.1522 C₁₅H₂₂N₄Cl requires 293.1528.

1-(1-(2-Chloro-4-phenylbutyl)-4-phenylpiperidin-4-yl)ethan-1-one (16)

Following **GP2**, 4-acetyl-4-phenylpiperidine hydrochloride (29 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **16** (21 mg, 56%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2925, 2341, 1702, 1599, 1494, 1446, 1353, 1259, 1202, 1028; ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.34 (2H, m), 7.33–7.27 (5H, m), 7.25–7.18 (3H, m), 3.98–3.87 (1H, m), 2.93 (1H, ddd, *J* = 14.0, 9.3, 4.9 Hz), 2.82–2.73 (1H, m), 2.73–2.62 (3H, m), 2.54 (1H, dd, *J* = 13.1, 7.1 Hz), 2.48–2.39 (2H, m), 2.37–2.18 (3H, m), 2.14–2.01 (2H, m), 1.99–1.86 (1H, m), 1.91 (3H, s); ¹³C NMR (126 MHz, CDCl₃) δ 209.6, 141.7, 141.3, 129.0, 128.7, 128.6, 127.3, 126.5, 126.2, 65.2, 59.3, 54.6, 51.4, 51.3, 38.0, 32.9, 32.8, 32.5, 25.8; HRMS (HESI): Found MH⁺ 370.1926 C₂₃H₂₉NOCl requires 370.1932.

N-(1-(2-Chloro-4-phenylbutyl)piperidin-4-yl)-*N*-cyclopropyl-3-(trifluoromethyl)benzene-sulfonamide (17)

Following **GP1**, *N*-cyclopropyl-*N*-(piperidin-4-yl)-3-(trifluoromethyl)benzenesulfonamide (42 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **17** (31 mg, 60%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2951, 2838, 2359, 2341, 1651, 1404, 1260, 1104, 1013; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (1H, s), 8.05 (1H, d, *J* = 7.9 Hz), 7.84 (1H, d, *J* = 7.9 Hz), 7.67 (1H, t, *J* = 7.8 Hz), 7.29 (2H, t, *J* = 7.5 Hz), 7.20 (3H, d, *J* = 7.3 Hz), 4.15–3.64 (2H, m), 2.91 (1H, ddd, *J* = 14.1, 9.3, 4.9 Hz), 2.87 – 2.78 (2H, m), 2.73 (1H, dt, J = 14.0, 8.2 Hz), 2.64 (1H, dd, J = 13.2, 6.8 Hz), 2.52 (1H, dd, J = 13.2, 6.8 Hz), 2.25–2.14 (2H, m), 2.13–2.02 (1H, m), 2.00–1.85 (4H, m), 1.48 (2H, d, J = 11.5 Hz), 1.03–0.92 (2H, m), 0.78 (2H, q, J = 6.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.3, 141.2, 131.8 (q, J = 33.4 Hz), 130.6, 129.9, 129.2 (q, J = 3.3 Hz), 128.6, 128.5, 126.2, 124.6 (q, J = 3.6 Hz), 123.3 (q, J = 272.9 Hz), 64.9, 59.3, 59.0, 54.1, 53.8, 38.0, 32.5, 31.0, 30.9, 26.2, 7.8; ¹⁹F NMR (471 MHz, CDCl₃) δ 62.81; HRMS (ASAP): Found MH⁺ 515.1738 C₂₅H₃₁N₂O₂ClSF₃ requires 515.1741.

1-(2-Chloro-4-phenylbutyl)-4-(4-chlorophenyl)piperidin-4-ol (18)

Following **GP1**, 4-(4-chlorophenyl)-4-hydroxypiperidine (25 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **18** (34 mg, 91%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR ν_{max} (film)/cm⁻¹ 3322, 2960, 2918, 2849, 1637, 1493, 1454, 1398, 1258, 1090, 1012; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (2H, d, *J* = 8.6 Hz), 7.36–7.28 (4H, m), 7.25–7.18 (3H, m), 4.02–3.94 (1H, m), 2.95 (1H, ddd, *J* = 14.0, 9.4, 4.9 Hz), 2.84–2.67 (4H, m), 2.63 (1H, dd, *J* = 13.2, 6.8 Hz), 2.58–2.43 (2H, m), 2.31–2.20 (1H, m), 2.15–2.04 (2H, m), 1.96 (1H, dtd, *J* = 14.2, 9.3, 4.9 Hz), 1.73–1.63 (2H, m); 1.56 (1H, br s); ¹³C NMR (126 MHz, CDCl₃) δ 146.9, 141.3, 132.9, 128.7, 128.6, 128.5, 126.2, 126.2, 71.0, 65.3, 59.4, 50.0, 49.8, 38.5, 38.4, 38.0, 32.5; HRMS (ASAP): Found MH⁺ 378.1382 C₂₁H₂₆NOCl₂ requires 378.1386.

1-(2-Chloro-4-phenylbutyl)-4-(4-(trifluoromethoxy)phenoxy)piperidine (19)

Following **GP1**, 4-[4-(trifluoromethoxy)phenoxy]piperidine (31 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **19** (36 mg, 84%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2951, 2359, 2341, 1503, 1454, 1261, 1238, 1194, 1159, 1042; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (2H, t, J = 7.4 Hz), 7.24–7.19 (3H, m), 7.12 (2H, d, J = 8.5 Hz), 6.87 (2H, d, J = 8.5 Hz), 4.31–4.21 (1H, m), 4.01–3.87 (1H, m), 2.94 (1H, ddd, J = 14.1, 9.3, 4.8 Hz), 2.77 (1H, dd, J = 14.4, 7.7 Hz), 2.74–2.66 (3H, m), 2.59 (1H, dd, J = 13.2, 7.2 Hz), 2.42–2.19 (3H, m), 2.05–1.85 (3H, m), 1.84–1.74 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 142.8 (q, J

= 2.1 Hz), 141.3, 128.7, 128.6, 126.2, 122.6, 120.7 (q, J = 256.1 Hz), 116.9, 73.1, 65.1, 59.4, 51.2, 50.8, 37.9, 32.5, 30.9, 30.8; ¹⁹F NMR (471 MHz, CDCl₃) δ –58.4; HRMS (ASAP): Found MH⁺ 428.1588 C₂₂H₂₆NO₂ClF₃ requires 428.1599.

2-((1-(2-Chloro-4-phenylbutyl)piperidin-4-yl)methyl)-5,6-dimethoxy-2,3dihydro-*1H*-inden-1-one (20)

Following **GP2**, desbenzyl donepezil hydrochloride (39 mg, 0.12 mmol) and **10** (10 μ L, 0.1 mmol) gave **20** (36 mg, 79%) as an oil. d.r. 1:1. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2960, 2359, 2341, 1693, 1590, 1499, 1455, 1313, 1258, 1016; ¹H NMR (500 MHz, CDCl₃, diasteromers) δ 7.29 (2H, t, *J* = 7.5 Hz), 7.24–7.18 (3H, m), 7.17 (1H, s), 6.85 (1H, s), 3.96 (3H, s), 4.00–3.92 (1H, m), 3.90 (3H, s), 3.23 (1H, dd, *J* = 17.5, 8.0 Hz), 2.92 (1H, ddd, *J* = 14.0, 9.4, 4.8 Hz), 2.88–2.79 (2H, m), 2.78–2.72 (1H, m), 2.72–2.62 (3H, m), 2.59–2.52 (1H, m), 2.32–2.20 (1H, m), 2.12–1.84 (4H, m), 1.75–1.57 (2H, m), 1.52–1.43 (1H, m), 1.41–1.22 (3H, m); ¹³C NMR (126 MHz, CDCl₃, diasteromers) δ 207.7 (x 2), 155.5 (x 2), 149.4 (x 2), 148.7 (x 2), 141.2 (x 2), 129.3 (x 2), 128.5 (x 2), 128.4 (x 2), 126.0 (x 2), 107.3 (x 2), 104.4 (x 2), 65.4 (x 2), 59.3 (x 2), 33.3 (x 2), 33.1, 32.9, 32.4 (x 2), 31.8, 31.7; HRMS (ASAP): Found MH⁺ 456.2293 C₂₇H₃₅NO₃NCl requires 456.2300.

4-(2-Chloro-4-phenylbutyl)morpholine (21)

Following **GP1**, morpholine (10 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **21** (22 mg, 86%) as an oil. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2957, 2853, 2810, 2359, 2341, 1495, 1454, 1360, 1259, 1207, 121116, 1069, 1008; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.27 (2H, m), 7.24–7.17 (3H, m), 4.01–3.87 (1H, m), 3.75–3.63 (4H, m), 2.93 (1H, ddd, J = 14.0, 9.2, 4.9 Hz), 2.81–2.71 (1H, m), 2.68 (1H, dd, J = 13.1, 6.8 Hz), 2.56 (1H, dd, J = 13.1, 7.0 Hz), 2.48–2.40 (4H, m), 2.30–2.19 (1H, m), 1.94 (1H, dtd, J = 14.2, 9.2, 4.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 128.7,

128.6, 126.2, 67.0, 65.6, 58.7, 54.0, 37.9, 32.5; HRMS (ASAP): Found MH⁺ 254.1302 C₁₄H₂₁NOCl requires 254.1306.

4-(2-Chloro-4-phenylbutyl)-2,6-syn-dimethylmorpholine (22)

Following **GP1**, *cis*-2,6-dimethylmorpholine (15 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **22** (31 mg, 81%) as an oil. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2931, 2858, 2815, 2360, 2342, 1495, 1454, 1374, 1322, 1225, 1178, 1143, 1085, 1049, 1030; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.25 (2H, m), 7.24–7.17 (3H, m), 3.93 (1H, dtd, J = 9.8, 6.8, 3.1 Hz), 3.65 (2H, dqd, J = 16.4, 8.7, 4.4 Hz), 2.93 (1H, ddd, J = 13.9, 9.2, 4.9 Hz), 2.75 (1H, dt, J = 13.8, 8.2 Hz), 2.69–2.48 (4H, m), 2.30–2.19 (1H, m), 1.99–1.87 (1H, m), 1.79 (2H, dt, J = 20.5, 10.5 Hz), 1.13 (3H, t, J = 6.7 Hz), 1.12 (3H, t, J = 6.4 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 128.5, 128.5, 126.1, 71.6, 71.5, 65.0, 59.8, 59.6, 58.6, 37.8, 32.3, 19.1 (x 2); HRMS (ASAP): Found MH⁺ 282.1617 C₁₆H₂₅NOCl requires 282.1619.

Benzyl 4-(2-Chloro-4-phenylbutyl)piperazine-1-carboxylate (23)

Following **GP1**, 1-Cbz-piperazine (23 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **23** (29 mg, 75%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2960, 2359, 2341, 1699, 1496, 1454, 1428, 1361, 1257, 1237, 1079, 1015; ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.27 (7H, m), 7.23–7.18 (3H, m), 5.13 (2H, s), 3.92 (1H, dtd, J =9.8, 6.7, 3.1 Hz), 3.49 (4H, t, J = 5.0 Hz), 2.92 (1H, ddd, J = 13.9, 9.1, 4.9 Hz), 2.81– 2.72 (1H, m), 2.70 (1H, dd, J = 13.4, 7.0 Hz), 2.59 (1H, dd, J = 13.2, 6.8 Hz), 2.42 (4H, br s), 2.30–2.18 (1H, m), 2.01–1.86 (1H, m); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 141.0, 136.7, 128.55 (x 2), 128.5, 128.0, 127.9, 126.1, 67.2, 64.9, 58.6, 53.1, 43.7, 37.7, 32.3; HRMS (ASAP): Found MH⁺ 387.1826 C₂₂H₂₈ClN₂O₂ requires 387.1834.

1-(2-Chloro-4-phenylbutyl)pyrrolidine (24)

Following **GP1** but adding NaCl (6 mg, 0.1 mmol) to the reaction mixture, pyrrolidine (10 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **24** (22 mg, 91%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.24 (2H, m), 7.23–7.17 (3H, m), 4.01–3.85 (1H, m), 2.93 (1H, ddd, *J* = 14.2, 9.4, 4.9 Hz), 2.86–2.65 (3H, m), 2.52 (4H, br s), 2.29–2.17 (1H, m), 1.95 (1H, dtd, *J* = 10.7, 9.2, 8.6, 4.8 Hz), 1.76 (4H, br s); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 128.5, 128.4, 126.0, 63.3, 60.5, 54.4, 37.9, 32.4, 23.5. Data in accordance with the literature.^[10]

1-(2-Chloro-4-phenylbutyl)azepane (25)

Following **GP1**, hexamethyleneimine (13.5 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **25** (19 mg, 74%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2359, 2341, 1652, 1459, 1454, 1258, 1017; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.27 (2H, m), 7.24–7.16 (3H, m), 3.90–3.80 (1H, m), 2.93 (1H, ddd, J = 14.1, 9.5, 4.8 Hz), 2.85 (1H, dd, J = 13.4, 5.8 Hz), 2.75 (1H, dd, J = 14.9, 7.3 Hz), 2.72–2.67 (1H, m), 2.66 (4H, br s), 2.37–2.25 (1H, m), 1.90 (1H, dtd, J = 14.2, 9.3, 4.6 Hz), 1.65–1.50 (8H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 128.7, 128.5, 126.1, 64.5, 60.7, 55.9, 37.7, 32.6, 28.5, 27.3; HRMS (ASAP): Found MH⁺ 266.1668 C₁₆H₂₅NCl requires 266.1670.

1-(2-Chloro-4-phenylbutyl)azetidine (26)

Following **GP2** but using 2.0 equiv. of the olefin, azetidine hydrochloride (11 mg, 0.12 mmol) and **10** (20 µL, 0.2 mmol) gave **26** (17 mg, 76%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2959, 2359, 2341, 1715, 1455, 1259, 1179, 1028; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.25 (2H, m), 7.23–7.14 (3H, m), 3.84–3.73 (1H, m), 3.26 (4H, t, *J* = 7.1 Hz), 2.89 (1H, ddd, *J* = 14.0, 9.3, 4.9 Hz), 2.79–2.61 (3H, m), 2.19–2.01 (3H, m), 1.92 (1H, dtd, *J* = 14.2, 9.3, 4.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 128.7, 128.6, 126.2, 66.6, 60.5, 56.4, 38.0, 32.6, 18.2; HRMS (ASAP): Found MH⁺ 224.1199 C₁₃H₁₉NCl requires 224.1201.

6-(2-Chloro-4-phenylbutyl)-2-oxa-6-azaspiro[3.3]heptane (27)

Following **GP2** but using 3.0 equiv. of the olefin, 2-oxa-6-azaspiro[3.3]heptane oxalate (23 mg, 0.12 mmol) and **10** (30 µL, 0.3 mmol) gave **27** (12 mg, 45%) as an oil. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2360, 2341, 1259, 1028; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (2H, m), 7.24–7.12 (3H, m), 4.72 (4H, s), 3.78–3.70 (1H, m), 3.41 (4H, s), 2.87 (1H, ddd, *J* = 14.0, 9.0, 5.0 Hz), 2.72 (1H, dd, *J* = 15.0, 6.5 Hz), 2.66 (1H, br s), 2.65 (1H, br s), 2.14–1.99 (1H, m), 1.92 (1H, dtd, *J* = 14.3, 9.2, 5.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.0, 128.6, 128.6, 126.2, 81.4, 66.1, 65.0, 60.5, 39.7, 37.9, 32.5; HRMS (HESI): Found MH⁺ 266.1295 C₁₅H₂₁NOCl requires 266.1293.

2-Chloro-N,N-dimethyl-4-phenylbutan-1-amine (28)

Following **GP2**, Me₂NH•HCl (10 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **29** (19 mg, 91%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 3362, 2960, 2919, 2849, 2360, 1634, 1455, 1258, 1018; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.25 (2H, m), 7.25–7.17 (3H, m), 3.97–3.85 (1H, m), 2.93 (1H, ddd, J = 14.1, 9.4, 4.9 Hz), 2.76 (1H, ddd, J = 13.7, 9.2, 7.2 Hz), 2.64 (1H, dd, J = 12.9, 7.5 Hz), 2.51 (1H, dd, J = 12.9, 6.2 Hz), 2.26 (6H, s), 2.23–2.15 (1H, m), 1.93 (1H, dtd, J = 14.3, 9.4, 4.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 128.7, 128.6, 126.2, 66.5, 59.4, 45.8, 38.0, 32.5; HRMS (ASAP): Found MH⁺ 212.1203 C₁₂H₁₉NCl requires 212.1201.

2-Chloro-*N*,*N*-diethyl-4-phenylbutan-1-amine (29)

Following **GP1**, **8** (46 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **29** (15 mg, 62%) as an oil. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2359, 2341, 1635, 1495, 1454, 1258, 1015; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.27 (2H, m), 7.24–7.16 (3H, m), 4.05–3.71 (1H, m), 2.94 (1H, ddd, J = 14.1, 9.6, 4.7 Hz), 2.80–2.68 (2H, m), 2.62 (1H, dd, J = 13.6, 7.7 Hz), 2.58–2.44 (4H, m), 2.36–2.18 (1H, m), 1.87 (1H, dtd, J = 14.2, 9.5, 4.7 Hz), 0.98 (6H, t, J = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 128.7,

128.5, 126.1, 61.1, 60.7, 48.1, 37.8, 32.7, 12.1; HRMS (HESI): Found MH⁺ 240.1509 C₁₄H₂₃NCl requires 240.1514.

2-((2-Chloro-4-phenylbutyl)(methyl)amino)ethan-1-ol (30)

Following **GP1**, 2-(methylamino)ethanol (10 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **30** (15 mg, 64%) as an oil. R_f 0.20 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 3378, 2922, 2852, 2358, 2342, 2170, 2343, 2170, 1973, 1454, 1199, 1031; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.28 (2H, m), 7.24–7.17 (3H, m), 3.98–3.90 (1H, m), 3.62–3.53 (2H, m), 2.93 (1H, ddd, *J* = 14.0, 9.3, 5.0 Hz), 2.80–2.69 (2H, m), 2.68–2.59 (2H, m), 2.58–2.52 (1H, m), 2.28 (3H, s), 2.18–2.07 (1H, m), 1.94 (1H, dtd, *J* = 14.2, 9.3, 5.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 141.0, 128.7, 128.6, 126.3, 64.5, 60.1, 59.5, 58.6, 42.3, 37.9, 32.5; HRMS (ASAP): Found MH⁺ 242.1305 C₁₃H₂₁NOC1 requires 242.1306.

2-Chloro-N-methyl-4-phenylbutan-1-amine (31)

Following **GP1**, Me₂NH (11 µL, 0.12 mmol, 33 wt.% in ethanol) and **10** (10 µL, 0.1 mmol) gave **31** (4 mg, 19%) as an oil. R_f 0.45 [petrol:EtOAc (8:2)]; FT-IR ν_{max} (film)/cm⁻¹ 2961, 2909, 2852, 2359, 2341, 1456, 1259, 1029; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (2H, t, *J* = 7.5 Hz), 7.25–7.17 (3H, m), 4.20 (1H, tt, *J* = 8.9, 4.0 Hz), 3.93 (1H, dd, *J* = 14.0, 4.2 Hz), 3.42 (1H, dd, *J* = 14.0, 8.9 Hz), 3.24 (3H, s), 2.94 (1H, ddd, *J* = 14.1, 9.3, 5.1 Hz), 2.80–2.70 (1H, m), 2.13–2.03 (1H, m), 2.03–1.91 (1H, m), 1.56 (1H, br s); ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 128.6, 128.5, 126.3, 58.7, 56.6, 37.4, 37.2, 32.3; HRMS (ASAP): Found MH⁺ 197.0972 C₁₁H₁₇NCl requires 197.0971.

N-(2-Chloro-4-phenylbutyl)cyclohexanamine (32)

Following **GP1** but adding KPF₆ (18 mg, 0.1 mmol) to the reaction mixture, cyclohexylamine (14 μ L, 0.12 mmol) and **10** (10 μ L, 0.1 mmol) gave **32** (17 mg, 65%)

as an oil. $R_f 0.40$ [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2926, 2854, 1410, 1258, 1018; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (2H, t, *J* = 7.9 Hz), 7.23–7.16 (3H, m), 4.04–3.97 (1H, m), 2.96–2.81 (3H, m), 2.75 (1H, dt, *J* = 13.2, 8.2 Hz), 2.46–2.37 (1H, m), 2.13–1.98 (2H, m), 1.85 (2H, d, *J* = 11.8 Hz), 1.72 (2H, d, *J* = 12.7 Hz), 1.61 (1H, d, *J* = 12.6 Hz), 1.27–1.01 (6H, m); ¹³C NMR (126 MHz, CDCl₃) δ 140.9, 128.5, 128.5, 126.1, 63.2, 56.3, 53.4, 38.0, 33.6, 33.4, 32.6, 26.1, 25.0, 24.9; HRMS (ASAP): Found MH⁺ 266.1666 C₁₆H₂₅NCl requires 266.1670.

*N-(tert-*Butyl)-2-chloro-4-phenylbutan-1-amine (33)

Following **GP1**, *t*-BuNH₂ (13 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **34** (20 mg, 85%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2839, 2360, 2341, 1645, 1404, 1260, 1014; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (2H, t, *J* = 7.1 Hz), 7.22–7.14 (3H, m), 4.04–3.87 (1H, m), 2.94–2.85 (1H, m), 2.83–2.76 (2H, m), 2.79–2.70 (1H, m), 2.18–1.97 (2H, m), 1.31 (1H, br s), 1.09 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 128.7, 128.6, 126.2, 64.0, 50.5, 49.7, 38.2, 32.7, 29.1; HRMS (ASAP): Found MH⁺ 240.1512 C₁₄H₂₃NCl requires 240.1514.

N-(2-chloro-4-phenylbutyl)adamantan-1-amine (34)

Following **GP1**, 1-adamantylamine (12 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **34** (29 mg, 91%) as an oil. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2909, 2852, 2359, 2341, 1456, 1259, 1029; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.26 (2H, m), 7.23–7.16 (3H, m), 4.00–3.90 (1H, m), 3.00–2.80 (3H, m), 2.80–2.70 (1H, m), 2.17–1.97 (5H, m), 1.73–1.49 (12H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 128.7, 128.6, 126.2, 64.3, 50.5, 47.7, 42.9, 38.2, 36.8, 32.7, 29.7; HRMS (ASAP): Found MH⁺ 318.1969 C₂₀H₂₉NCl requires 318.1983.

(1S,2R)-2-((2-Chloro-4-phenylbutyl)amino)-1-phenylpropan-1-ol (35)

Following **GP1** but using 10.0 equiv. of TFA, (*1S*,2*R*)-(+)-norephedrine (18 mg, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **35** (6 mg, 20%) as an oil. d.r. 1:1. R_f 0.70 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2960, 2924, 2360, 2341, 1455, 1257, 1016; ¹H NMR (500 MHz, CDCl₃, diastereomers) δ 7.38–7.27 (6.5H, m), 7.24–7.18 (3.5H, m), 4.72 (0.5H, d, *J* = 3.8 Hz), 4.70 (0.5H, d, *J* = 3.9 Hz), 4.06–3.94 (1H, m), 3.06 (0.5H, dd, *J* = 13.0, 3.9 Hz), 2.97–2.89 (2.5H, m), 2.82–2.71 (1H, m), 2.15–2.03 (2H, m), 1.31 (1H, br s), 1.29–1.22 (1H, m), 0.85 (1.5H, d, *J* = 3.3 Hz), 0.83 (1.5H, d, *J* = 3.4 Hz); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 141.2, 141.1, 140.9, 140.8, 128.7 (x 2), 128.6 (x 2), 128.3, 128.2, 127.2 (x 2), 126.4 (x 2), 126.2 (x 2), 73.5, 73.4, 63.1, 62.5, 58.4, 58.0, 54.0, 53.4, 38.0, 37.7, 32.8, 32.6, 15.0, 14.8; HRMS (ASAP): Found MH⁺ 318.1612 C₁₉H₂₅NOCl requires 318.1619.

2-Chloro-*N*-(((*1S*,2*R*,5*S*)-6,6-dimethylbicyclo[3.1.1]heptan-2-yl)methyl)-4phenylbutan-1-amine (36)

Following **GP1**, (–)-*cis*-myrtanylamine (20 µL, 0.12 mmol) and **10** (10 µL, 0.1 mmol) gave **36** (10 mg, 30%) as an oil. d.r.1:1. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2959, 2359, 2341, 1455, 1258, 1020; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.24 (2H, m), 7.24–7.14 (3H, m), 4.09–3.96 (1H, m), 2.90 (1H, ddd, J = 14.2, 8.6, 5.7 Hz), 2.86–2.78 (1H, m), 2.80–2.69 (1H, m), 2.67–2.47 (2H, m), 2.39–2.29 (1H, m), 2.22–2.13 (1H, m), 2.09–1.99 (2H, m), 1.95–1.86 (4H, m), 1.77–1.63 (1H, m), 1.56 (1H, br s), 1.50–1.38 (1H, m), 1.34–1.27 (1H, m), 1.18 (3H, s), 0.97 (3H, s), 0.93–0.87 (1H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 142.1, 141.1, 128.7, 128.6, 128.6, 128.4, 126.2, 125.9, 62.9, 62.8, 56.5, 56.4, 56.0, 55.9, 44.6, 44.5, 41.8, 41.7, 41.7, 41.6, 38.8 (x 2), 38.0 (x 2), 33.6 (x 2), 32.7 (x 2), 28.3, 28.2, 26.4, 26.3, 23.5(x2), 20.8, 20.7; HRMS (ASAP): Found MH⁺ 320.2136 C₂₀H₃₁NCl requires 320.2140.

1-(2-Chloro-4-methylpentyl)piperidine (37)

Following **GP1**, **1** (48 µL, 0.48 mmol) and 4-methylpent-1-ene (34 mg, 0.4 mmol) gave **37** (68 mg, 83%) as an oil. R_f 0.30 [petrol:EtOAc (95:5)]; ¹H NMR (500 MHz, CDCl₃) δ 4.02 (1H, dtd, J = 10.3, 6.7, 3.7 Hz), 2.62 (1H, dd, J = 13.1, 6.8 Hz), 2.47 (1H, dd, J = 13.2, 6.5 Hz), 2.45–2.33 (4H, m), 1.99–1.81 (1H, m), 1.67–1.51 (6H, m), 1.41 (2H, p, J = 5.7 Hz), 0.94 (3H, d, J = 6.7 Hz), 0.89 (3H, d, J = 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 66.8, 58.6, 55.1, 45.7, 26.0, 25.3, 24.4, 23.5, 21.2. HRMS (ESI⁺): found MH⁺ 204.1516, [C₁₁H₂₃ClN]⁺ requires 204.1520.

1-(2-Chloro-2-cyclohexylethyl)piperidine (38)

Following **GP1, 1** (48 µL, 0.48 mmol) and vinylcyclohexane (56 µL, 0.4 mmol) gave **38** (79 mg, 86%) as an oil. $R_f 0.30$ [petrol:EtOAc (95:5)]; FT-IR v_{max} (film)/cm⁻¹: 2960, 2926, 1259, 800; ¹H NMR (400 MHz, CDCl₃) δ 3.96 (1H, td, J = 6.7, 3.0 Hz), 2.60 (2H, d, J = 6.7 Hz), 2.41 (4H, t, J = 5.4 Hz), 1.83–1.62 (6H, m), 1.57 (4H, p, J = 5.7 Hz), 1.44–1.38 (2H, m), 1.37–1.26 (2H, m); 1.24–1.07 (3H, m). ¹³C NMR (101 MHz, CDCl₃) δ 65.5, 63.7, 54.9, 42.2, 30.5, 27.0, 26.4, 26.3, 26.1, 25.8, 24.2; HRMS (ESI⁺): found MH⁺ 230.1666, [C₁₃H₂₅ClN]⁺ requires 230.1676.

Methyl 3-chloro-4-(piperidin-1-yl)pentanoate (39)

Following **GP1**, **1** (12 µL, 0.12 mmol) and methyl 4-pentenoate (12 µL, 0.1 mmol) gave **39** (20 mg, 93%) as an oil. $R_f 0.30$ [petrol:EtOAc (90:10)]; FT-IR v_{max} (film)/cm⁻¹ 2361, 2341, 1733; ¹H NMR (500 MHz, CDCl₃) δ 4.03 (1H, dddd, J = 9.5, 7.7, 6.2, 3.2 Hz), 3.68 (3H, s), 2.66–2.27 (9H, m), 1.92–1.80 (1H, m), 1.63–1.50 (4H, m), 1.41 (2H, p, J = 6.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 66.0, 59.2, 55.1, 51.8, 31.5, 30.9, 26.1, 24.4; HRMS (ESI+): found MH⁺ 234.1246, [C₁₁H₂₁ClNO₂]⁺ requires 234.1262.

4-Chloro-5-(piperidin-1-yl)pentanenitrile (40)

Following **GP1**, **1** (12 µL, 0.12 mmol) and 4-pentenenitrile (10 µL, 0.1 mmol) gave **40** (18 mg, 90%) as an oil. R_f 0.30 [petrol:EtOAc (95:5)]; ¹H NMR (500 MHz, CDCl₃) δ 4.02–4.03 (1H, m), 2.69–2.32 (9H, m), 1.90 (1H, m), 1.60–1.49 (4H, m), 1.41 (2H, p, J = 6.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 119.2, 65.3, 57.6, 55.2, 32.1, 26.1, 24.2, 14.7; HRMS (ESI⁺): found MH⁺ 201.1150, [C₁₀H₁₈ClN₂]⁺ requires 201.1159.

4-Chloro-N-methoxy-N-methyl-5-(piperidin-1-yl)pentanamide (41)

Following **GP1**, **1** (24 µL, 0.24 mmol) and **S1** (18 µL, 0.2 mmol) gave **41** (14 mg, 64%) as an oil. R_f 0.30 [petrol:EtOAc:NH₃ aq. (60:40:0.5)]; FT-IR v_{max} (film)/cm⁻¹: 2957, 1659, 1172, 802; ¹H NMR (400 MHz, CDCl₃) δ 4.10 (1H, dtd, J = 9.9, 6.8, 2.8 Hz), 3.69 (3H, s), 3.17 (3H, s), 2.75–2.60 (3H, m), 2.59–2.28 (6H, m), 1.87–1.75 (1H, m), 1.56 (4H, p, J = 5.6 Hz), 1.47–1.34 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 66.1, 61.4, 59.6, 55.0, 32.3, 31.2, 28.7, 25.9, 24.3; HRMS (ESI⁺): found MH⁺263.1509, [C₁₂H₂₄ClN₂O₂]⁺ requires 263.1529.

4-Chloro-5-(piperidin-1-yl)pentyl benzoate (42)

Following **GP1**, **1** (48 µL, 0.48 mmol) and **S2** (76 mg, 0.4 mmol) gave **42** as an oil (124 mg, quantitative). $R_f 0.30$ [petrol:EtOAc (85:15)]; ¹H NMR (500 MHz, CDCl₃) δ 8.09–8.01 (2H, m), 7.58–7.52 (1H, m), 7.48–7.40 (2H, m), 4.36 (2H, t, J = 6.2 Hz), 4.12–3.97 (1H, m), 2.65 (1H, dd, J = 13.1, 6.4 Hz), 2.52 (1H, dd, J = 13.1, 7.5 Hz), 2.48–2.33 (4H, m), 2.21–2.03 (2H, m), 1.98–1.85 (1H, m), 1.82–1.71 (1H, m), 1.55 (2H, p, J = 5.8 Hz), 1.40 (2H, p, J = 6.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 133.0, 130.4, 129.7, 128.5, 66.0, 64.5, 59.6, 55.1, 32.9, 26.0, 25.7, 24.3; HRMS (ESI): found M⁺ 309.1490, [C₁₇H₂₄ClNO₂]⁺ requires 309.1496.

N-(2-Chloro-3-(piperidin-1-yl)propyl)-4-methylbenzenesulfonamide (43)

Following **GP1**, **1** (48 µL, 0.48 mmol) and **S3** (62 mg, 0.4 mmol) gave **43** (120 mg, 91%) as an oil. $R_f 0.30$ [petrol:EtOAc (8:2)]; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (2H, d, *J* = 8.2 Hz), 7.32 (2H, d, *J* = 7.9 Hz), 6.93 (1H, br s), 3.96 (1H, tt, *J* = 9.1, 4.5 Hz), 3.42 (1H, dd, *J* = 12.8, 4.9 Hz), 3.21 (1H, ddd, *J* = 12.9, 8.2, 1.3 Hz), 2.67 (1H, dd, *J* = 12.9, 4.3 Hz), 2.54 (1H, d, *J* = 11.3 Hz), 2.51–2.42 (2H, m), 2.44 (3H, s), 2.35–2.23 (2H, m), 1.58 (4H, p, *J* = 5.7 Hz), 1.48–1.38 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 143.6, 137.3, 129.9, 127.1, 65.7, 55.1, 53.8, 50.2, 26.1, 24.0, 21.7; HRMS (ESI+): found MH⁺ 331.1233, [C₁₅H₂₄ClN₂O₂S]⁺ requires 331.1248.

syn-1-(2-Chlorocyclohexyl)piperidine(44)andanti-1-(2-Chlorocyclohexyl)piperidine (44')

Following **GP1**, **1** (48 µL, 0.48 mmol) and cyclohexene (41 µL, 0.4 mmol, 1.0 equiv.) gave **44** and **44'** (70% crude NMR yield). **44:44'** = 1.2:1. **44'** decomposes on silica. Following **GP1** but using 1.5 equiv. of piperidine and 1.6 equiv. of NCS gave **44** as an oil (42 mg, 52%). Data for **44**: R_f 0.40 [petrol:EtOAc:aq. NH₃ 37% (40:60:0.5)]; ¹H NMR (500 MHz, CDCl₃) δ 4.65–4.56 (1H, m), 2.71–2.57 (4H, m), 2.42 (1H, d *J* = 11.6), 2.04–2.00 (1H, m), 1.84–1.77 (2H, m), 1.77–1.53 (8H, m), 1.48–1.41 (3H, m); ¹³C NMR (126 MHz, CDCl₃) δ 66.9, 60.5, 50.8, 34.4, 26.0, 25.5, 24.5, 24.0, 19.8; HRMS (ESI⁺): Found MH⁺ 202.1357, [C₁₁H₂₁ClN]⁺ requires 202.1363

Tert-butyl 3-chloro-3-(piperidin-1-ylmethyl)azetidine-1-carboxylate (45)

Following **GP1**, **1** (14 μ L, 0.14 mmol) and *tert*-butyl 3-methyleneazetidine-1carboxylate (19 μ L, 0.12 mmol) gave **45** (85%) as an oil. R_f 0.60 [petrol:EtOAc (80:20)]; FT-IR v_{max} (film)/cm⁻¹ 2361, 2339, 1554, 1260, 1080; ¹H NMR (500 MHz, CDCl₃) δ 4.13 (2H, d, J = 9.3 Hz), 4.04 (2H, d, J = 9.3 Hz), 2.69 (2H, s), 2.50 (4H, t, J = 5.2 Hz), 1.59–1.50 (4H, m), 1.42 (9H, s), 1.41–1.35 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 80.0, 65.8, 62.8, 61.7, 55.9, 28.4, 26.1, 24.0; HRMS (ESI): Found MH⁺ 289.1681, C₁₄H₂₆N₂O₂Cl requires 289.1683.

Benzyl (2S)-2-(((benzyloxy)carbonyl)amino)-4-chloro-5-(piperidin-1yl)pentanoate (46)

Following **GP1**, **1** (48 μL, 0.48 mmol) and **S5** (184 mg, 0.4 mmol, 1.00 equiv.) gave **46** as an oil (130 mg, 96%). d.r. 1:1.

Data for the first eluting isomer: R_f 0.4 [petrol:EtOAc:NH₃ aq. 37% (70:30:05)]; ¹H NMR (400 MHz, CDCl₃) 7.47–7.27 (10H, m), δ 5.96 (1H, d, J = 8.1 Hz), 5.30–4.98 (4H, m), 4.53 (1H, m), 3.95 (1H, m), 2.73–2.43 (2H, m), 2.43–2.15 (6H, m), 1.70–1.45 (4H, m), 1.45–1.28 (2H, m; ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 156.3, 136.6, 135.5, 128.7, 128.5, 128.5, 128.3, 128.2, 128.2, 67.3, 67.0, 65.9, 54.9, 54.1, 51.9, 40.0, 25.3, 24.0; HRMS (ESI⁺): found MH⁺ 459.2024, [C₂₅H₃₂ClN₂O₄]⁺ requires 459.2045.

Data for the second eluting isomer: $R_f 0.35$ [petrol:EtOAc:NH₃ aq. 37% (70:30:0.5)]; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.27 (10H, m), 6.00 (1H, br s), 5.28–5.02 (4H, m), 4.74–4.58 (1H, m), 4.05–4.96 (1H, m), 2.64 (1H, dd, *J* = 13.1, 5.4 Hz), 2.51 (1H, dd, *J* = 13.1, 8.7 Hz), 2.53–2.24 (5H, m), 2.23–2.05 (1H, m), 1.64–1.47 (4H, m), 1.46–1.33 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 156.3, 136.3, 135.4, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 67.4, 67.4, 67.2, 65.7, 65.7, 55.4, 55.1, 52.4, 39.1, 25.8, 24.2; HRMS (ESI[–]): found M[–] 458.1972, [C₂₅H₃₁ClN₂O₄][–] requires 458.1972.

(*R*)-((*1S*,2*R*,4*S*,5*R*)-5-(1-Chloro-2-(piperidin-1-yl)ethyl)quinuclidin-2yl)(quinolin-4-yl)methyl Benzoate (47)

Following **GP1** but using 8.0 equivalents of TFA, **1** (48 μ L, 0.48 mmol) and **S6** (159 mg, 0.4 mmol) gave **47** (124 mg, 60%) as an oil. R_f 0.60 [CH₂Cl₂:*i*-PrOH (97:3)]; ¹H NMR (500 MHz, CDCl₃) δ 8.87 (1H, d, *J* = 4.5 Hz), 8.31 (1H, d, *J* = 8.5 Hz), 8.14 (1H, dd, *J* = 8.5, 1.3 Hz), 8.12–8.06 (2H, m), 7.74 (1H, ddd, *J* = 8.4, 6.8, 1.3 Hz), 7.65 (1H,

ddd, J = 8.3, 6.8, 1.4 Hz), 7.62–7.55 (1H, m), 7.51–7.44 (3H, m), 6.82 (1H, d, J = 6.3 Hz), 3.95 (1H, dt, J = 9.6, 6.1 Hz), 3.53 (1H, dt, J = 9.8, 7.0 Hz), 3.19 (1H, dddd, J = 13.2, 10.3, 5.1, 2.4 Hz), 3.07 (1H, dd, J = 14.2, 9.8 Hz), 2.78 (1H, ddd, J = 14.2, 5.4, 2.5 Hz), 2.70–2.60 (1H, m), 2.58 (2H, d, J = 6.2 Hz), 2.49–2.31 (4H, m), 2.12–2.06 (1H, m), 1.97–1.84 (2H, m), 1.83–1.66 (2H, m), 1.59–1.46 (5H, m), 1.44–1.34 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 150.1, 148.8, 145.3, 133.6, 130.7, 129.8, 129.8, 129.4, 128.8, 127.2, 126.0, 123.4, 118.5, 74.8, 65.3, 64.8, 60.1, 60.1, 56.7, 55.3, 42.6, 42.2, 28.7, 26.0, 25.8, 24.4, 24.3; HRMS (ESI⁺): found MH⁺ 518.2562, [C₃₁H₃₇ClN₃O₂]⁺ requires 518.2575.

(5*R*)-5-(2-Chloro-1-(piperidin-1-yl)propan-2-yl)-2-methylcyclohex-2-en-1-one (48)

Following **GP1, 1** (24 µL, 0.24 mmol) and (*R*)-carvone (18 µL, 0.2 mmol) gave **48** (45 mg, 83%) as an oil. d.r. 1:1. R_f 0.20 [petrol:EtOAc (9:1)]; FT-IR v_{max} (film)/cm⁻¹: 2933, 1669, 800; ¹H NMR (400 MHz, CDCl₃) δ 6.79–6.67 (1H, m), 2.79–2.31 (11H, m), 1.80–1.74 (3H, m), 1.62–1.43 (7H, m), 1.41–1.31 (2H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 199.7 (A), 199.6 (B), 144.9 (A), 144.7 (B), 135.2 (A), 135.2 (B), 76.8 (A), 76.7 (B), 67.6 (A), 67.3 (B), 56.9 (A), 56.8 (B), 43.1 (A), 42.7 (B), 40.4 (AB), 39.9 (AB), 39.9, 28.2 (AB), 27.7 (AB), 26.8 (A), 26.6 (B), 26.4 (AB), 24.1 (A), 24.0 (B), 15.7 (AB); HRMS (ESI+): found MH⁺ 270.1612, [C₁₅H₂₅ClNO]⁺ requires 270.1625.

1-(2-Chloro-3-(3-(4-chlorophenyl)propoxy)propyl)piperidine (49)

Following **GP1**, **1** (48 µL, 0.48 mmol) and **S7** (84 mg, 0.4 mmol) gave **49** (131 mg, 99%) as an oil. $R_f 0.30$ [petrol:EtOAc 9:1]; FT-IR v_{max} (film)/cm⁻¹: 2933, 2854, 1116, 1091; ¹H NMR (500 MHz, CDCl₃) δ 7.26–7.22 (2H, m), 7.15–7.10 (2H, m), 4.13–4.03 (1H, m), 3.72 (1H, dd, J = 10.5, 4.4 Hz), 3.59 (1H, dd, J = 10.5, 6.2 Hz), 3.54–3.41 (2H, m), 2.71–2.64 (3H, m), 2.59 (1H, dd, J = 13.3, 6.5 Hz), 2.52–2.33 (4H, m), 1.88

(2H, dq, J = 9.3, 6.9 Hz), 1.56 (4H, p, J = 5.6 Hz), 1.47–1.37 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 140.4, 131.6, 130.0, 128.5, 73.4, 70.2, 62.7, 57.8, 55.2, 31.7, 31.2, 26.1, 24.3; HRMS (ESI⁺): found MH⁺ 330.1370, [C₁₇H₂₆Cl₂NO]⁺ requires 330.1392.

1-(4-(*tert*-Butyl)phenyl)-3-chloro-4-(4-(hydroxydiphenylmethyl)piperidin-1yl)butyl benzoate (50)

Following **GP2**, α,α-diphenyl-4-piperidinomethanol hydrochloride (36 mg, 0.12 mmol) and **S9** (61 mg, 0.1 mmol) gave **50** (37 mg, 60%) as an oil. d.r. 1:1. R_f 0.40 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2359, 2341, 1716, 1489, 1447, 1314, 1258, 1093, 1066, 1024; ¹H NMR (500 MHz, CDCl₃, diastereomers) δ 8.14–7.95 (2H, m), 7.55 (1H, t, J = 7.5 Hz), 7.49 (4H, t, J = 7.0 Hz), 7.46–7.40 (2.5H, m), 7.40–7.35 (3H, m), 7.35–7.27 (4H, m), 7.23–7.16 (2.5H, m), 6.31 (0.5H, dd, J = 10.3, 2.9 Hz), 6.26 (0.5H, t, J = 7.4 Hz), 4.35–4.01 (0.5H, m), 3.83–3.63 (0.5H, m), 3.03–2.83 (1.5H, m), 2.83–2.72 (0.5H, m), 2.72–2.58 (3H, m), 2.50–2.33 (1.5H, m), 2.31–2.13 (2H, m), 2.13–2.00 (1H, m), 1.95 (0.5H, td, J = 11.0, 3.9 Hz), 1.65–1.41 (4H, m), 1.30 (4.5H, s), 1.29 (4.5H, s); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 165.6, 165.5, 151.3, 151.0, 145.9 (x 2), 137.3 (x 2), 136.1 (x 2), 133.0, 132.9, 130.4, 130.3, 129.7, 129.6, 128.4, 128.3, 128.2 (x 2), 128.2, 128.1, 126.7 (x 2), 126.6, 126.5, 126.5, 126.4, 126.0 (x 2), 125.8, 125.7, 125.6, 125.5, 79.6, 79.5, 77.3, 74.6, 73.5, 65.1, 55.7, 55.5, 55.1, 53.8, 53.6, 44.0, 43.9, 43.5, 42.6, 34.6, 34.6, 31.3, 31.3, 29.7, 26.5, 26.5, 26.3, 26.2; HRMS (ASAP): Found MH⁺ 610.3057 C₃₉H₄₅NO₃Cl requires 610.3082.

3-Chloro-4-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-1-(4fluorophenyl)butan-1-one (51)

Following **GP1** in CD₂Cl₂ without adding KOH at the end of the reaction, 4-(4-chlorophenyl)-4-hydroxypiperidine (25 mg, 0.12 mmol) and **S11** (16 mg, 0.1 mmol) and gave **51** (30 mg, 73%) as an oil. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.99 (2H, dd, *J* =

8.7, 5.4 Hz), 7.44 (2H, d, J = 8.9 Hz), 7.37 (2H, d, J = 8.5 Hz), 7.25–7.15 (2H, m), 4.94 (1H, p, J = 6.4 Hz), 3.89–3.77 (2H, m), 3.75 (1H, dd, J = 18.3, 5.4 Hz), 3.70 (2H, t, J = 5.9 Hz), 3.67–3.58 (2H, m), 3.56 (1H, dd, J = 18.3, 7.3 Hz), 2.64–2.56 (2H, m), 2.18–2.05 (2H, m); ¹³C NMR (126 MHz, CD₂Cl₂) δ 195.3, 167.14 (d, J = 256.5 Hz), 144.1, 132.5 (d, J = 2.9 Hz), 131.65 (d, J = 9.8 Hz), 129.4, 126.5, 126.4, 116.73 (d, J = 22.0 Hz), 69.7, 63.2, 51.9, 49.9, 49.7, 45.2, 35.7, 35.1; ¹⁹F NMR (471 MHz, CD₂Cl₂) δ – 76.31. LC-MS expected: 410,31; found: 410.1.

7-(2-Chloro-3-((2-hydroxyethyl)(methyl)amino)propyl)-1,3-dimethyl-3,7dihydro-*1H*-purine-2,6-dione (52)

Following **GP1** but adding KPF₆ (18 mg, 0.1 mmol) to the reaction mixture and using HClO₄ instead of TFA, 2-(methylamino)ethanol (10 μ L, 0.12 mmol) and **S12** (22 mg, 0.1 mmol) and gave **52** (20 mg, 62%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR ν_{max} (film)/cm⁻¹ 3444, 2952, 2360, 1699, 1651, 1604, 1547, 1437, 1456, 1428, 1408, 1377, 1259, 1234, 1191, 1027; ¹H NMR (500 MHz, CDCl₃,) δ 7.68 (1H, s), 5.17 (1H, dd, J = 14.3, 2.5 Hz), 4.42–4.33 (1H, m), 4.05 (1H, dd, J = 14.2, 10.0 Hz), 3.65 (2H, br s), 3.60 (3H, s), 3.39 (3H, s), 3.12 (1H, br s), 2.86 (1H, dd, J = 13.4, 5.9 Hz), 2.81–2.68 (2H, m), 2.60 (1H, dt, J = 13.0, 4.9 Hz), 2.40 (3H, s) 1.83 (1H, br s); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 151.5, 149.3, 142.6, 106.4, 62.4, 59.8, 59.1, 58.6, 51.9, 42.6, 29.9, 28.1; HRMS (HESI): Found MNa⁺ 352.1135 C₁₃H₂₀N₅O₃ClNa requires 352.1147.

1-(3-(2-Benzylphenoxy)-2-chloropropyl)piperidine (102)

Following **GP1**, **1** (12 µL, 0.12 mmol) and 1-(allyloxy)-2-benzylbenzene **100** (22 mg, 0.1 mmol, 1.00 equiv.) gave **102** as an oil (34 mg, quantitative). $R_f = 0.8$ [petrol:EtOAc (8:2)]; ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.20 (4H, m), 7.20–7.13 (2H, m), 7.11 (1H, d, J = 7.5 Hz), 6.90 (1H, t, J = 7.4 Hz), 6.85 (1H, d, J = 8.2 Hz), 4.29–4.13 (3H, m), 4.01 (2H, s), 2.71 (1H, dd, J = 13.3, 6.8 Hz), 2.61 (1H, dd, J = 13.3, 5.5 Hz), 2.47–2.28

(4H, m), 1.53 (4H, p, J = 5.6 Hz), 1.40 (2H, p, J = 6.0 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 141.1, 130.8, 130.1, 129.1, 128.4, 127.6, 125.9, 121.1, 111.6, 70.3, 62.4, 56.8, 55.2, 36.3, 26.1, 24.3. HRMS (ESI⁺): found MH⁺ 344.1775, [C₂₁H₂₇ClNO]⁺ requires 344.1775.

4.3 Mechanistic Considerations

4.3.1 Protonation of N-Chloropiperidine

A solution on *N*-chloropiperidine (12 mg, 0.1 mmol, 1.0 equiv.) in CD_2Cl_2 in a dry NMR tube was treated with the acid (0.6 mmol, 6.0 equiv.) and the sample was immediately analysed by ¹H NMR spectroscopy.

This study demonstrated that AcOH is not able to protonate *N*-chloropiperidine.

6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 fl (nom)

Figure 1.

4.3.2 Quantum Yield Determination

The quantum yield was determined using the method reported by $Yoon^{[11]}$ at three different times. Since the reaction is fully complete after 10 s, this indicates $\Phi > 200$ in CH₂Cl₂ and supports a radical chain mechanism. All yields were determined by ¹H NMR spectroscopy with 1,3,5-trimethoxybenzene as the internal standard.

Table S2.

Entry	Reaction time (s)	11 (%)	10 (%)	Φ
1	5	3	95	>200
2	10	100	_	>200
3	30	100	_	>200

5 Aziridinium Formation and Ring-Opening Studies

5.1 Aziridinium Formation

A stock solution of **11** (126 mg, 0.5 mmol, 1.0 equiv.) and 1,3-dinitrobenzene (84 mg, 0.5 mmol, 1.0 equiv.) as the internal standard in CD₃CN (2.5 mL) was prepared and was added to five NMR tubes (3 x 500 μ L):

- A. Tube 1: nothing else added.
- B. Tube 2: 1.5 equiv. of NaI (23 mg, 0.15 mmol, 1 M solution in CD₃CN)
- C. Tube 3: 3.0 equiv. of NaI (45 mg, 0.30 mmol, 1 M solution in CD₃CN)
- D. Tube 4: 5.0 equiv. of NaI (75 mg, 0.50 mmol, 1 M solution in CD₃CN)
- E. Tube 5: 1.5 equiv. of AgBF₄ (29 mg, 0.15 mmol, 1.5 equiv.)

¹H NMR spectra were acquired at regular intervals (Figure 2).

Figure 2.

Data for **59**: ¹H NMR (400 MHz, CD₃CN) δ 7.34 (2H, dd, J = 8.0, 6.7 Hz), 7.31–7.21 (3H, m), 3.22 (1H, dt, J = 12.9, 6.4 Hz), 3.13–2.99 (3H, m), 2.98–2.79 (4H, m), 2.64 (1H, dd, J = 7.4, 3.7 Hz), 2.40–2.22 (1H, m), 2.07–1.97 (1H, m), 1.86–1.65 (5H, m); 1.64–1.49 (1H, m); ¹³C NMR (101 MHz, CD₃CN) δ 141.0, 129.7, 129.5, 127.6, 61.5, 53.8, 53.2, 43.6, 33.0, 28.1, 23.9, 23.7, 22.2.

The putative β -iodoamine intermediate **S13** involved in the formation of **59** was detected by positive ESI MS analysis of the mixture in the NMR tube in the presence of 1% HCOOH (Figure 3).

Figure 3.

5.2 Aziridinium Ring-Opening

A CD₃CN solution of **59** was treated with Et_2NH (5.0 equiv.) and an ¹H NMR spectrum was recorded after 5 minutes showing complete conversion into the diamine **60** (Figure 4).

Figure 4.
6 Olefin Diamination

6.1 Reaction Optimization

An oven-dried tube equipped with a stirring bar was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x3) and charged with piperidine 1 (10 μL, 0.1 mmol, 1.0 equiv.). Ru(bpy)₃(PF₆)₂ (0.4 mg, 0.5 μmol, 0.5 mol%) and NCS (15 mg, 0.11 mmol, 1.1 equiv.) as a stock solution in CH₂Cl₂ (0.5 mL, dry and degassed by bubbling through with N₂ for 20 min). The mixture was stirred for 1 h at room temperature. The mixture was cooled to 0 °C and 4-Phenylbutene 10 (15 µL, 0.1 mmol, 1.0 equiv.) was added as a solution in CH₂Cl₂ (0.5 mL) followed by TFA (46 μ L, 0.6 mmol, 6 equiv.). The blue LEDs were switched on and the mixture was stirred under irradiation for 1 h at 0 °C. The base (10.0 equiv.) was added and the reaction was warmed to room temperature and stirred for 30 minutes. A solution of NaI (75 mg, 0.5 mmol, 5.0 equiv) and tert-butylamine in CH₃CN (0.5 mL) was added and the mixture was stirred for 18 h at room temperature. Aqueous 1 M KOH (3 mL), EtOAc (3 mL) and 1,3,5-trimethoxybenzene (17 mg, 0.1 mmol, 1.0 equiv.) were added and the layers were separated. The aqueous layer was extracted with EOAc (3 x 3 mL), the combined organic layers were dried (MgSO₄), filtered and evaporated. CDCl₃ (0.4 mL) was added and the mixture was analysed by ¹H NMR spectroscopy to determine the NMR yield.

Table **S3** reports all the experiments performed. The conditions of entry 8 were chosen to run all one-pot diamination reactions.

Entry	base	t-BuNH2 (equiv.)	Yield (%)
1	—	2.5	—
2	_	10	87
3	HMDS	2.5	—
5	DIPEA	2.5	78
6	DIPEA	5.0	86

Table S3.

6.2 Reaction Scope

General Procedure for the Olefin Diamination Using Free Amines – GP3

$$\begin{array}{c} \text{NCS (1.0 equiv.), Ru(bpy)_3(PF_6)_2 (1 mol\%)} \\ \text{CH}_2\text{Cl}_2 (0.2 \text{ M}), 1 \text{ h}} \\ \text{then TFA (6.0 equiv.), blue LEDs, 0 °C, 1 h} \\ \text{then (i-Pr)_2\text{NEt (10 equiv.), r.t., 30 min} \\ \text{then Nal (5.0 equiv.), R^3R^4\text{NH (5.0 equiv.)}} \\ \text{CH}_3\text{CN, r.t., 18 h} \end{array} \right. \begin{array}{c} \text{R}^4 \text{R}^{-1} \text{R}^3 \text{R}^4 \text{R}^3 \text{R}^4 \text{R}^3 \text{R}^4 \text{R}^3 \text{R$$

A dry tube equipped with a stirring bar was charged with NCS (1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (1 mol%) and the amine if solid (1.2 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). CH₂Cl₂ (0.2 M) (dry and degassed by bubbling through with N₂ for 20 min) and the amine (1.2 equiv.) if liquid were added and the mixture was stirred for 1 h at room temperature. The mixture was cooled to 0 °C and a solution of the olefin (1.0 equiv.) in CH₂Cl₂ (0.2 M) and TFA (6 equiv.) were added. The LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. (*i*-Pr)₂NEt (10.0 equiv.) was added and the mixture stirred at room temperature for 30 min. As solution of the second amine (5.0 equiv.) and NaI (5.0 equiv.)¹ in CH₃CN (1 M) was added and the mixture was stirred at room temperature for 18 h. Aqueous 1 M KOH (3 mL) and EtOAc (3 mL) were added. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 3 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by flash column or preparative TLC chromatography on silica gel gave the products.

While this procedure afforded the desired products in all instances, in a few cases we have slightly modified the elaboration of the intermediate *N*-chloroamine to improve the reaction yield.

Alternative General Procedure for the Olefin Diamination Using Free Amines – GP3'

A dry tube equipped with a stirring bar was charged with NCS (1.0 equiv.), $Ru(bpy)_3(PF_6)_2$ (1 mol%) and the amine if solid (1.2 equiv.). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with

¹ If the amine is available as a hydrochloride salt, the amount of NaI should be adjusted to account for the precipitation of insoluble NaCl.

 N_2 (x 3). CH_2Cl_2 (0.2 M) (dry and degassed by bubbling through with N_2 for 20 min) and the amine (1.2 equiv.) if liquid were added and the mixture was stirred for 1 h at room temperature. The mixture was cooled to 0 °C and a solution of the olefin (1.0 equiv.) in CH_2Cl_2 (0.2 M) and TFA (6 equiv.) were added. The LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. Aqueous 1 M KOH (3 mL) and EtOAc (3 mL) were added. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 3 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. The crude was dissolved in CH₃CN (0.1 M, 1.0 mL), the second amine (5.0 equiv.) and NaI (5.0 equiv.) were added and the mixture was stirred at room temperature for 18 h. Aqueous 1 M KOH (3 mL) and EtOAc (3 mL) were separated, and the aqueous layer was extracted with EtOAc separated, and the added and the mixture was stirred at room temperature for 18 h. Aqueous 1 M KOH (3 mL) and EtOAc (3 mL) were added. The layers were separated with EtOAc (3 x 3 mL). Purification by flash column or preparative TLC chromatography on silica gel gave the products.

N,*N*-Diethyl-4-phenyl-2-(piperidin-1-yl)butan-1-amine (60)

Following **GP3**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and Et₂NH (52 µL, 0.5 mmol, 5.0 equiv.) gave **60** (23 mg, 78%) as an oil. R_f 0.15 [CH₂Cl₂:MeNO₂:MeOH (3:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 2928, 2852, 2794, 1453, 1381; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (2H, t, *J* = 7.4 Hz), 7.22–7.18 (2H, m), 7.18–7.11 (1H, m), 2.82–2.37 (12H, m), 2.22 (1H, dd, *J* = 12.6, 7.2 Hz), 1.80–1.66 (2H, m), 1.62–1.48 (4H, m), 1.47–1.36 (2H, m), 0.99 (6H, t, *J* = 7.1 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 128.6, 128.3, 125.6, 62.1, 53.0, 49.8, 47.7, 33.6, 31.9, 26.8, 25.3, 11.8.; HRMS (ESI⁺): found MH+ 289.2628, [C₁₉H₃₃N₂]⁺ requires 289.2644.

4-(4-Phenyl-2-(piperidin-1-yl)butyl)morpholine (61)

Following **GP3**, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and morpholine (44 μ L, 0.5 mmol, 5.0 equiv.) gave **61** (29 mg, quantitative) as an oil. R_f 0.63 [CH₂Cl₂:MeNO₂:MeOH (8:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2929, 2850, 1453, 1116; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.24 (2H, m), 7.24–7.13 (3H, m), 3.66 (4H, t, J = 4.7 Hz), 2.82–2.61 (5H, m), 2.59–2.41 (5H, m), 2.40–2.32 (2H, m), 2.19 (1H, dd, J = 12.5, 6.9 Hz), 1.92–1.77 (1H, m), 1.74–1.65 (1H, m), 1.65–1.51 (4H, m), 1.46 (2H, p, J = 5.8 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 142.8, 128.7, 128.4, 125.8, 67.3, 60.6, 59.2, 54.3, 50.0, 33.4, 32.2, 26.6, 25.0; HRMS (ESI⁺): found MNa+ 325.2239, [C₁₉H₃₀N₂ONa]⁺ requires 325.2250.

*N-(tert-*Butyl)-4-phenyl-2-(piperidin-1-yl)butan-1-amine (62)

Following **GP3**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and *tert*-butylamine (53 µL, 0.5 mmol, 5.0 equiv.) gave **62** as an oil (25 mg, 86%). R_f 0.3 [CH₂Cl₂:MeNO₂:MeOH (3:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 2929, 2852, 2799, 1495, 1452, 1441; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (2H, d, J = 6.3 Hz), 7.21–7.11 (3H, m), 2.72–2.45 (7H, m), 2.39–2.27 (2H, m), 2.26–1.98 (1H, br s), 1.92 (1H, ddd, J = 16.8, 9.4, 5.1 Hz), 1.62–1.51 (2H, m), 1.51–1.35 (5H, m), 1.12 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 142.7, 128.5, 128.4, 125.9, 64.0, 50.2, 49.3, 42.6, 34.1, 29.2, 29.0, 27.0, 25.2; HRMS (ESI⁺): found MH+ 289.2628, [C₁₉H₃₃N₂]⁺ requires 289.2644.

4-Phenyl-2-(piperidin-1-yl)-*N*-(2,2,2-trifluoroethyl)butan-1-amine (63) and 4-phenyl-1-(piperidin-1-yl)-*N*-(2,2,2-trifluoroethyl)butan-2-amine (63')

Following **GP3**, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and 2,2,2-trifluoroethan-1-amine (39 μ L, 0.5 mmol, 5.0 equiv.) gave a mixture of **63** and **63** (21 mg, 68%) as an oil. **63**:**63**' = 3:1.

Data for **63**: $R_f 0.50$ [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 3335, 2929, 2853, 2802, 1142; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (2H, m), 7.22–7.14 (3H, m), 3.18 (2H, q, *J* = 11.1, 10.0 Hz), 2.74–2.66 (2H, m), 2.66–2.47 (6H, m), 2.38–2.28 (2H, m), 1.97–1.85 (1H, m), 1.61–1.47 (3H, m), 1.47–1.35 (4H, m); ¹³C NMR (126 MHz, CDCl₃) δ 142.4, 128.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.1, 12.5, 128.4, 128.5, 128.4, 126.0 (q, *J* = 279.8 Hz), 126.0, 63.7, 50.9 (q, *J* = 11.5, 128.4, 128.5, 128.5, 128.4, 128.5, 128.5, 128.5, 128.5, 128.4, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5, 12

30.7 Hz), 49.6, 49.5, 33.9, 28.7, 26.9, 25.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –71.4; HRMS (ESI⁺): found MH+ 315.2035, [C₁₇H₂₆F₃N₂]⁺ requires 315.2043.

N-(4-phenyl-2-(piperidin-1-yl)butyl)aniline (64) and *N*-(4-phenyl-1-(piperidin-1-yl)butan-2-yl)aniline (64')

Following **GP3**, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and aniline (48 μ L, 0.5 mmol, 5.0 equiv.) gave a mixture of **64** and **64'** (1.7:1) (19 mg, 60%) as oils. **64:64'** = 1.7:1.

Data for **64**: $R_f 0.56$ [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 3354, 2926, 2850, 1602, 1505; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (2H, m), 7.23–7.15 (5H, m), 6.69 (1H, t, J = 7.3 Hz), 6.64 (2H, d, J = 7.9 Hz), 3.20 (1H, dd, J = 11.2, 4.7 Hz), 2.86 (1H, t, J = 10.7 Hz), 2.77–2.66 (2H, m), 2.63–2.53 (3H, m), 2.42–2.30, (2H, m), 2.05–1.94 (1H, m), 1.64–1.48 (6H, m), 1.46–1.40 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 149.0, 142.3, 129.4, 128.6, 128.4, 126.1, 117.1, 113.2, 63.0, 49.2, 44.0, 38.8, 28.7, 27.0, 25.1; HRMS (ESI⁺): found MH+ 309.2320, [C₂₁H₂₉N₂]⁺ requires 309.2325. Data for **64'**: $R_f 0.40$ [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 3354, 2926, 2850, 1602, 1505; ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.18 (2H, m), 7.15–7.09 (3H, m), 7.10–7.04 (2H, m), 6.65–6.58 (1H, m), 6.55–6.47 (2H, m), 4.48–3.91 (1H, br s), 3.49–3.28 (1H, m), 2.65 (2H, dd, J = 9.4 Hz, 7.1 Hz), 2.53–2.43 (1H, m), 2.42–2.23 (5H, m), 1.89–1.79 (1H, m), 1.60–1.41 (4H, m), 1.41–1.31 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 148.3, 142.1, 129.2, 128.5, 128.4, 125.9, 117.2, 113.4, 62.2, 54.7, 49.7, 35.4, 31.9, 25.9, 24.2; HRMS (ESI⁺): found MH⁺ 309.2320, [C₂₁H₂₉N₂]⁺ requires 309.2325.

N-(4-phenyl-2-(piperidin-1-yl)butyl)-2,3-dihydrobenzo[*d*]thiazol-2-amine (65)

Following **GP3'**, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and 2-aminobenzothiazole (75 mg, 0.5 mmol, 5.0 equiv.) gave **65** (28 mg, 77%) as an oil.

R_f 0.25 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR ν_{max} (film)/cm⁻¹ 3331, 2929, 2851, 1605, 1117; ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.18 (3H, m), 7.18–7.10 (4H, m), 6.96 (1H, t, J = 7.6 Hz), 6.80 (1H, d, J = 8.1 Hz), 4.05–3.94 (2H, m), 3.08–2.99 (1H, m), 2.78–2.69 (1H, m), 2.69–2.56 (5H, m), 1.98–1.87 (1H, m), 1.73–1.62 (1H, m), 1.60–1.46 (5H, m), 1.46–1.38 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 142.6, 141.2, 128.5, 128.4, 126.1, 125.7, 122.7, 121.5, 121.4, 109.9, 60.9, 49.9, 33.4, 31.1, 30.9, 26.9, 25.1; HRMS (ESI⁺): found MH+ 366.2005, [C₂₂H₂₈N₃S]⁺ requires 366.1998.

1-(4-phenyl-1-(1*H*-pyrazol-1-yl)butan-2-yl)piperidine (66)

Following **GP3**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and pyrazole (34.0 mg, 0.5 mmol, 5.0 equiv.) gave **66** (12 mg, 43%) as an oil. R_f 0.62 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹: 2931, 2852, 2801, 1512, 749; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (1H, d, J = 1.8 Hz), 7.39 (1H, d, J = 2.2 Hz), 7.28–7.22 (2H, m), 7.18–7.10 (3H, m), 6.22 (1H, t, J = 2.1 Hz), 4.28 (1H, dd, J = 13.7, 6.9 Hz), 4.00 (1H, dd, J = 13.7, 6.8 Hz), 2.98–2.92 (1H, m), 2.73–2.63 (1H, m), 2.57–2.44 (5H, m), 1.89–1.76 (1H, m), 1.57–1.46 (5H, m), 1.46–1.38 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 142.5, 139.1, 130.0, 128.6, 128.4, 125.8, 105.4, 64.1, 52.2, 49.5, 33.1, 31.0, 26.9, 25.1; HRMS (ESI⁺): found MH+ 284.2116, [C₁₈H₂₆N₃]⁺ requires 284.2120.

4-Phenyl-1-(4-phenyl-2-(piperidin-1-yl)butyl)pyridin-1-ium iodide (67)

Following **GP3'**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and 4-phenylpyridine (78 mg, 0.5 mmol, 5.0 equiv.) gave **67** (29 mg, 79%) as a solid. R_f 0.73 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2930, 2852, 1636, 1452; ¹H NMR (500 MHz, CDCl₃) δ 9.12 (2H, d, J = 6.6 Hz), 8.05 (2H, d, J = 6.6 Hz), 7.73 (2H, d, J = 6.9 Hz), 7.60–7.51 (3H, m), 7.28–7.22 (5H, m), 5.03 (1H, dd, J = 13.3, 3.5 Hz), 4.64–4.55 (1H, m), 2.91–2.84 (1H, m), 2.85–2.74 (4H, m), 2.24–2.18 (2H, m), 2.07–1.97 (1H, m), 1.70–1.65 (1H, m), 1.39–1.35 (6H, m); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 145.5, 141.3, 133.8, 132.5, 130.1, 128.7, 128.6, 127.9, 126.3, 123.7, 66.0, 60.7, 49.9, 33.5, 28.6, 26.7, 24.6; HRMS (ESI⁺): found M+ 371.2499, $[C_{26}H_{31}N_2]^+$ requires 371.2482.

8-(2-(Azepan-1-yl)-4-phenylbutyl)-8-azabicyclo[3.2.1]octan-3-one (68)

Following **GP3** but warming the reaction to 60 °C after the addition of NaI (10.0 equiv.) and the second amine, azepane (11 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and nortropinone hydrochloride (81 mg, 0.5 mmol, 5.0 equiv.) gave **68** (32 mg, 90%) as an oil. R_f 0.41 [CH₂Cl₂:MeNO2:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2923, 2852, 1713, 1452; ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.26 (2H, m), 7.24–7.20 (2H, m), 7.17 (1H, t, *J* = 7.2 Hz), 3.43 (2H, d, *J* = 16.8 Hz), 2.93–2.77 (3H, m), 2.74–2.66 (2H, m), 2.67–2.48 (5H, m), 2.36–2.28 (1H, m), 2.36–2.28 (2H, m), 2.05–1.81 (4H, m), 1.71–1.54 (10H, m); ¹³C NMR (126 MHz, CDCl₃) δ 207.3, 143.1, 128.6, 128.4, 125.7, 64.3, 59.6, 51.7, 48.2, 47.9, 33.5, 30.5, 28.4, 27.8, 27.2 (the following signals were missing in the ¹³C NMR and were identified by analysing the ¹H–¹³C HMBC (500 MHz, CDCl₃) δ 207.3, 143.1, 30.5); HRMS (ESI⁺): found MH⁺ 355.2731, [C₂₃H₃₅N₂O]⁺ requires 355.2744.

5-(*tert*-Butylamino)-4-(2,6-syn-dimethylmorpholino)pentanenitrile (69)

Following **GP3'** but on the compound purified by flash chromatography and warming the reaction to 60 °C, 2,6-*syn*-dimethylmorpholine (12.5 µL, 0.1 mmol, 1.0 equiv.), pent-4-enenitrile (10 µL, 0.1 mmol, 1.0 equiv.) and *tert*-butylamine (53 µL, 0.5 mmol, 5.0 equiv.) gave **69** (27 mg, quant.) as an oil. dr 1:1. R_f 0.4 [CH₂Cl₂:acetone (1:1)]; FT-IR v_{max} (film)/cm⁻¹: 2965, 2866, 1453, 1362, 1322, 1259, 1230, 1143, 1084, 1028; ¹H NMR (500 MHz, CDCl₃) δ 3.64–3.54 (2H, m), 2.70 (1H, dd, J = 11.1, 7.3 Hz), 2.64–2.43 (4H, m), 2.42 (2H, t, J = 7.4 Hz), 2.14 (2H, q, J = 10.0 Hz), 2.10 (1H, br s), 1.88–1.78 (1H, m), 1.78–1.68 (1H, m), 1.14 (6H, d, J = 6.2 Hz), 1.09 (9H, s); ¹³C NMR (126

MHz, CDCl₃) δ 120.0, 72.4, 72.4, 63.2, 54.7, 54.6, 50.7, 41.5, 29.0, 24.5, 19.2, 19.2, 15.1; HRMS (ASAP): found MH⁺ 268.2383, C₁₅H₃₀N₃O requires 268.2383.

5-(tert-Butylamino)-4-(diethylamino)pentanenitrile (70)

Following **GP3** at 60 °C, diethylamine (10.5 µL, 0.1 mmol, 1.0 equiv.), pent-4enenitrile (10 µL, 0.1 mmol, 1.0 equiv.) and *tert*-butylamine (53 µL, 0.5 mmol, 5.0 eq.) gave **70** (12 mg, 52%) as an oil. R_f 0.6 [CH₂Cl₂:acetone (1:1)]; FT-IR v_{max} (film)/cm⁻¹: 2870, 2243, 1702, 1474, 1447, 1381, 1299, 1259, 1232, 1205, 1059; ¹H NMR (500 MHz, CDCl₃) δ 2.81 (1H, p, *J* = 6.8 Hz), 2.63 (1H, dd, *J* = 11.1, 8.1 Hz), 2.59–2.53 (1H, m), 2.51 (2H, q, *J* = 7.1 Hz), 2.47 (2H, q, *J* = 7.0 Hz), 2.45–2.38 (2H. m), 1.89– 1.77 (1H, m), 1.77–1.65 (1H, m), 1.15 (9H, s), 1.04 (6H, t, *J* = 7.1 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 120.1, 58.9, 51.6, 43.3, 42.1, 28.7, 25.1, 15.2, 15.0; HRMS (ASAP): found MH⁺ 226.2279 C₁₃H₂₈N₃ requires 226.2278.

N,*N*-Dimethyl-4-phenyl-1-thiomorpholinobutan-2-amine (71)

Following **GP3** but warming the reaction to 60 °C after the addition of NaI (6.0 equiv.) and the second amine, dimethylamine hydrochloride (8 mg, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and thiomorpholine (50 μ L, 0.5 mmol, 5.0 equiv.) gave **71** (22 mg, 80%) as an oil. R_f 0.34 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2924, 2852, 1670, 1454; ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.26 (2H, m), 7.23–7.15 (3H, m), 2.73–2.61 (10H, m), 2.61–2.50 (2H, m), 2.31 (6H, s), 2.21–2.14 (1H, m), 1.82–1.71 (1H, m), 1.66 (1H, ddt, *J* = 13.7, 9.5, 6.3 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 142.2, 128.6, 128.5, 126.0, 60.3, 59.3, 55.8, 40.8, 33.3, 31.5, 28.1 (the following signal was missing in the ¹³C NMR and were identified by analysing the ¹H– ¹³C HMBC (500 MHz, CDCl₃) 142.2; HRMS (ESI⁺): found MH⁺ 279.1879, [C₁₆H₂₇N₂S]⁺ requires 279.1889.

Methyl 5-morpholino-4-(piperidin-1-yl)pentanoate (72)

Following **GP3** but warming the reaction to 60 °C after the addition of NaI and the second amine, **1** (10 µL, 0.1 mmol, 1.0 equiv.), methyl pent-4-enoate (12 µL, 0.1 mmol, 1.0 equiv.) and morpholine (45 µL, 0.5 mmol, 5.0 equiv.) gave **72** (26 mg, 92 %) as an oil. R_f 0.50 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2930, 2851, 1737, 1440, 1118; ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (CDCl₃, 500 MHz) δ 3.73–3.62 (7H, m), 2.72–2.62 (2H, m), 2.61–2.54 (1H, m), 2.53–2.43 (4H, m), 2.43–2.31 (5H, m), 2.13 (1H, dd, *J* = 12.3, 7.9 Hz), 1.80–1.67 (2H, m), 1.55–1.44 (4H, m), 1.44–1.37 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 67.2, 60.8, 59.1, 54.4, 51.5, 49.8, 31.9, 26.8, 25.7, 25.1; HRMS (ESI⁺): found MH+ 285.2161, [C₁₅H₂₉N₂O₃]⁺ requires 285.2173.

N-(3-(Azetidin-1-yl)-2-(piperidin-1-yl)propyl)-4-methylbenzenesulfonamide (73)

Following **GP3** but using 10 equiv. of NaI and 15 equiv. of $(i-Pr)_2NEt$, **1** (10 µL, 0.1 mmol, 1.0 equiv.), **S3** (33 mg, 0.1 mmol, 1.0 equiv.) and azetidine hydrochloride (47 mg, 0.5 mmol, 5.0 equiv.) gave **73** (19 mg, 55%) as an oil. R_f 0.15 [CH₂Cl₂:MeOH:MeNO₂ (3:1:1)]; ¹H NMR (500 MHz, CDCl₃, NH missing) δ 7.76 (2H, d, J = 8.2 Hz), 7.30 (2H, d, J = 8.1 Hz), 3.21 (4H, t, J = 6.9 Hz), 2.92 (1H, m), 2.81 (1H, dd, J = 12.4, 4.0 Hz), 2.53 (1H, dd, J = 12.4, 7.2 Hz), 2.41 (3H, s), 2.31–2.23 (2H, m), 2.13–2.00 (4H, m), 1.96 (2H, dd, J = 11.1, 5.8 Hz), 1.34 (6H, br s); ¹³C NMR (126 MHz, CDCl₃) δ 143.4, 136.6, 129.7, 127.5, 62.0, 60.3, 56.5, 54.3, 49.4, 26.1, 24.2, 21.7, 18.1. HRMS (ESI⁺): found MH⁺ 352.2053, [C₁₈H₃₀N₃O₂S]⁺ requires 352.2053.

2,4,5-Tris(benzyloxy)-6-((benzyloxy)methyl)-*N*-(4-phenyl-2-(piperidin-1-yl)butyl)tetrahydro-2*H*-pyran-3-amine (74)

Following GP3 but using 7.5 equiv. NaI, 1 (10 µL, 0.1 mmol, 1.0 equiv.), 10 (15 µL, 0.1 mmol, 1.0 equiv.) and 2-amino-2-deoxy-3,4,6-tri-O-benzyl-β-D-glucopyranoside hydrochloride (144 mg, 0.25 mmol, 2.5 equiv.) gave 74 (61 mg, 81%) as an oil. d.r. 1:1. R_f 0.50 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 2930, 2853, 1453, 1095, 697; ¹H NMR (500 MHz, CDCl₃, diastereomers) δ 7.44–7.27 (15H, m), 7.25-7.19 (5H, m), 7.19-7.14 (2H, m), 7.13-7.10 (1H, m), 7.07 (1H, d, J = 7.6 Hz), 7.02 (1H, d, J = 7.5 Hz), 5.00 (1H, d, J = 13.6 Hz), 4.95 (1H, d, J = 13.6 Hz), 4.87– 4.72 (2H, m), 4.67 (1H, dd, J = 12.2, 4.4 Hz), 4.64–4.60 (2H, m), 4.57 (1H, dd, J = 10.5, 5.3 Hz), 4.45 (0.5H, d, *J* = 7.8 Hz), 4.40 (0.5H, d, *J* = 7.8 Hz), 3.81–3.65 (3H, m), 3.58–3.47 (2H, m), 3.21–3.08 (0.5H, d, *J* = 7.8 Hz), 2.96 (0.5H, dd, *J* = 11.9, 4.4 Hz), 2.71-2.62 (1.5H, m), 2.56-2.42 (4.5H, m), 2.42-2.30 (2H, m), 2.27-2.19 (2.5H, m), 1.86–1.73 (1.5H, m), 1.41–1.29 (4H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 142.8, 142.7, 138.7, 138.5, 138.4 (x 2), 138.2, 138.0, 137.8, 137.4, 128.7–128.5(16C), 128.4–128.3(10C), 128.2 (x 2), 128.1 (x 2), 128.0 (x 2), 127.9(7C), 127.8(3C), 127.7, 127.6, 127.5 (x 2), 127.3 (x 2), 125.8, 125.7, 104.6, 102.5, 86.1, 83.7, 79.1 (x 2), 75.4 (x 2), 75.2, 75.1, 75.0, 74.9, 73.7 (x 2), 71.4, 71.1, 69.1 (x 2), 64.4 (x 2), 64.1, 63.9, 49.9, 49.6, 49.2(4C), 33.9, 33.8, 28.8, 28.5, 26.5(4C), 25.2, 25.1; HRMS (ESI⁺): found MH+ 755.4437, $[C_{49}H_{59}N_2O_5]^+$ requires 755.4418.

Methyl (4-Phenyl-2-(piperidin-1-yl)butyl)prolinate (75)

Following **GP3** but using 10 equiv. of NaI, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **10** (15 μ L, 0.1 mmol, 1.0 equiv.) and L-Pro-OMe hydrochloride (83 mg, 0.5 mmol, 5.0 equiv.) gave **75** (25 mg, 73%) as an oil. d.r. 1:1. R_f 0.30 [CH₂Cl₂:MeNO₂:MeOH (10:1:1)]; FT-IR ν_{max} (film)/cm⁻¹: 2926, 2852, 2803, 1664, 1496; ¹H NMR (400 MHz, CDCl₃,

diastereomers) δ 7.29–7.23 (2H, m), 7.23–7.11 (3H, m), 3.68 (3H, s), 3.29–3.19 (1H, m), 3.15–3.06 (1H, m), 2.75–2.67 (1.5H, m), 2.67–2.48 (5H, m), 2.47–2.36 (2H, m), 2.13–1.97 (1.5H, m), 1.95–1.80 (3H, m), 1.80–1.70 (3H, m), 1.60–1.47 (4H, m), 1.47–1.36 (2H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 175.3, 174.9, 143.3, 143.1, 128.7, 128.6, 128.4, 128.3, 125.7, 125.6, 66.3, 66.2, 63.1, 62.5, 54.9, 54.7, 54.1, 53.4, 51.8, 51.7, 49.7, 49.5, 33.7, 33.4, 31.5, 31.0, 30.0, 29.9, 29.1, 26.8, 26.8, 25.2, 23.6, 23.3; HRMS (ESI⁺): found MH+ 345.2534, [C₂₁H₃₃N₂O₂]⁺ requires 345.2537.

tert-Butyl-3-(((*1S*,*4S*)-2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)methyl)-3-(piperidin-1-yl)azetidine-1-carboxylate (76)

Following GP3' but using AgBF₄ (1.5 equiv.) in place of NaI, 1 (10 µL, 0.1 mmol, 1.0 10 equiv.), (15 μL, 0.1 mmol, 1.0 equiv.) and (1S,4S)-2-oxa-5azabicyclo[2.2.1]heptane hydrochloride (68 mg, 0.5 mmol, 5.0 equiv.) gave 76 (17.5 mg, 50%) as an oil. $R_f 0.40$ [CH₂Cl₂:acetone (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 2933, 1700. 1399, 1366, 1258, 1031; ¹H NMR (500 MHz, CDCl₃) δ 4.32 (1H, s), 3.91 (1H, d, J = 7.6 Hz), 3.68–3.61 (3H, m), 3.57 (2H, d, J = 7.5 Hz), 3.38 (1H, s), 2.99 (1H, d, J = 9.5 Hz), 2.81 (1H, d, J = 13.8 Hz), 2.75 (1H, d, J = 13.8 Hz), 2.56 (1H, d, J = 9.6 Hz), 2.50 - 2.40 (4H, m), 1.72 (1H, d, J = 9.3 Hz), 1.64 (1H, d, J = 9.5 Hz), 1.47 (4H, p, J = 5.4 Hz), 1.42–1.33 (2H, m), 1.36 (9H, s); ¹³C NMR (126 MHz, CDCl₃ conformers) δ 156.7, 79.2, 77.5, 70.1, 64.1, 63.6, 60.2, 57.1, 56.7, 55.8, 55.2, 55.0, 46.9, 36.4, 28.5, 26.6, 24.8; HRMS (HESI): found MNa⁺ 374.2400, C₁₉H₃₃N₃O₃Na requires 374.2414.

1,3-Dimethyl-7-(3-((*trans*-2-phenylcyclopropyl)amino)-2-(piperidin-1-yl)propyl)-3,7-dihydro-*1H*-purine-2,6-dione (77)

Following **GP3** but warming the reaction to 60 °C after the addition of NaI (10.0 equiv.) and the second amine, **1** (10 μ L, 0.1 mmol, 1.0 equiv.), **S12** (22 mg, 0.1 mmol, 1.0 equiv.) and *trans*-2-phenylcyclopropan-1-amine hydrochloride (75 mg, 0.5 mmol, 5.0

equiv.) gave **77** (17.5 mg, 40%) as an oil. d.r. 1:1. $R_f 0.50$ [acetone:CH₂Cl₂ (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 2930, 1700, 1650, 1551, 1434, 1259, 1030; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (1H, br s), 7.27–7.19 (2H, m), 7.16–7.11 (1H, m), 7.07–6.94 (2H, m), 4.47–4.22 (2H, m), 3.59 (1.5H, s), 3.58 (1.5H, s), 3.40 (1.5H, s), 3.38 (1.5H, s), 3.14–3.00 (1H, m), 2.92–2.84 (1H, m), 2.74–2.62 (2H, m), 2.63–2.46 (3H, m), 2.41–2.28 (1H, m), 1.95–1.81 (1H, m), 1.52 (4H, br s), 1.44 (2H, br s), 1.09 (0.5H, dt, *J* = 9.5, 4.8 Hz), 1.00–0.91 (1H, m); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 155.2, 151.8, 151.7, 148.9 (x2), 142.4, 142.3, 142.2, 142.1, 128.4, 128.3, 125.9, 125.8, 125.6 (x 2), 106.9 (x 2), 64.3, 64.1, 53.9, 50.0, 49.9, 46.9, 46.7, 45.6 (x 2), 41.8, 41.7, 29.9, 29.8, 29.4, 28.1, 26.8, 25.1, 25.0, 24.8 (x 2), 17.4 (x 2); HRMS (HESI): found MH⁺ 437.2641, C₂₄H₃₃N₆O₂ requires 437.2660.

Benzyl 4-(1-((1R,5S)-8-Oxo-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(4H)-yl)-4-phenylbutan-2-yl)piperazine-1-carboxylate (78)

Following **GP3'** but warming the reaction to 60 °C after the addition of NaI and the second amine, benzyl piperazine-1-carboxylate (19 µL, 0.1 mmol, 1.0 equiv.), **10** (15 µL, 0.1 mmol, 1.0 equiv.) and cytisine (95 mg, 0.5 mmol, 5.0 equiv.) gave **78** (31 mg, 57%) as an oil. d.r. 1:1. R_f 0.50 [CH₂Cl₂:acetone (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 29339, 2805, 2360, 1697, 1651, 1565, 1545, 1495, 1492, 1356, 1309, 1257, 1240, 1139, 1058, 1026; ¹H NMR (500 MHz, CDCl₃, diasteromers) δ 7.43–7.26 (5H, m), 7.23 (2H, t, *J* = 8.4 Hz), 7.19–7.00 (4H, m), 6.34 (0.5H, d, *J* = 9.0 Hz), 6.30 (0.5H, d, *J* = 9.0 Hz), 5.90 (0.5H, d, J = 7.6 Hz), 5.89 (0.5H, d, *J* = 7.5 Hz), 5.13 (1H, s), 5.12 (1H, s), 4.06–3.93 (1H, m), 3.91–3.77 (1H, m), 3.52–3.15 (4H, m), 2.96–2.70 (3H, m), 2.60–2.45 (2H, m), 2.45–2.31 (4H, m), 2.32–2.21 (3H, m), 2.21–2.11 (2H, m), 2.05–1.94 (1H, m), 1.85 (1H, d, *J* = 12.9 Hz), 1.73 (1H, d, *J* = 12.9 Hz), 1.63–1.45 (1H, m), 1.45–1.32 (1H, m); ¹³C NMR (126 MHz, CDCl₃, diasteromers) δ 163.5, 163.4, 155.3, 155.2, 151.4, 151.3, 142.5, 142.4, 138.6, 138.4, 137.0, 136.9, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 125.7, 125.6, 116.7, 116.6, 116.5, 104.5, 104.4, 67.1, 67.0, 61.3, 61.2, 61.0, 60.1, 60.0, 58.4, 58.0, 50.1, 50.0, 49.2, 48.4, 48.1, 47.4, 44.6,

35.7, 32.8, 32.7, 32.0, 31.9, 28.2, 28.1, 26.0; HRMS (HESI): found MNa⁺ 563.2976, C₃₃H₄₀N₄O₃Na requires 563.2993.

7 Aminohydroxylation and Diamination of Styrenes

7.1 Aminohydroxylation – Substrate Scope

General Procedure for the Aminohydroxylation of Styrenes - GP4

A tube equipped with a stirring bar was charged with NCS (1.0 equiv.) and $Ru(bpy)_3(PF_6)_2$ (1 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x 3). The amine (1.0 equiv.) and CH₂Cl₂ (0.1 M, dry and degassed by bubbling through with N_2 for 20 min) were added and the mixture was stirred for 1 h in the dark. The mixture was cooled to 0 °C then the styrene (1.0 equiv.) and TFA (3.0 equiv.) were added, and the blue LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. Na₂CO₃ (10.0 equiv.) and H₂O (1 mL) were added and the resulting heterogeneous micture was stirred vigorously for 30 minutes. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (x 2). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by preparative TLC chromatography on silica gave the products.

1-Phenyl-2-(piperidin-1-yl)ethan-1-ol (55)

Following **GP4**, **1** (10 µL, 0.1 mmol, 1.0 equiv.) and **53** (13 µL, 0.1 mmol, 1.0 equiv.) gave **55** (13 mg, 65%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.24 (5H, m), 4.69 (1H, dd, J = 10.6 Hz, 3.5 Hz), 2.66 (2H, br s), 2.45 (1H, dd, J = 12.4 Hz, 3.6 Hz), 2.40–2.34 (3H, m), 1.67–1.45 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 128.4, 127.5,126.0, 68.9, 67.2, 54.6, 26.3, 24.4. Data in accordance with the literature.^[12]

2-(pyrrolidin-1-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol (56)

Following **GP4**, pyrrolidine (8.5 μ L, 0.1 mmol, 1.0 equiv.) and 1-(trifluoromethyl)-4vinylbenzene (15 μ L, 0.1 mmol, 1.0 equiv.) gave **56** (13 mg, 51%) as an oil. R_f 0.50 [acetone:CH₂Cl₂ (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 3500, 2961, 1619, 1412, 1324, 1259, 1164, 1066, 1019; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (2H, d, J = 8.1 Hz), 7.50 (2H, d, J = 8.1 Hz), 4.75 (1H, dd, J = 10.6, 3.5 Hz), 2.82–2.73 (2H, m), 2.73 (1H, dd, J = 12.0, 10.7 Hz), 2.59–2.52 (2H, m), 2.52 (1H, dd, J = 12.1, 3.5 Hz), 1.91–1.72 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 129.7 (q, J = 32.3 Hz), 126.2, 125.4 (q, J = 3.8 Hz), 124.4 (q, J = 272.0 Hz), 70.2, 63.9, 54.0, 23.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.4; HRMS (HESI): Found MH⁺ 260.1267 C₁₃H₁₇NOF₃ requires 260.1257.

2-(Azepan-1-yl)-1-(3-bromophenyl)ethan-1-ol (57)

Following **GP4**, azepane (11.5 µL, 0.1 mmol, 1.0 equiv.) and 1-bromo-3-vinylbenzene (13 µL, 0.1 mmol, 1.0 equiv.) gave **57** (24 mg, 82%) as an oil. R_f 0.50 [Et₂O:CH₂Cl₂ (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 3400, 2924, 2853, 1595, 1568, 1471, 1426, 1400, 1323, 1258, 1195, 1066; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (1H, s), 7.38 (1H, d, *J* = 7.8 Hz), 7.28 (1H, d, *J* = 7.8 Hz), 7.19 (1H, t, *J* = 7.8 Hz), 4.57 (1H, dd, *J* = 10.6, 3.6 Hz), 4.39 (1H, br s), 2.88–2.78 (2H, m), 2.78 (1H, dd, *J* = 12.6, 3.6 Hz), 2.67 (1H, dd, *J* = 13.1, 7.2 Hz), 2.72–2.63 (1H, m), 2.37 (1H, dd, *J* = 12.5, 10.5 Hz, 1H), 1.79–1.55 (8H, m); ¹³C NMR (126 MHz, CDCl₃) δ 145.1, 130.5, 130.0, 129.0, 124.6, 122.6, 68.9, 66.2, 55.7, 28.7, 27.1; HRMS (ASAP): Found MH⁺ 298.0809 C₁₄H₂₁NOBr requires 298.0801.

2-(Diisopropylamino)-1-phenylethan-1-ol (58)

Following **GP4**, *i*-PrNH₂ (14 μ L, 0.1 mmol, 1.0 equiv.) and **53** (13 μ L, 0.1 mmol, 1.0 equiv.) gave **58** (5 mg, 22%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.23 (5H, m), 4.56 (1H, dd, *J* = 10.5, 3.9 Hz), 3.15 (2H, hept, *J* = 6.6 Hz), 2.74 (1H, dd, *J* = 13.4, 3.9 Hz), 2.36 (1H, dd, *J* = 13.4, 10.6 Hz), 1.14 (6H, d, *J* = 6.7 Hz), 1.03 (6H, d, *J* = 6.6 Hz). Data in accordance with the literature.^[13]

7.2 Diamination – Substrate Scope

General Procedure for the Diamination of Styrenes – GP5

A tube equipped with a stirring bar was charged with NCS (1.0 equiv.) and Ru(bpy)₃(PF₆)₂ (1 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). The amine (1.0 equiv.) and CH₂Cl₂ (0.1 M, dry and degassed by bubbling through with N₂ for 20 min) were added and the mixture was stirred for 1 h in the dark. The mixture was cooled to 0 °C then the styrene (1.0 equiv.) and HClO₄ 70% (3.0 equiv.) were added, and the blue LEDs were immediately switched on. The mixture was stirred under irradiation for 1 h at 0 °C. The second amine (3.0 equiv.) was added, followed by Na₂CO₃ (5.0 equiv.). The mixture was stirred for 1 h at room temperature, then H₂O (2 mL) was added and the mixture was shaken vigorously. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (x 2). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by preparative TLC chromatography on silica gave the products.

4-(1-Phenyl-2-(piperidin-1-yl)ethyl)morpholine (79)

Following **GP5**, **1** (9 µL, 0.1 mmol, 1.0 equiv.), **53** (13 µL, 0.1 mmol, 1.0 equiv.) and morpholine (26 µL, 0.3 mmol, 3.0 equiv.) gave **79** (23 mg, 83%) as an oil. R_f 0.50 [CH₂Cl₂:acetone (6:4)]; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.26 (2H, m), 7.26–7.19 (3H, m), 3.65 (4H, t, *J* = 4.7 Hz), 3.52 (1H, t, *J* = 6.1 Hz), 2.87 (1H, dd, *J* = 13.1, 6.4 Hz), 2.57 (1H, dd, *J* = 13.1, 5.7 Hz), 2.61–2.51 (2H, m), 2.47–2.33 (6H, m), 1.49 (4H, p, *J* = 5.6 Hz), 141–1.32 (2H, m). Data in accordance with literature.^[14] *N*,*N*-Diethyl-1-phenyl-2-(piperidin-1-yl)ethan-1-amine (80)

Following **GP5**, Et₂NH (10.5 μ L, 0.1 mmol, 1.0 equiv.), **53** (13 μ L, 0.1 mmol, 1.0 equiv.) and **1** (30 μ L, 0.3 mmol, 3.0 equiv.) gave **80** (8.5 mg, 33%) as an oil. ¹H NMR (500 MHz, CDCl₃) δ 7.15–7.55 (5H, m), 3.54 (1H, t, *J* = 6.4 Hz), 2.96 (1H, dd, *J* = 13.1, 5.4 Hz), 2.82 (1H, dd, *J* = 13.1, 5.5 Hz), 2.46–2.70 (4H, m), 2.39 (4H, br s), 1.42–1.75 (4H, m), 1.22–1.42(2H, m), 0.95 (6H, t, *J* = 7.1 Hz). Data in accordance with literature.^[15]

Benzyl 4-(1-Phenyl-2-(piperidin-1-yl)ethyl)piperazine-1-carboxylate (81)

Following **GP5**, **1** (9 µL, 0.1 mmol, 1.0 equiv.), **53** (13 µL, 0.1 mmol, 1.0 equiv.) and 1-Cbz-piperazine (58 µL, 0.3 mmol, 3.0 equiv.) gave **81** (29 mg, 72%) as an oil. R_f 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 2341, 2256, 1635, 1463, 1374, 1258, 1037, 920; ¹H NMR (500 MHz, CDCl₃,) δ 7.39–7.24 (7H, m), 7.24–7.09 (3H, m), 5.05 (2H, s), 3.58 (1H, t, *J* = 6.1 Hz), 3.50–3.38 (4H, m), 2.82 (1H, dd, *J* = 13.2, 6.6 Hz), 2.56 (1H, dd, *J* = 13.2, 5.5 Hz), 2.51–2.43 (2H, m), 2.36 (6H, br s), 1.47 (4H, p, *J* = 5.6 Hz), 1.39–1.29 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 140.3, 136.9, 128.6, 128.5, 128.2, 128.0, 127.9, 127.2, 67.2, 67.1, 62.6, 55.2, 50.4, 44.3, 26.1, 24.4; HRMS (ASAP): Found MH⁺ 408.2636 C₂₅H₃₄N₃O₂ requires 408.2646.

1-Phenyl-2-(piperidin-1-yl)-N-((tetrahydrofuran-3-yl)methyl)ethan-1-amine (82)

Following **GP5**, **1** (9 µL, 0.1 mmol, 1.0 equiv.), **53** (13 µL, 0.1 mmol, 1.0 equiv.) and 3-(aminomethyl)tetrahydrofuran (30 µL, 0.3 mmol, 3.0 equiv.) gave **82** (22 mg, 76%) as an oil. d.r. 1:1. R_f 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 2934, 2359, 1504, 1260, 1242, 1197, 1163, 1096, 1040; ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.27 (4H, m), 7.23 (1H, t, *J* = 7.4 Hz), 3.88 (1H, dt, *J* = 15.9, 7.8 Hz), 3.84–3.74 (1H, m), 3.77–3.66 (2H, m), 3.48–3.40 (1H, m), 2.54 (2H, br s), 2.50–2.43 (2H, m), 2.40 (2H, m), 2.40 (2H, m), 2.40 (2H, m), 3.48–3.40 (1H, m), 2.54 (2H, br s), 2.50–2.43 (2H, m), 2.40 (2H, m), 3.48–3.40 (2H, m), 3.4

td), 2.33–2.18 (3H, m), 2.02 (1H, tdd, J = 13.3, 7.6, 5.5 Hz), 1.68–1.51 (5H, m), 1.50– 1.32 (2H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 143.2 (x 2), 128.3 (x 2), 127.3 (x 2), 127.1 (x 2), 72.3, 72.0, 67.9, 67.8, 66.5 (x 2), 60.3 (x 2), 54.6 (x 2), 51.7, 51.4, 39.6 (x 2), 30.8 (x 2), 26.2 (x 2), 24.5 (x 2); HRMS (ASAP): Found MH⁺ 289.2268 C₁₈H₂₉N₂O requires 289.2274.

1-(1-Phenyl-2-(piperidin-1-yl)ethyl)pyridin-1-ium perchlorate (83)

Following **GP5** but letting the reaction stir overnight upon addition of the second amine, **1** (9 µL, 0.1 mmol, 1.0 equiv.), **53** (13 µL, 0.1 mmol, 1.0 equiv.) and pyridine (24 µL, 0.3 mmol) gave **83** (13 mg, 50%) as a solid. R_f 0.51 [CH₂Cl₂:MeNO₂:MeOH (20:1:1)]; FT-IR ν_{max} (film)/cm⁻¹ 2934, 2852, 1710, 1092; ¹H NMR (500 MHz, CDCl₃,) δ 8.90 (2H, d, J = 5.7 Hz), 8.42 (1H, t, J = 7.7 Hz), 7.99 (2H, t, J = 7.1 Hz), 7.57 (2H, dd, J = 6.5, 2.9 Hz), 7.47 (3H, dd, J = 5.1, 1.9 Hz), 6.06 (1H, dd, J = 11.3, 3.4 Hz), 3.33–3.22 (1H, m), 3.14 (1H, dd, J = 14.2, 3.3 Hz), 2.82–2.68 (2H, m), 2.27 (2H, dt, J = 10.7, 4.4 Hz), 1.55–1.34 (6H, m) ¹³C NMR (126 MHz, CDCl₃) δ 145.6, 144.2, 133.5, 130.7, 130.0, 128.9, 127.8, 72.6, 61.5, 54.7, 26.1, 24.0; HRMS (ESI⁺): found M+ 267.1844, [C₁₈H₂₃N₂]⁺ requires 267.1856.

1-(4-Methoxyphenyl)-*N*,*N*-dimethyl-2-(piperidin-1-yl)ethan-1-amine (84)

Following **GP5**, **1** (9 µL, 0.1 mmol, 1.0 equiv.) and 1-methoxy-4-vinylbenzene (13 µL, 0.1 mmol, 1.0 equiv.) and Et₂NH (38 µL, 0.3 mmol, 40% wt solution in H₂O) gave **84** (16 mg, 60%) as an oil. R_{*f*} 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 1610, 1465, 1456, 1245, 1038; ¹H NMR (500 MHz, CDCl₃) δ 7.13 (2H, d, *J* = 8.6 Hz), 6.85 (2H, d, *J* = 8.7 Hz), 3.80 (3H, s), 3.49 (1H, t, *J* = 6.3 Hz), 2.85 (1H, dd, *J* = 13.0, 6.3 Hz), 2.56 (1H, dd, *J* = 13.0, 6.3 Hz), 2.37 (4H, br s), 2.17 (6H, s), 1.52-1.47 (4H, m), 1.36 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 131.8, 129.8, 113.3, 66.8, 62.7, 55.3, 55.3, 42.6, 26.1, 24.5; HRMS (HESI): Found MH⁺ 263.2212 [C₁₆H₂₇N₂O]⁺ requires 263.2210.

2-((1-(4-Methoxyphenyl)-2-(piperidin-1-yl)ethyl)(methyl)amino)ethan-1-ol (85)

Following **GP5**, **1** (9 µL, 0.1 mmol, 1.0 equiv.), 1-methoxy-4-vinylbenzene (13 µL, 0.1 mmol, 1.0 equiv.) and 2-(methylamino)ethanol (30.5 µL, 0.3 mmol, 3.0 equiv.) gave **85** (15 mg, 51%) as an oil. R_f 0.40 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 3345, 1498, 1442, 1440, 1258, 1025, 862; ¹H NMR (500 MHz, CDCl₃) δ 7.13 (2H, d, *J* = 8.6 Hz), 6.86 (2H, d, *J* = 8.6 Hz), 3.87 (1H, dd, *J* = 11.9, 4.6 Hz), 3.80 (3H, s), 3.71–3.60 (1H, m), 3.48 (1H, dt, *J* = 10.7, 3.0 Hz), 3.14–2.94 (2H, m), 2.63 (2H, br s), 2.35 (2H, br s), 2.29–2.18 (2H, m), 2.24 (3H, s), 1.71–1.57 (4H, m), 1.51–1.40 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 130.7, 129.3, 113.7, 62.7, 60.6, 60.0, 55.3, 54.1, 52.4, 40.4, 25.7, 24.5; HRMS (HESI): Found MH⁺ 293.2212 C₁₇H₂₉N₂O₂ requires 293.2224.

N,*N*-dimethyl-2-(piperidin-1-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-amine (86)

Following **GP5**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), 1-(trifluoromethyl)-4-vinylbenzene (15 µL, 0.1 mmol) and Me₂NH (38 µL, 0.3 mmol, 3.0 equiv., 40% wt solution in H₂O) gave **86** (17 mg, 57%) as an oil. R_f 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 2359, 2341, 1325, 1259, 1032, 860; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (2H, d, J = 8.1 Hz), 7.35 (2H, d, J = 8.0 Hz), 3.55 (1H, t, J = 6.4 Hz), 2.84 (1H, dd, J = 13.0, 6.1 Hz), 2.57 (1H, dd, J = 13.0, 6.8 Hz), 2.46–2.30 (4H, m), 2.19 (6H, s), 1.48 (4H, p, J = 5.5 Hz), 1.42–1.31 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 144.5, 129.2 (q, J = 32.4 Hz), 128.8, 124.9 (q, J = 3.9 Hz), 124.4 (q, J = 271.9 Hz), 67.4, 62.2, 55.3, 42.9, 26.0, 24.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.3; HRMS (ASAP): Found MH⁺ 301.1881 C₁₆H₂₄N₂F₃ requires 301.1886.

5,6-Dimethoxy-2-((1-(2-(piperidin-1-yl)-1-(2-(trifluoromethyl)phenyl)ethyl) piperidin-4-yl)methyl)-2,3-dihydro-*1H*-inden-1-one (87)

Following GP5, 1 (10 µL, 0.1 mmol, 1.0 equiv.), 1-(trifluoromethyl)-2-vinylbenzene (15 µL, 0.1 mmol, 1.0 equiv.) and desbenzyl donepezil hydrochloride (98 mg, 0.3 mmol, 3.0 equiv.) gave 87 (41 mg, 76%) as an oil. dr 1:1. Rf 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 2923, 2850, 2359, 2341, 1698, 1591, 1500, 1456, 1361, 1311, 1260, 1223, 1154, 1118, 1034; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (1H, d, J = 7.9 Hz), 7.59 (1H, d, J = 7.9 Hz), 7.49 (1H, t, J = 7.6 Hz), 7.30 (1H, t, J = 7.6 Hz), 7.16 (1H, s), 6.84 (1H, d, J = 1.6 Hz), 3.95 (3H, s), 3.90 (3H, s), 3.87 (1H br s), 3.51 (1H, t, J = 11.7 Hz), 3.21 (1H, dd, J = 17.3, 7.8 Hz), 2.74 (1H, dd, J = 13.9, 8.0 Hz), 2.73–2.61 (2H, m), 2.56 (1H, t, J = 11.6 Hz), 2.40 (2H, br s), 2.31 (1H, dd, J = 13.5, 3.8 Hz), 2.25 (2H, br s), 2.12 (1H, tt, *J* = 12.1, 2.9 Hz), 1.98 (1H, t, *J* = 11.4 Hz), 1.94–1.74 (2H, m), 1.72–1.54 (1H, m), 1.52–1.41 (6H, m), 1.39–1.28 (4H, m); ¹³C NMR (126 MHz, CDCl₃, diastereomers) δ 208.0, 207.9, 155.4 (x 2), 149.4 (x 2), 148.8 (x 2), 143.5 (x 2), 131.6 (x 2), 129.3 (x 2), 128.2 (x 2, q, J = 29.4 Hz), 126.4 (x 2), 125.31(2C, q, J = 5.6 Hz), 124.6(2C, q, J = 274.0 Hz), 107.3 (x 2), 104.4 (x 2), 64.8 (x 2), 61.6 (x 2), 56.2 (x 2), 56.1 (x 2), 55.0 (x 2), 52.7 (x 2), 51.7 (x 2), 45.5 (x 2), 38.7 (x 2), 34.8 (x 2), 33.7, 33.6, 33.2 (x 2), 32.3, 32.1, 26.1 (x 2), 24.4 (x 2); ¹⁹F NMR (376 MHz, CDCl₃, diastereomers) δ –57.2, –57.25; HRMS (HESI): Found MH⁺ 545.2983 C₃₁H₄₀N₂O₃F₃ requires 545.2986.

1-(1-(3-Bromophenyl)-2-(piperidin-1-yl)ethyl)-4-(4-(trifluoromethoxy)phenoxy) piperidine (88)

Following **GP5**, **1** (10 µL, 0.1 mmol, 1.0 equiv.), 1-bromo-3-vinylbenzene (13 µL, 0.1 mmol, 1.0 equiv.) and 4-[4-(trifluoromethoxy)phenoxy]piperidine (78 mg, 0.3 mmol, 3.0 equiv.) gave **88** (49 mg, 94%) as an oil. R_f 0.50 [CH₂Cl₂:acetone (6:4)]; FT-IR v_{max} (film)/cm⁻¹ 2934, 2359, 1504, 1260, 1242, 1197, 1163, 1096, 1040; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (1H, s), 7.37 (1H, dt, *J* = 6.0, 2.4 Hz), 7.22–7.16 (2H, m), 7.09 (2H, d, *J* = 8.7 Hz), 6.83 (2H, d, *J* = 9.1 Hz), 4.15 (1H, tt, *J* = 8.2, 3.9 Hz), 3.61 (1H, tt, *J* = 6.2 Hz), 2.79 (1H, dd, *J* = 13.2, 6.2 Hz), 2.88–2.69 (2H, m), 2.57 (1H, dd, *J* = 13.1, 6.3 Hz), 2.49–2.32 (4H, m), 2.31–2.21 (2H, m), 2.05–1.86 (2H, m), 1.75 (2H, ddp, *J* = 13.2, 8.8, 4.9, 4.3 Hz), 1.56–1.42 (4H, m), 1.42–1.34 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 143.4, 142.7, 131.4, 130.0, 129.6, 127.1, 122.5, 122.4, 120.69 (q, *J* = 256.1 Hz), 116.9, 74.0, 66.6, 62.1, 55.3, 48.2, 47.4, 31.4, 31.3, 26.2, 24.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –58.4; HRMS (HESI): Found MH⁺ 527.1513 C₂₅H₃₁N₂O₂BrF₃ requires 527.1521.

Methyl-4-(1-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2-(pyrrolidin-1-yl)ethyl) benzoate (89)

Following **GP5**, pyrrolidine (10 μ L, 0.1 mmol, 1.0 equiv.), methyl 4-vinylbenzoate (16 mg, 0.1 mmol, 1.0 equiv.) and 4-(4-chlorophenyl)piperidin-4-ol (63 mg, 0.3 mmol, 3.0 equiv.) gave **89** (25 mg, 57%) as an oil. R_f 0.50 [CH₂Cl₂:acetone (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 3381, 2952, 2821, 2358, 1720, 1609, 1489, 1435, 1387, 1280, 1185, 1109, 1042, 1012; ¹H NMR (500 MHz, CDCl₃ and MeOH) δ 7.90 (2H, d, *J* = 8.1 Hz), 7.37–

7.25 (4H, m), 7.16 (2H, d, J = 8.5 Hz), 3.81 (3H, s), 3.68–3.62 (1H, m), 3.01 (1H, dd, J = 12.4, 5.3 Hz), 2.87 (1H, dd, J = 12.5, 7.7 Hz), 2.80–2.72 (1H, m), 2.59–2.50 (1H, m), 2.50–2.40 (2H, m), 2.40–2.31 (2H, m), 2.31–2.16 (2H, m), 2.00 (1H, td, J = 12.8, 4.5 Hz), 1.89 (1H, td, J = 12.8, 4.4 Hz), 1.68–1.53 (4H, m), 1.58–1.50 (2H, m); ¹³C NMR (126 MHz, CDCl₃ and MeOH) δ 167.3, 147.2, 144.0, 132.2, 129.2, 128.9, 128.8, 128.0, 126.0, 70.4, 68.6, 58.5, 54.9, 52.0, 47.9, 44.5, 38.1, 38.0, 23.0; HRMS (APCI): Found MH⁺ 443.2089 C₂₅H₃₂N₂O₃Cl requires 443.2096.

8 Olefin Aziridination

8.1 Substrate Scope

General Procedure for the Olefin Aziridination – GP6

$$\begin{array}{c} R \\ N \\ H \\ H \\ H \end{array} + \begin{array}{c} NCS (1.0 \text{ equiv.}), Ru(bpy)_3(PF_6)_2 (1 \text{ mol\%}) \\ CH_2CI_2 (0.2 \text{ M}), \text{ r.t., 1 h} \\ \hline \\ \text{then TFA (6.0 \text{ equiv.}), blue LEDs, 0 °C, 1 h} \\ \text{then NaOH, 60 °C, 1 h} \\ \end{array}$$

A dry tube equipped with a stirring bar was charged with NCS (13 mg, 0.1 mmol, 1.0 equiv.) and Ru(bpy)₃(PF₆)₂ (0.7 mg, 0.01 mmol, 1 mol%). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). CH₂Cl₂ (0.5 mL) (dry and degassed by bubbling through with N₂ for 20 min) and the amine (0.1 mmol, 1.2 equiv.), were added and the mixture was stirred for 1 h in the dark. The mixture was cooled to 0 °C and then a solution of the olefin (0.1 mmol, 1.0 equiv.) in CH₂Cl₂ (0.5 mL) and TFA (46 μ L, 0.6 mmol, 6.0 equiv.) were added. The blue LEDs were immediately switched on and the mixture was stirred under irradiation at 0 °C for 1 h. NaOH (1.0 M in MeOH) was added and the mixture was stirred with H₂O (10 mL) and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by flash column chromatography or preparative TLC chromatography on silica gel gave the products.

1-Cyclohexyl-2-phenethylaziridine (90)

Following **GP6** but adding adding KPF₆ (18 mg, 0.1 mmol, 1.0 equiv.) to the reaction mixture, cyclohexylamine (14 µL, 0.12 mmol, 1.2 equiv.) and **10** (15 µL, 0.1 mmol, 1.0 equiv.) gave **90** (11.5 mg, 50%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR ν_{max} (film)/cm⁻¹ 2362, 1259, 1029, 861; ¹H NMR (500 MHz, CDCl₃) δ 7.27 (2H, t, *J* = 7.5 Hz), 7.24–7.13 (3H, m), 2.83 (1H, ddd, *J* = 13.8, 10.2, 5.8 Hz), 2.70 (1H, ddd, *J* = 13.8, 10.1, 6.0 Hz), 1.90–1.77 (3H, m), 1.81–1.70 (2H, m), 1.66–1.52 (2H, m), 1.51 (1H, d, *J* = 3.5 Hz), 1.45–1.28 (3H, m), 1.25 (1H, d, *J* = 6.3 Hz), 1.21–1.10 (3H, m), 1.03 (1H, tt, *J* = 10.7, 3.9 Hz); ¹³C NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ

142.2, 128.5, 128.4, 125.9, 69.1, 38.2, 35.3, 34.3, 33.3, 32.7, 26.3, 25.2; HRMS (HESI): Found MH⁺ 230.1893 C₁₆H₂₄N requires 230.1903.

1-(tert-Butyl)-2-phenethylaziridine (91)

Following **GP6**, *tert*-butylamine (13 µL, 0.12 mmol, 1.2 equiv.) and **10** (15 µL, 0.1 mmol) gave **91** (11 mg, 56%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2360, 2341, 2156, 1260, 1089, 1030; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.23 (2H, m), 7.23–7.14 (3H, m), 2.89–2.76 (1H, m), 2.74–2.61 (1H, m), 1.86–1.73 (1H, m), 1.70–1.54 (2H, m), 1.48 (1H, d, J = 5.7 Hz), 1.29 (1H, s), 0.98 (9H, s); ¹³C NMR (126 MHz, CDCl₃) δ 142.3, 128.5, 128.4, 125.8, 52.6, 35.6, 34.4, 32.0, 26.9, 26.8; HRMS (HESI): Found MH⁺ 204.1741 C₁₄H₂₂N requires 204.1747.

1-(Adamantan-1-yl)-2-phenethylaziridine (92)

Following **GP6**, 1-adamantylamine (12 mg, 0.12 mmol, 1.2 equiv.) and **10** (15 μ L, 0.1 mmol, 1.0 equiv.) gave **92** (24 mg, 87%) as an oil. R_f 0.50 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2851, 2360, 2342, 1258, 1088, 1027; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (2H, t, *J* = 7.4 Hz), 7.25–7.13 (3H, m), 2.86–2.79 (1H, m), 2.72–2.64 (1H, m), 2.07 (3H, br s), 1.86–1.73 (2H, m), 1.74–1.63 (4H, m), 1.62–1.56 (4H, m), 1.54 (7H, s); ¹³C NMR (126 MHz, CDCl₃) δ 142.3, 128.5, 128.4, 125.8, 52.2, 40.7, 36.9, 35.8, 34.4, 29.9, 29.6, 24.9; HRMS (HESI): Found MH⁺ 282.2207 C₂₀H₂₈N requires 282.2216.

cis-7-phenethyl-7-azabicyclo[4.1.0]heptane (93)

Following **GP6**, 2-phenylethan-1-amine (15 μ L, 0.12 mmol, 1.2 equiv.) and cyclohexene (10 μ L, 0.10 mmol, 1.0 equiv.) and **10** (15 μ L, 0.1 mmol) gave **93** (8 mg, 40%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2359, 2341, 2257, 1635, 1373, 1260, 1035; ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.22 (2H, m), 7.22–7.16

(3H, m), 2.87 (2H, t, J = 7.8 Hz), 2.47 (2H, t, J = 7.9 Hz), 1.83–1.66 (2H, m), 1.74– 1.66 (2H, m), 1.43 (2H, br s), 1.38–1.29 (2H, m), 1.21–1.09 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 140.5, 129.0, 128.4, 126.1, 63.3, 38.5, 36.6, 24.6, 20.7; HRMS (HESI): Found MH⁺ 202.1583 C₁₄H₂₀N requires 202.1590. Data in accordance with the literature.^[16]

9 Diversification of β-Chloroamines

9.1 Substrate Scope

General Procedure for the Derivatization of β -Chloroamines – GP7

A tube equipped with a stirring bar was charged with NaI (5.0 equiv.), and the appropriate nucleophile as the sodium salt (5.0 equiv). The tube was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x 3). A solution of **11** (1.0 equiv.) in DMF (0.25 M) was added and the mixture was stirred at 60 °C for 16 h. After cooling the reaction at room temperature, H₂O was added and the layer was separated. The aqueous layer was extracted with CH₂Cl₂ (x 3). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by flash column chromatography on silica gel gave the products.

1-(1-Methoxy-4-phenylbutan-2-yl)piperidine (94) and 1-(2-methoxy-4-

phenylbutyl)piperidine (94')

Following **GP7**, **11** (25 mg, 0.1 mmol) and NaOMe (solution 24% in MeOH, 118 µL, 0.5 mmol, 5.0 equiv.) gave **94** and **94'** (15 mg, 59%) as an oil. **94**:**94'** = 3:1. Data for **94**: R_{*f*} 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2359, 2341, 1734, 1652, 1558, 1539, 1456, 1259, 1035; ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.32 (2H, m), 7.33–7.20 (3H, m), 3.72–3.59 (1H, m), 3.45–3.28 (1H, m), 3.41 (3H, s), 2.90–2.62 (5H, m), 2.61–2.48 (2H, m), 1.97–1.72 (2H, m), 1.73–1.59 (4H, m), 1.57–1.48 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 142.9, 128.6, 128.4, 125.8, 72.8, 63.4, 59.0, 50.5, 33.3, 33.2, 30.6, 25.1; HRMS (ASAP): Found MH⁺ 248.2007 C₁₆H₂₆NO requires 248.2009.

4-Phenyl-1-(piperidin-1-yl)butan-2-ol (95)

Following **GP7**, **11** (25 mg, 0.1 mmol, 1.0 equiv.) and KOH (0.5 mL, 1M, 5.0 equiv.) gave **95** (21 mg, 89 %) as an oil. $R_f 0.53$ [CH₂Cl₂:MeNO₂:MeOH (4:1:1)]; FT-IR v_{max} (film)/cm⁻¹ 3349, 2932, 1453, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (2H, m), 7.25–7.17 (3H, m), 4.11 (1H, tdd, J = 9.3, 6.3, 3.4 Hz), 2.93 (1H, ddd, J = 13.9, 9.2, 4.8 Hz), 2.80 (1H, dd, J = 13.1, 6.2 Hz), 2.71 (1H, ddd, J = 13.8, 9.0, 7.3 Hz), 2.60 (1H, dd, J = 13.1, 8.8 Hz), 2.38–2.30 (4H, m), 2.31–2.21 (1H, m), 2.05 (1H, dtd, J = 14.2, 9.2, 4.7 Hz), 1.88–1.70 (1H, m), 1.59–1.48 (4H, m), 1.46–1.34 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.2, 128.7, 128.5, 126.2, 67.8, 54.7, 39.1, 35.4, 35.1, 26.0, 24.4 (the following signal was missing in the ¹³C NMR and were identified by analysing the ¹H–¹³C HMBC (500 MHz, CDCl₃) 35.1); HRMS (ESI⁺): found MNa⁺ 256.1660, [C₁₅H₂₃NONa]⁺ requires 256.1672.

1-(1-Azido-4-phenylbutan-2-yl)piperidine (96) and 1-(2-azido-4phenylbutyl)piperidine (96')

Following **GP7**, **11** (25 mg, 0.1 mmol) and NaN₃ (16 mg, 0.25 mmol) gave **96** and **96'** (26 mg, 99%) as an oil. **94:94'** = 3:1. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2359, 2341, 1716, 1489, 1447, 1314, 1258, 1093, 1066, 1024; ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.24 (4H, m), 7.24–7.14 (6H, m), 3.48 (1H, m), 3.41 (1H, dd, *J* = 12.7, 7.6 Hz), 3.07 (1H, dd, *J* = 12.6, 5.2 Hz), 2.81 (1H, ddd, *J* = 14.5, 9.6, 5.4 Hz), 2.73–2.61 (4H, m), 2.60–2.50 (4H, m), 2.49–2.41 (2H, m), 2.40–2.31 (3H, m), 1.91–1.73 (3H, m), 1.73–1.63 (2H, m), 1.62–1.51 (8H, m), 1.49–1.39 (4H, m); ¹³C NMR (126 MHz, CDCl₃, mixture of isomers) δ 142.1, 141.3, 128.5, 128.4, 128.4, 128.4, 128.4, 126.0, 125.8, 63.6, 63.5, 59.1, 55.0, 50.9, 49.8, 34.4, 33.2, 32.4, 30.2, 26.5, 26.0, 25.0, 24.3; HRMS (ASAP): Found MH⁺ 259.1917 C₁₅H₂₃N₄ requires 259.1911.

Following **GP7**, **11** (25 mg, 0.1 mmol) and NaCN (12 mg, 0.25 mmol) gave **97** (23 mg, 95%) as an oil. R_f 0.60 [petrol:EtOAc (8:2)]; FT-IR v_{max} (film)/cm⁻¹ 2933, 2853, 2359, 2341, 1495, 1454, 1259, 1035; ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.26 (2H, m), 7.23–7.17 (3H, m), 2.85–2.78 (1H, m), 2.78–2.65 (2H, m), 2.64–2.53 (2H, m), 2.46 (1H, dd, J = 16.8, 5.5 Hz), 2.39–2.33 (2H, m), 2.30 (1H, dd, J = 16.9, 7.1 Hz), 2.00–1.89 (1H, m), 1.89–1.78 (1H, m), 1.69–1.51 (4H, m), 1.49–1.39 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 128.6, 128.5, 126.1, 119.5, 60.5, 49.4, 33.1, 32.5, 26.5, 24.9, 16.9; HRMS (ASAP): Found MH⁺ 243.1857 C₁₆H₂₃N₂ requires 243.1856.

1-(2-Fluoro-4-phenylbutyl)piperidine (98)

A tube equipped with a stirring bar was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x 3). A solution of 11 (48 µL, 0.2 mmol, 1.0 equiv.) in CHCl₃ (0.2 mL, 1.0 M) was added followed by Et₃N•3HF (228 µL, 1.4 mmol, 7.0 equiv.). The mixture was stirred at 60 °C for 16 h. After cooling to room temperature, H₂O (10 mL) was added and the layer were separated. The aquous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. Purification by flash column chromatography on silica gel gave 98 (7.5 mg, 32%) as an oil. $R_f 0.40$ [CH₂Cl₂:acetone (99:1)]; FT-IR v_{max} (film)/cm⁻¹ 2961, 2359, 2341, 1716, 1489, 1447, 1314, 1258, 1093, 1066, 1024; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.26 (2H, m), 7.23–7.16 (3H, m), 4.68 (1H, dddd, J =50.2, 11.3, 7.3, 3.3 Hz), 2.82 (1H, ddd, J = 14.7, 9.8, 5.3 Hz), 2.70 (1H, ddd, J = 13.1, 9.2, 6.7 Hz), 2.65–2.53 (1H, m), 2.50–2.34 (5H, m), 2.05–1.76 (2H, m), 1.58 (4H, p, J = 5.6 Hz), 1.50–1.38 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 128.6, 128.6, 126.1, 91.7 (d, J = 169.7 Hz), 63.5 (d, J = 21.0 Hz), 55.3, 35.7 (d, J = 21.0 Hz), 31.4 (d, J = 4.6 Hz), 26.0, 24.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –181.5; HRMS (ASAP): Found MH⁺ 236.1814, C₁₅H₂₃NF requires 236.1809.

1-(4-Phenylbutan-2-yl)piperidine (99)

A tube equipped with a stirring bar was charged with NaI (75 mg, 0.5 mmol, 5.0 equiv.) and then capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). A solution of **11** (25 mg, 0.1 mmol, 1.0 equiv.) in CH₃CN (0.5 mL) was added and the mixture was stirred at room temperature for 18 h. The mixture was cooled to 0 °C, treated with LiAlH₄ (0.10 mL, 0.1 mmol, 1.0 equiv., 1.0 M in THF) and stirred for 5 minutes. H₂O (0.04 mL) and 1 M NaOH (0.04 mL) were added. The mixture was stirred for 15 minutes and diluted with 1 M KOH (3 mL) and EtOAc (3 mL). The layers were separated and the organic layer was dried (MgSO₄), filtered and evaporated to give **99** (21 mg, 96%) as an oil. FT-IR v_{max} (film)/cm⁻¹ 2359, 2342; ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.23 (2H, m), 7.22–7.12 (3H, m), 2.71–2.52 (3H, m), 2.51–2.44 (2H, m), 2.42–2.31 (2H, m), 1.90–1.80 (1H, ddt, *J* = 13.4, 10.1, 5.9 Hz), 1.62–1.48 (5H, m), 1.42 (2H, p, *J* = 5.9 Hz), 0.98 (3H, d, *J* = 6.6 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 143.1, 128.6, 128.4, 125.7, 59.0, 49.4, 35.7, 33.4, 26.7, 25.2, 13.9; HRMS (ESI⁺): found MH⁺ 218.1895, [C₁₅H₂₄N]⁺ requires 218.1909. Data in accordance with literature.^[17]

1-(1-(2-Benzylphenoxy)propan-2-yl)piperidine (103)

A tube equipped with a stirring bar was charged with NaI (75 mg, 0.5 mmol, 5.0 equiv.) and then capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). A 0.1 M solution of **102** (35 mg, 0.1 mmol, 1.00 equiv.) in CH₃CN (1.0 mL) was added and the mixture was stirred at room temperature for 18 h. The mixture was cooled to 0 °C, treated with LiAlH₄ (0.10 mL, 0.1 mmol, 1.0 equiv., 1.0 M in THF) and stirred for 5 minutes. H₂O (0.04 mL) and 1 M NaOH (0.04 mL) were added. The mixture was stirred for 15 minutes and diluted with 1 M KOH (3 mL) and EtOAc (3 mL). The layers were separated and the organic layer was dried (MgSO₄), filtered and evaporated to give **103** as an oil (15 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.00 (7H, m), 6.94–6.79 (2H, m), 4.09–4.03 (1H, m), 3.98 (2H, m).

s), 3.08–2.98 (1H, m), 2.64–2.50 (4H, m), 1.62–1.53 (4H, m), 1.46–1.36 (2H, m), 1.14 (3H, d, *J* = 6.8 Hz). Data in accordance with literature.^[18]

10 Olefin Aminochlorination Scale-Up by Batch-to-Flow

10.1 General Experimental Details

The flow process was performed with the set-up shown in (Figure) on a Masterflex L/R model 77200-60 pump connected with a photochemical 450 nm LED reactor (PennOC photoreactor M1, Figure) containing Aldtech FT tubing (1.6 mm internal diameter). The calculated volume of solvent in the reactor was 6.66 mL.

10.2 General Flow Procedure

To a 250 mL flask charged with a stirring bar, was added NCS (9.310 g, 70 mmol, 1.0 equiv.), Ru(bpy)₃Cl₂•6H₂O (26.2 mg, 0.35 mmol 0.05 mol%) and CH₂Cl₂ (120 mL, 0.58 M). The heterogeneous solution was sonicated for 5 minutes until complete solubilisation of NCS, then cooled to 0 °C. 1 (7 mL, 70 mmol, 1.0 equiv.) was then added dropwise over 10 minutes under vigorous stirring. The solution was then allowed to warm to room temperature stirring for 1 h. TFA (32 mL, 420 mmol, 6.0 equiv.) was then added giving a homogeneous bright orange solution which was divided in three fractions. Each fraction was poured in a 100 mL flask (approx. 53 mL of crude in each flask). Prior to the pumping of the reaction, the reactor was fully liquid filled with CH₂Cl₂ from the solvent reservoir. **10** (31.5 mL, 70 mmol, 1.0 equiv.) was divided in three portions (10.5 mL, 23.33 mmol, 0.33 equiv. each) and added sequentially in each of the three flasks under vigorous stirring, pumping the solution into the system at the end of every addition. Once the entire content of the three flasks was pumped through the reactor (approx. 3-4 minutes into the system), CH₂Cl₂ was allowed to flush from the solvent reservoir, until all the reaction solution had been collected (approx. 2 minutes). The reaction solution was pumped at 46 mL/min resulting in a theoretical residence time of 8.7 s within the photochemical reactor. The collected homogeneous orange solution was added dropwise over 30 min to a 0 °C solution of 3.5 M sodium hydroxide (200 mL, 10 equiv.). The organic phase was collected, and the aqueous phase extracted with CH₂Cl₂ (50 mL x 3). The combined organic phases were dried (MgSO₄), filtered, and evaporated to give an oil. The crude was then purified by column chromatography on silica gel eluting cyclohexane: EtOAc (9:1) to give 11 as an oil (8.44 g, 48%). Low yield was the result of the partial evaporation of the product under the high vacuum used. The reaction was repeated on the same scale adding 1,3,5trimethoxybenzene as internal standard. The yield in this case was 87% (17 mmol min⁻ ¹).

Figure 5.

Figure 6.

11 NMR Spectra

 $S6 - {}^{1}H$ NMR (500 MHz, CDCl₃)

SI-71

8.12 8.12 8.12 8.12 9

10 0

-10 -20 -30

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

77,745 77,731 77,231 77,231 77,232 77,233 77,233 77,233 77,233 77,233 77,233 77,233 77,233 77,233 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,223 77,233 77,223 77,233 72,233 72,233 72,235 72

-10 -20 -30 -50 -40 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

$20 - {}^{1}H$ NMR (500 MHz, CDCl₃)

77,722 77,722 77,722 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 73,956 73,956 73,956 73,956 73,956 73,956 73,956 73,956 73,956 73,555 73,555 73,555 73,555 74,75 75,555 72,555

SI-87

SI-88

33 – ¹H NMR (500 MHz, CDCl₃)

SI-95

34 – ¹H NMR (500 MHz, CDCl₃)

7.7.7.7.7.7.7.7.7.8
7.7.7.7.7.7.7.7.7.7.7.8
7.7.7.7.7.7.7.7.7.7.7.7.8
7.7.7.7.7.7.7.7.7.7.7.7
7.7.7.7.7.7.7.7.7.7
7.7.7.7.7.7.7.7
7.7.7.7.7.7.7
7.7.7.7.7.7
7.7.7.7.7.7
7.7.7.7.7
7.7.7.7.7
7.7.7.7.7
7.7.7.7
7.7.7.7
7.7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7
7.7.7

35 – ¹H NMR (500 MHz, CDCl₃, diastereomers)

7,738 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,737 7,727 7,727 7,727 7,727 7,727 7,722 2,330 7,227 7,722 2,239 4,4,05 7,722 2,239 4,4,05 7,722 2,239 4,4,05 7,722 2,239 2,2

Me Me CI I 11, 11 H Ph 2.11 3.24 <u>16.0</u> 0.2 2 2.2.2 μ 1 1 ą £).0 9.5 7.5 7.0 6.5 6.0 4.0 2.5 1.0 0.5 0 9.0 8.5 8.0 5.5 5.0 4.5 3.5 3.0 2.0 1.5 **36** – ¹³C NMR (126 MHz, CDCl₃) . 142.14 . 141.09 128.67 128.63 128.56 128.44 126.24 125.88 -62.90 -62.90 -62.84 -56.49 -56.49 -55.98 -55.98 -55.98 -55.98 -41.67 -41.67 -41.67 -41.67 -41.67 -41.67 -41.67 -41.67 -23.33 -25.24 -22.23 -23.35 -25.37 -25.37 -25.37 -25.37 -25.37 -25.37 -25.37 -25.57 -27.57 -2 00 10 . 190 180 170 160 . 150 140 130 120 110 100 90 80 70 60 50 40 30 20

37 – ¹H NMR (500 MHz, CDCl₃)

78	60 56 12	20	10 25 4 9 25 25 25 25 25 25 25 25 25 25 25 25 25
66.	58. 55.	45.	25. 23.23.25
	Y7		51//

SI-103

$\textbf{42} - {}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3})$

B 80.6 B

48 – ¹H NMR (500 MHz, CDCl₃)

B 800 B 800

51 – ¹H NMR (500 MHz, CD_2Cl_2 , reaction crude due to product decomposition)

51 – ¹⁹F NMR (471 MHz, CDCl₃, reaction crude)

-10 -20 -50 -70 -80 -90 -30 -40 -60 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

$59 - {}^{1}H$ NMR (400 MHz, CD₃CN)

-71.38

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

$74 - {}^{1}H$ NMR (500 MHz, CDCl₃)

7,7,33 7,7,34 7,7,37 7,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,37 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,33 7,2,2,2,33 7,2,2,2,33 7,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2,33 7,2,2,2,2

SI-146

SI-148

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

 $< \frac{-57.20}{-57.21}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

SI-152

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

89 – ¹H NMR (500 MHz, CDCl₃–CD₃OD)

SI-159

$95 - {}^{1}H$ NMR (400 MHz, CDCl₃)

95 – ¹H–¹³C HSQC (500–125 MHz, CDCl₃)

77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,723 77,733 72,233 72,253 74,55 74,55 72,253 74,55 72,253 74,55 74,55 72,253 74,55 74,55 74,55 72,553 72,555

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

12 References

- B. M. Trost, K. Lehr, D. J. Michaelis, J. Xu, A. K. Buckl, J. Am. Chem. Soc.
 2010, 132, 8915-8917.
- [2] C. A. Urbina Blanco, A. Leitgeb, C. Slugovc, X. Bantreil, H. Clavier, A. M. Slawin, S. P. Nolan, *Chem. Eur. J.* 2011, *17*, 5045-5053.
- [3] N. Cabrera-Lobera, M. T. Quirós, W. W. Brennessel, M. L. Neidig, E. Buñuel,
 D. J. Cárdenas, *Org. Lett.* 2019, 21, 6552-6556.
- [4] D. Marchand, J. Martinez, F. Cavelier, *Eur. J. Org. Chem.* 2008, 2008, 3107-3112.
- [5] S. A. Green, S. Vásquez-Céspedes, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 11317-11324.
- [6] J.-x. Wang, X. Jia, T. Meng, L. Xin, *Synthesis* **2005**, 2005, 2838-2844.
- [7] S. Munnuri, A. M. Adebesin, M. P. Paudyal, M. Yousufuddin, A. Dalipe, J. R.
 Falck, J. Am. Chem. Soc. 2017, 139, 18288-18294.
- [8] B. Bertrand, L. Stefan, M. Pirrotta, D. Monchaud, E. Bodio, P. Richard, P. Le Gendre, E. Warmerdam, M. H. de Jager, G. M. M. Groothuis, M. Picquet, A. Casini, *Inorg. Chem.* 2014, 53, 2296-2303.
- [9] X. Li, Y. Feng, L. Lin, G. Zou, J. Org. Chem. 2012, 77, 10991-10995.
- [10] D. Bernier, A. J. Blake, S. Woodward, J. Org. Chem. 2008, 73, 4229-4232.
- [11] M. A. Cismesia, T. P. Yoon, *Chem. Sci.* **2015**, *6*, 5426-5434.
- [12] A. Kumar, R. Parella, S. A. Babu, *Synlett* **2014**, *25*, 835-842.
- [13] M. Chini, P. Crotti, F. Macchia, J. Org. Chem. 1991, 56, 5939-5942.
- [14] P. Saravanan, A. Bisai, S. Baktharaman, M. Chandrasekhar, V. K. Singh, *Tetrahedron* 2002, 58, 4693-4706.
- [15] B. Colman, S. E. de Sousa, P. O'Brien, T. D. Towers, W. Watson, *Tetrahedron: Asymmetry* 1999, 10, 4175-4182.
- [16] M. E. Piotti, H. Alper, J. Am. Chem. Soc. 1996, 118, 111-116.
- [17] V. B. Kharitonov, E. Podyacheva, Y. V. Nelyubina, D. V. Muratov, A. S. Peregudov, G. Denisov, D. Chusov, D. A. Loginov, *Organometallics* 2019, *38*, 3151-3158.
- [18] B. M. H. Kwon, Dong Cho; Lee, Sang Ku; Lee, Yu-Jin; Jeon, Yoon Jung; Ha, Ah-Rum; Han, Young Min;, (Ed.: U. S. P. Office), USA, April 7, 2016.