Supporting Information

A semi-synthetic kanglemycin shows *in vivo* efficacy against high-burden rifampicin resistant pathogens

**Authors:** James Peek<sup>1</sup>, Jiayi Xu<sup>2</sup>, Han Wang<sup>3</sup>, Shraddha Suryavanshi<sup>4</sup>, Matthew Zimmerman<sup>3</sup>, Riccardo Russo<sup>4</sup>, Steven Park<sup>5</sup>, David S. Perlin<sup>5</sup>, and Sean F. Brady<sup>1\*</sup>

**Author affiliations**: <sup>1</sup>Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065. <sup>2</sup>Tri-Institutional Therapeutics Discovery Institute, Belfer Research Building, 413 E 69<sup>th</sup> Street, New York, NY, 10021. <sup>3</sup>Center for Discovery and Innovation, Hackensack Meridian Health, 340 Kingsland Street, Nutley, NJ 07110. <sup>4</sup>Rutgers, the State University of New Jersey, International Center for Public Health, 225 Warren Street, Newark, NJ 07103. <sup>5</sup>Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110.

## \*Corresponding Author: Sean F. Brady

Contact: Laboratory of Genetically Encoded Small Molecules

The Rockefeller University

1230 York Avenue

New York, NY 10065

Phone: 212-327-8280

**Fax:** 212-327-8281

Email: <u>sbrady@rockefeller.edu</u>

## **Table of Contents**

- 1. Table S1. Pharmacokinetic properties of Kang A, J4, and KZ
- 2. Table S2. Comparison of bacterial burdens in mouse kidneys infected with MRSA strain COL following treatment with Kang A, J4, KZ, or Rif
- 3. Figure S1. Complete collection of aliphatic amines used in the synthesis of Kang amides
- 4. Figure S2. Complete collection of cyclic amines used in the synthesis of Kang amides
- 5. Figure S3. Complete collection of aromatic amines used in the synthesis of Kang amides
- 6. Figure S4. Complete collection of carboxylic acid amines used in the synthesis of Kang amides
- 7. Figure S5. Complete collection of phosphate mimic amines used in the synthesis of Kang amides
- 8. Figure S6. Complete collection of sugar amines used in the synthesis of Kang amides
- 9. Figure S7. Complete collection of Phe/Trp/Try/His analogue amines used in the synthesis of Kang amides
- 10. Figure S8. Complete collection of amines uses in the synthesis C-3/C-4 Kang derivatives
- 11. Table S3. Comparison of bacterial burdens in mouse kidneys infected with *S. aureus* ATCC 12600 carrying an S486L RNAP mutation following treatment with KZ or Rif
- 12. Figure S9. Calibration curve used to determine the concentration of Kang amides
- 13. Figure S10. UPLC traces and UV spectra of purified Kang A, J4, and KZ
- 14. Figure S11. Mass fragmentation analysis of Kang A, J4, and KZ
- 15. Figure S12. HRMS and NMR data used to verify the structures of J4 and KZ
- 16. Table S4. <sup>1</sup>H and <sup>13</sup>C chemical shifts of Kang A, J4, and KZ
- 17. Figure S13. <sup>1</sup>H NMR spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>
- 18. Figure S14. <sup>13</sup>C NMR spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>
- 19. Figure S15. HMQC spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>
- 20. Figure S16. HMBC spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>
- 21. Figure S17. COSY spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>
- 22. Figure S18. <sup>1</sup>H NMR spectrum of J4 in CDCI<sub>3</sub>
- 23. Figure S19. <sup>13</sup>C NMR spectrum of J4 in CDCI<sub>3</sub>
- 24. Figure S20. HSQC NMR spectrum of J4 in CDCI<sub>3</sub>
- 25. Figure S21. HMBC NMR spectrum of J4 in CDCI<sub>3</sub>

- 26. Figure S22. COSY NMR spectrum of J4 in CDCI<sub>3</sub>
- 27. Figure S23. <sup>1</sup>H NMR spectrum of KZ in DMSO-d<sub>6</sub>
- 28. Figure S24. <sup>13</sup>C NMR spectrum of KZ in DMSO-d<sub>6</sub>
- 29. Figure S25. HSQC NMR spectrum of KZ in DMSO-d<sub>6</sub>
- 30. Figure S26. HMBC NMR spectrum of KZ in DMSO-d<sub>6</sub>
- 31. Figure S27. COSY NMR spectrum of KZ in DMSO-d<sub>6</sub>

|                          | IV    | PO   | IP    |
|--------------------------|-------|------|-------|
| Kang A                   |       |      |       |
| Dose (mg/kg)             | 5     | 5    | 5     |
| AUC-inf (hr*ng/mL)       | 10320 | BLQ  | 706   |
| Dose corrected AUG       | 2064  | BLQ  | 141   |
| Bioavailability (%)      | NA    | BLQ  | 6.84  |
| Half-life (hr)           | 0.84  | NA   | NA    |
| k elimination (hr-1)     | 0.72  | NA   | NA    |
| Vol. distribution (L/kg) | 0.67  | NA   | NA    |
| Clearance (mL/kg*hr)     | 487   | NA   | NA    |
| J4                       |       |      |       |
| Dose (mg/kg)             | 5     | 5    | 5     |
| AUC-inf (hr*ng/mL)       | 7762  | 48.7 | 3007  |
| Dose corrected AUG       | 1552  | 9.73 | 601   |
| Bioavailability (%)      | NA    | 0.63 | 38.7  |
| Half-life (hr)           | 1.09  | NA   | NA    |
| k elimination (hr-1)     | 0.51  | NA   | NA    |
| Vol. distribution (L/kg) | 1.28  | NA   | NA    |
| Clearance (mL/kg*hr)     | 651   | NA   | NA    |
| KZ                       |       |      |       |
| Dose (mg/kg)             | 5     | 5    | 5     |
| AUC-inf (hr*ng/mL)       | 54150 | 2923 | 14843 |
| Dose corrected AUG       | 10830 | 585  | 2969  |
| Bioavailability (%)      | NA    | 5.4  | 27.4  |
| Half-life (hr)           | 1.17  | NA   | NA    |
| k elimination (hr-1)     | 0.55  | NA   | NA    |
| Vol. distribution (L/kg) | 0.17  | NA   | NA    |
| Clearance (mL/kg*hr)     | 94.0  | NA   | NA    |

| Table S1. Pharmacokinetic properties of Kang A, J4, and KZ. NA, not applicable; BLQ, below limit of |
|-----------------------------------------------------------------------------------------------------|
| quantification.                                                                                     |

**Table S2.** Comparison of bacterial burdens in mouse kidneys infected with MRSA strain COL following treatment with Kang A, J4, KZ or Rif. Efficacy of compounds was evaluated in a neutropenic murine acute peritonitis/septicemia model. Infected mice received IP injections of drug (15 mg/mL) or vehicle (5% DMA plus 30% Captisol) at 2, 4 and 8 hours post infection. Bacterial burdens in kidneys were determined at 24 hrs post-infection. Limit of detection for burden quantification was calculated as 100 CFU/g of kidney. Log change in burden was calculated relative to the vehicle treated group.

| Treatment                                   | Mice                       | Average log<br>CFU/g kidney            | Average/Group | Log change in<br>burden |
|---------------------------------------------|----------------------------|----------------------------------------|---------------|-------------------------|
| Vehicle<br>(5% DMA<br>plus 30%<br>Captisol) | 1<br>2<br>3<br>4<br>5<br>6 | 5.2<br>6.1<br>5.9<br>5.5<br>5.6<br>5.1 | 5.6           | 0.0                     |
| Kang A<br>(15 mg/kg)                        | 1<br>2<br>3<br>4<br>5<br>6 | 3.8<br>4.1<br>4.1<br>3.8<br>2.6<br>4.6 | 3.8           | -1.8                    |
| J4<br>(15 mg/kg)                            | 1<br>2<br>3<br>4<br>5<br>6 | 2.6<br>4.7<br>3.8<br>5.0<br>4.0<br>4.7 | 4.1           | -1.5                    |
| KZ<br>(15 mg/kg)                            | 1<br>2<br>3<br>4<br>5<br>6 | sterilized                             | 0.0           | -5.6                    |
| Rif<br>(15 mg/kg)                           | 1<br>2<br>3<br>4<br>5<br>6 | sterilized                             | 0.0           | -5.6                    |

|                                        | H <sub>2</sub> N    | H <sub>2</sub> N                  | HN               | l₂N ↓ O ↓ O        | H <sub>2</sub> N CI    | H <sub>2</sub> N—  | H <sub>2</sub> N<br>O |
|----------------------------------------|---------------------|-----------------------------------|------------------|--------------------|------------------------|--------------------|-----------------------|
|                                        | J5                  | C10                               | D4               | E4                 | N1                     | C23                | E3                    |
| Expected mass<br>(M - H <sup>+</sup> ) | 1035.5              | 1035.5                            | 1007.4           | 1079.5             | 1041.4                 | 993.4              | 1065.4                |
| Experimental<br>mass                   | 1035.5              | 1035.5                            | 1007.4           | 1079.5             | 1041.4                 | 993.4              | 1065.4                |
| WT                                     | 0.000061            | 0.0039                            | 0.0039           | 0.0039             | 0.0039                 | 0.016              | 0.016                 |
| H481Y                                  | >64                 | >64                               | >64              | >64                | >64                    | >64                | >64                   |
| S486L                                  | 16                  | 16                                | 4                | 64                 | 16                     | 16                 | 16                    |
|                                        | H <sub>2</sub> N O- | H <sub>2</sub> N F                | l₂N√             | H <sub>2</sub> N-O | O<br>H₂N ↓ O           | H <sub>2</sub> N 0 | H <sub>2</sub> NO     |
|                                        | J2                  | N36                               | D2               | E1                 | E2                     | J6                 | N7                    |
| Expected mass<br>(M - H <sup>+</sup> ) | 1065.4              | 1025.4                            | 1049.5           | 1009.4             | 1051.4                 | 1065.4             | 1079.5                |
| Experimental<br>mass                   | 1065.4              | 1025.4                            | 1049.5           | 1009.4             | 1051.4                 | 1065.4             | 1079.5                |
| WT                                     | 0.016               | 0.016                             | 0.063            | 0.063              | 0.063                  | 0.063              | 0.063                 |
| H481Y                                  | 64                  | 64                                | >64              | >64                | >64                    | >64                | >64                   |
| 5486L                                  | 4                   | 4                                 | 16               | 16                 | 16                     | 16                 | 16                    |
|                                        | H <sub>2</sub> N    | H <sub>2</sub> N H <sub>2</sub> I | N                | H <sub>2</sub> N   | OH<br>H <sub>2</sub> N |                    |                       |
|                                        | ОН                  | ОН                                | ОН               | он                 | он он                  |                    |                       |
|                                        | G1                  | G2                                | G3               | J1                 | G5                     |                    |                       |
| Expected mass<br>(M - H <sup>+</sup> ) | 1037.5              | 1051.5                            | 1065.5           | 1023.4             | 1083.5                 |                    |                       |
| Experimental<br>mass                   | 1037.5              | 1051.5                            | 1065.5           | 1023.4             | 1083.5                 |                    |                       |
| WT                                     | 1                   | 1                                 | 1                | 1                  | 16                     |                    |                       |
| H481Y                                  | >64                 | >64                               | >64              | >64                | >64                    |                    |                       |
| S486L                                  | 64                  | 64                                | 64               | >64                | >64                    |                    |                       |
| Bound 2: 15 sub                        | screen              |                                   |                  |                    |                        |                    |                       |
| Nouna 2. 00 300                        |                     | , , ,                             |                  | /                  |                        | _ ОН               | HO                    |
|                                        | H <sub>2</sub> N    | H <sub>2</sub> N                  | H <sub>2</sub> N | → HN<br>HÓ         | H <sub>2</sub> N       | $H_2N$             | H <sub>2</sub> N      |
|                                        | N6                  | N39                               | N40              | N41                | N43                    | N42                | N44                   |
| Expected mass<br>(M - H <sup>+</sup> ) | 1063.5              | 1049.5                            | 1091.5           | 1051.5             | 1097.5                 | 1051.5             | 1141.5                |
| Experimental<br>mass                   | 1063.5              | 1049.5                            | 1091.5           | 1051.5             | 1097.5                 | 1051.5             | 1141.5                |
| WT                                     | 0.063               | 0.063                             | 0.063            | 0.063              | 0.25                   | 1                  | 1                     |
| H481Y                                  | >64                 | >64                               | >64              | >64                | >64                    | >64                | >64                   |
| S486L                                  | 4                   | 4                                 | 4                | 4                  | 16                     | 64                 | 64                    |

**Figure S1.** Complete collection of aliphatic amines used in the synthesis of Kang amides. Aliphatic amines were screened over two rounds of synthesis. The first round of synthesis broadly sampled this class of amines, while the second round utilized amines structurally related to J5, which yielded the most potent amide in the initial round of screening. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

|                                        |         | H <sub>2</sub> N | H <sub>2</sub> N | H <sub>2</sub> N | NH <sub>2</sub> | HNO    | H <sub>2</sub> N |
|----------------------------------------|---------|------------------|------------------|------------------|-----------------|--------|------------------|
|                                        | N29     | B1               | C11              | J7               | B4              | C4     | С9               |
| Expected mass<br>(M - H <sup>+</sup> ) | 1047.5  | 1033.5           | 1061.5           | 1033.5           | 1063.5          | 1049.5 | 1019.4           |
| Experimental<br>mass                   | 1047.5  | 1033.5           | 1061.5           | 1033.5           | 1063.5          | 1049.5 | 1019.4           |
| WT                                     | 0.00098 | 0.00098          | 0.0039           | 0.0039           | 0.016           | 0.016  | 0.016            |
| H481Y                                  | >64     | >64              | >64              | >64              | 64              | >64    | >64              |
| S486L                                  | 4       | 16               | 64               | 16               | 4               | 16     | 16               |

|                                        | NH <sub>2</sub> |        | 2 <sup>N</sup> |        | H <sub>2</sub> N |        | H <sub>2</sub> NN |
|----------------------------------------|-----------------|--------|----------------|--------|------------------|--------|-------------------|
|                                        | B3              | C20    | B2             | C12    | N9               | N10    | N11               |
| Expected mass<br>(M - H <sup>+</sup> ) | 1063.5          | 1063.4 | 1077.5         | 1063.5 | 1087.5           | 1104.5 | 1106.5            |
| Experimental<br>mass                   | 1063.5          | 1063.4 | 1077.5         | 1063.5 | 1087.5           | 1104.5 | 1106.5            |
| WT                                     | 0.063           | 0.063  | 1              | 1      | 1                | 1      | 1                 |
| H481Y                                  | 64              | >64    | >64            | >64    | >64              | >64    | >64               |
| S486L                                  | 4               | 16     | 64             | 64     | 16               | 64     | >64               |

.. ..

Round 2: N29 subscreen

|                                        | KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>KN<br>K | $\overset{H}{\searrow} \overset{N}{\longrightarrow}$ | ⊢Z<br>│ |        | o      |
|----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------|--------|--------|
|                                        | <u>C5</u>                                                                       | C6                                                   | N28     | C7     | C8     |
| Expected mass<br>(M - H <sup>+</sup> ) | 1073.5                                                                          | 1087.5                                               | 1033.5  | 1115.5 | 1125.5 |
| Experimental<br>mass                   | 1073.5                                                                          | 1087.5                                               | 1033.5  | 1115.5 | 1125.5 |
| WT                                     | 0.00024                                                                         | 0.016                                                | 0.016   | 0.25   | 0.25   |
| H481Y                                  | >64                                                                             | >64                                                  | >64     | >64    | >64    |
| S486L                                  | 16                                                                              | 16                                                   | 16      | 64     | 16     |

**Figure S2.** Complete collection of cyclic amines used in the synthesis of Kang amides. Cyclic amines were screened over two rounds of synthesis. The first round of synthesis broadly sampled this class of amines, while the second round utilized amines structurally related to N29, which yielded one of the most potent amides in the initial round of screening. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

|                                        | H <sub>2</sub> N | H <sub>2</sub> N-0 | H <sub>2</sub> N-O<br>O- | H <sub>2</sub> N | H <sub>2</sub> N |        | H <sub>2</sub> N |
|----------------------------------------|------------------|--------------------|--------------------------|------------------|------------------|--------|------------------|
|                                        | J4               | F5                 | F6                       | A1               | A2               | F4     | N33              |
| Expected mass<br>(M - H <sup>+</sup> ) | 1069.5ª          | 1115.5             | 1113.4                   | 1055.4           | 1069.5           | 1115.5 | 1095.5           |
| Experimental<br>mass                   | 1069.5           | 1115.5             | 1113.4                   | 1055.4           | 1069.5           | 1115.5 | 1095.5           |
| wт                                     | 0.000061         | 0.0039             | 0.0039                   | 0.016            | 0.016            | 0.063  | 0.063            |
| H481Y                                  | >64              | >64                | 64                       | >64              | 64               | >64    | >64              |
| S486L                                  | 16               | 16                 | 4                        | 4                | 16               | 16     | 16               |

|                                        | H <sub>2</sub> N | H <sub>2</sub> N-O | H <sub>2</sub> N-FFF | H <sub>2</sub> N | H₂N-∕⊂)-OH | H <sub>2</sub> N S CI | H <sub>2</sub> N |
|----------------------------------------|------------------|--------------------|----------------------|------------------|------------|-----------------------|------------------|
|                                        | C22              | F3                 | N3                   | N8               | A3         | N5                    | C21              |
| Expected mass<br>(M - H <sup>+</sup> ) | 1083.5           | 1115.5             | 1123.4               | 1111.5           | 1071.4     | 1146.4                | 1119.5           |
| Experimental<br>mass                   | 1083.5           | 1115.5             | 1123.4               | 1111.5           | 1071.4     | 1146.4                | 1119.5           |
| wт                                     | 0.25             | 0.25               | 0.25                 | 0.25             | 1          | 1                     | 4                |
| H481Y                                  | >64              | >64                | >64                  | >64              | >64        | >64                   | >64              |
| S486L                                  | 16               | 4                  | 16                   | 16               | 64         | >64                   | >64              |



| Round 2: J4 subse         | creen             | о н    | N                    |                   |                    |
|---------------------------|-------------------|--------|----------------------|-------------------|--------------------|
|                           | H <sub>2</sub> NF |        | 2 <sup>1</sup><br>0- | H <sub>2</sub> NO | H <sub>2</sub> NCI |
|                           | N4                | C13    | F1                   | F2                | N2                 |
| Expected mass<br>(M - H⁺) | 1087.4            | 1129.5 | 1099.5               | 1099.5            | 1103.4             |
| Experimental<br>mass      | 1087.4            | 1129.5 | 1099.5               | 1099.5            | 1103.4             |
| WT                        | 0.000061          | 0.0039 | 0.0039               | 0.0039            | 0.063              |
| H481Y                     | >64               | >64    | >64                  | >64               | >64                |
| S486L                     | 16                | 64     | 64                   | 64                | 4                  |

**Figure S3.** Complete collection of aromatic amines used in the synthesis of Kang amides. Aromatic amines were screened over two rounds of synthesis. The first round of synthesis broadly sampled this class of amines, while the second round utilized amines structurally related to J4, which yielded the most potent amide in the initial round of screening. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. <sup>a</sup>The identity of J4, a lead compound for *in vivo* studies, was further verified by HRMS using a SCIEX X500B Q-TOF system: calcd *m*/*z* for C<sub>57</sub>H<sub>71</sub>N<sub>2</sub>O<sub>18</sub> (M + H<sup>+</sup>) 1071.4696, found *m*/*z* 1071.4654. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

|                                        | H <sub>2</sub> NO<br>OH | H <sub>2</sub> N, OH | °<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NH₃<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>NHÀ<br>O<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | H <sub>2</sub> N O<br>OH | O<br>H <sub>2</sub> N U<br>OH | $\overset{NH_2}{\overset{I}{\overset{I}{\overset{I}}}} \overset{H_2}{\overset{I}{\overset{I}{\overset{I}}}} \overset{H_2}{\overset{NH_2}}$ | H <sub>2</sub> N-<br>NH<br>O |
|----------------------------------------|-------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                        | N12                     | N17                  | N22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N13                      | N14                           | N18                                                                                                                                        | N20                          |
| Expected mass<br>(M - H <sup>+</sup> ) | 1099.4                  | 1121.5               | 1242.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1113.4                   | 1037.4                        | 1137.5                                                                                                                                     | 1156.5                       |
| Experimental<br>mass                   | 1099.4                  | 1121.5               | 1242.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1113.4                   | 1037.4                        | 1137.5                                                                                                                                     | 1156.5                       |
| WT                                     | 1                       | 1                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                        | 4                             | 4                                                                                                                                          | 4                            |
| H481Y                                  | >64                     | >64                  | >64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >64                      | >64                           | >64                                                                                                                                        | >64                          |
| S486L                                  | 16                      | >64                  | >64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >64                      | >64                           | >64                                                                                                                                        | >64                          |
|                                        | HO<br>NH2<br>S<br>O     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H <sub>2</sub> N OH      | O<br>H₂NOH                    | O<br>H <sub>2</sub> NOH                                                                                                                    |                              |
|                                        | N21                     | N23                  | N26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N27                      | N15                           | N16                                                                                                                                        |                              |
| Expected mass<br>(M - H <sup>+</sup> ) | 1143.4                  | 1200.5               | 1125.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1133.5                   | 1065.4                        | 1093.5                                                                                                                                     |                              |
| Experimental<br>mass                   | 1143.4                  | 1200.5               | 1125.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1133.5                   | 1065.4                        | 1093.5                                                                                                                                     |                              |
| wт                                     | 4                       | 4                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                        | 16                            | 16                                                                                                                                         |                              |
| H481Y                                  | >64                     | >64                  | >64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >64                      | >64                           | >64                                                                                                                                        |                              |
| S486L                                  | 64                      | 64                   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >64                      | >64                           | 64                                                                                                                                         |                              |

**Figure S4.** Complete collection of carboxylic acid amines used in the synthesis of Kang amides. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

|                                        |                                  |                       | H₂N-√S=0<br>0    | H <sub>2</sub> N                                           | Н₂N О<br>Р-ОН<br>ОН   |                        | H₂N 0<br>́S-ОН<br>О |
|----------------------------------------|----------------------------------|-----------------------|------------------|------------------------------------------------------------|-----------------------|------------------------|---------------------|
|                                        | P4                               | P5                    | P6               | C16                                                        | P11                   | P3                     | P8                  |
| Expected mass<br>(M - H <sup>+</sup> ) | 1180.4                           | 1112.4                | 1095.4           | 1205.5                                                     | 1087.4                | 1112.4                 | 1087.4              |
| Experimental<br>mass                   | 1180.4                           | 1112.4                | 1095.4           | 1205.5                                                     | 1087.4                | 1112.4                 | 1078.4              |
| WT                                     | 0.063                            | 0.063                 | 0.25             | 1                                                          | 1                     | 4                      | 4                   |
| H481Y                                  | >64                              | >64                   | >64              | >64                                                        | >64                   | >64                    | >64                 |
| S486L                                  | 16                               | 16                    | 16               | >64                                                        | 4                     | 64                     | 64                  |
|                                        | H <sub>2</sub> N OH<br>P-OH<br>O | H₂N O<br>└──S-OH<br>Ŏ | H₂N<br>S-OH<br>O | H₂N<br>HO <sup>∽P<sup>≪</sup>O<br/>HO<sup>∽P</sup>OH</sup> | H₂N OH H<br>P-OH<br>Ü | <sup>2</sup> N → OF OH | I                   |
|                                        | P10                              | P7                    | P9               | P12                                                        | P13                   | P14                    | -                   |
| Expected mass<br>(M - H⁺)              | 1073.4                           | 1073.4                | 1101.4           | 1101.4                                                     | 1115.4                | 1149.4                 |                     |
| Experimental<br>mass                   | 1073.4                           | 1073.4                | 1101.4           | 1101.4                                                     | 1115.4                | 1149.4                 |                     |
| WT                                     | 4                                | 16                    | 16               | 16                                                         | 16                    | 16                     |                     |
| H481Y                                  | >64                              | >64                   | >64              | >64                                                        | >64                   | >64                    |                     |
| S486L                                  | >64                              | >64                   | >64              | >64                                                        | >64                   | >64                    |                     |

**Figure S5.** Complete collection of phosphate mimic amines used in the synthesis of Kang amides. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.



**Figure S6.** Complete collection of sugar amines used in the synthesis of Kang amides. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.





**Figure S7.** Complete collection of Phe/Trp/Tyr/His analogue amines used in the synthesis of Kang amides. The identity of each synthesized amide was verified by LC/MS. Expected and experimental masses are indicated. MIC values ( $\mu$ g/mL) are shown for the amides generated from each amine against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

|                                        | HN O   | HN J    |                                 | HN J       | HN HN  |        | HN N   |  |
|----------------------------------------|--------|---------|---------------------------------|------------|--------|--------|--------|--|
|                                        | C4z    | KZ      | Z6                              | <b>Z</b> 8 | N28z   | N29z   | Z5     |  |
| Expected mass<br>(M - H+)              | 1170.5 | 1225.5ª | 1211.5                          | 1227.5     | 1154.5 | 1168.5 | 1183.5 |  |
| Experimental mass                      | 1170.5 | 1225.5  | 1211.5                          | 1227.5     | 1154.5 | 1168.5 | 1183.5 |  |
| WT                                     | 0.0039 | 0.0039  | 0.0039                          | 0.0039     | 0.016  | 0.016  | 0.016  |  |
| H481Y                                  | >64    | 16      | 16                              | >64        | >64    | 64     | >64    |  |
| S486L                                  | 4      | 1       | 1                               | 4          | 16     | 4      | 4      |  |
|                                        |        |         | HN O                            | HN N       |        |        |        |  |
|                                        | Z7     | Z10     | Z11                             | N31z       | Z4     | Z9     | -      |  |
| Expected mass<br>(M - H <sup>+</sup> ) | 1245.5 | 1226.5  | 1255.6<br>(1096.5) <sup>b</sup> | 1237.6     | 1204.5 | 1240.5 |        |  |
| Experimental mass                      | 1245.5 | 1226.5  | 1096.5                          | 1237.6     | 1204.5 | 1240.5 |        |  |
| WT                                     | 0.063  | 0.063   | 0.063                           | 0.25       | 0.25   | 0.25   |        |  |
| H481Y                                  | >64    | 64      | 64                              | >64        | >64    | >64    |        |  |
| S486L                                  | 16     | 4       | 16                              | 16         | 16     | 16     |        |  |

**Figure S8.** Complete collection of amines used in the synthesis of C-3/C-4 Kang derivatives. The identity of each synthesized compound was verified by LC/MS. Expected and experimental masses are indicated. <sup>*a*</sup>The identity of KZ, a lead compound for *in vivo* studies, was further verified by HRMS using a SCIEX X500B Q-TOF system: calcd *m*/*z* for C<sub>64</sub>H<sub>83</sub>N<sub>4</sub>O<sub>20</sub> (M + H<sup>+</sup>) 1227.5595, found *m*/*z* 1227.5561. <sup>*b*</sup>LC/MS fragment of Z11 detected in positive ion mode (M + H<sup>+</sup>). MIC values (µg/mL) are shown against wild-type and rifampicin resistant (H481Y and S486L) *S. aureus* strains.

**Table S3.** Comparison of bacterial burdens in mouse kidneys infected with *S. aureus* ATCC 12600 carrying an S486L RNAP mutation following treatment with KZ or Rif. Efficacy of compounds was evaluated in a neutropenic murine acute peritonitis/septicemia model. Infected mice received IP injections of drug (15 mg/mL) or vehicle (5% DMA plus 30% Captisol) at 2, 4 and 8 hours post infection. Bacterial burdens in kidneys were determined at 24 hrs post-infection. Limit of detection for burden quantification was calculated as 100 CFU/g of kidney. Log change in burden was calculated relative to the vehicle treated group.

| Treatment                                   | Mice                            | Average log<br>CFU/g kidney            | Average/Group | Log change in<br>burden |
|---------------------------------------------|---------------------------------|----------------------------------------|---------------|-------------------------|
| Vehicle<br>(5% DMA<br>plus 30%<br>Captisol) | 1<br>2<br>3*<br>4*<br>5<br>6*   | 4.9<br>6.0<br>5.8<br>5.7<br>6.1<br>5.6 | 5.7           | 0.0                     |
| KZ<br>(15 mg/kg)                            | 1<br>2<br>3<br>4<br>5<br>6      | 3.8<br>3.6<br>4.0<br>3.7<br>3.9<br>4.1 | 3.8           | -1.9                    |
| Rif<br>(15 mg/kg)                           | 1*<br>2*<br>3*<br>4*<br>5*<br>6 | 4.9<br>4.9<br>5.0<br>5.1<br>5.2        | 5.0           | -0.7                    |
|                                             | found dead at<br>24 hrs         | I                                      | I             | I                       |

in



**Figure S9.** Calibration curve used to determine the concentration of Kang amides. Purified synthesized Kang amides were injected on a Waters Acquity H-Class UPLC and the UV absorbance of each compound was monitored at 395 nm. The area under the curve (AUC) for the UV peak corresponding to each compound was compared to the calibration curve shown above to determine the concentration (mg/mL) of each synthesized compound.



**Figure S10.** UPLC traces and UV spectra of purified a) Kang A, b) J4, and c) KZ. Compounds were analyzed using a Waters Acquity H-Class UPLC.



**Figure S11.** Mass fragmentation analysis of a) Kang A, b) J4, and c) KZ. Samples were analyzed by LC-MS/MS.



 $\frac{\text{HRMS}}{\text{Calculated }m/z \text{ for } \text{C}_{57}\text{H}_{71}\text{N}_2\text{O}_{18} \text{ (M + H^+) 1071.4696}}$  Found m/z 1071.4654

MR correlations → HMBC



Figure S12. HRMS and NMR data used to verify the structures of a) J4 and b) KZ.

| Position         Atom type         Atom type <th< th=""><th></th><th colspan="2">Kang A</th><th colspan="2">J4<sup>b</sup></th><th colspan="3">KZ<sup>b,c</sup></th></th<>                                                                                                |                  | Kang A          |              | J4 <sup>b</sup>                              |                 | KZ <sup>b,c</sup> |                                          |                 |                    |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|--------------|----------------------------------------------|-----------------|-------------------|------------------------------------------|-----------------|--------------------|------------------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Position         | Atom type       | δα           | δ <sub>H</sub> (mult J in Hz)                | Atom type       | δc                | δ <sub>H</sub> (mult., J in Hz)          | Atom type       | δc                 | δ <sub>H</sub> (mult., J in Hz)                |
| 2         C         C         1997<br>140         C         1997<br>140         7.7 (c)<br>(c)         C         1337<br>140         7.7 (c)<br>(c)         C         1337<br>140         7.7 (c)<br>(c)         C         1337<br>140         7.7 (c)<br>(c)         C         1337<br>140         7.7 (c)<br>(c)         1337<br>140         1337 (c)<br>(c)         1338 | 1                | С               | 185.8        |                                              | С               | 184.9             | X i i                                    | С               | 181.9              |                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                | С               | 140.9        |                                              | C               | 139.4             | / >                                      | С               | 113.5              |                                                |
| 0         C         107         C         111         C         111         C         113         C         133           7         C         173         C         173         C         173         C         173           7         C         173         C         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                | СН              | 117.0        | 7.80 (s)                                     | СН              | 117.5             | 7.72 (s)                                 | C               | 128.9              |                                                |
| 0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                | C               | 104.9        |                                              | C               | 102.2             |                                          | C               | 143.7              |                                                |
| 7         0         0         16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                | č               | 171.8        |                                              | č               | 172.6             |                                          | c               | 173.6              |                                                |
| 8         C         171         L         C         177         C         170         C         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174 <th174< th=""> <th174< th="">         &lt;</th174<></th174<>                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                | С               | 116.9        |                                              | С               | 115.8             |                                          | С               | 107.9              |                                                |
| 9         0         0         1102         C         1002         C         1002         C         1002           11         C         100.9         57 (6)         C         100.9         127         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)         2 (7)                                                                                                                                                                                                                                                                                                                                                                           | 8                | С               | 167.4        |                                              | С               | 167.0             |                                          | С               | 169.8 <sup>v</sup> |                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>10          | C               | 132.0        |                                              |                 | 130.8             |                                          | C               | 111.8              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11               | c               | 194.1        |                                              | c               | 192.1             |                                          | c               | 192.0              |                                                |
| 13     Ch     2.7     1.87 (e)     CH     2.2     1.65 (e)     CH     CH     2.22 (e)     1.65 (e)       16     C     77.6     C     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8     77.8 <th77.8< th="">     77.8     77.8     77.8</th77.8<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12               | С               | 109.9        |                                              | С               | 108.0             |                                          | С               | 106.1              |                                                |
| 14     Chi,     2,34 (i)     Chi,     7,70     2,30 (i) <sup>2</sup> Chi,     7,70     2,14 (i) <sup>2</sup> 17     CH     1224     6,14 (5,5)     C     131.5     C     131.1       17     CH     1224     6,14 (5,5)     CH     132.6     5,77 (iii)       18     CH     132.6     5,61 (15,5,5)     CH     132.7     5,30 (iii)     5,77 (iii)       20     CH     83.3     2,50 (iii)     CH     53.6     2,30 (iii)     CH     53.7     1,77 (iii)       21     CH     83.3     2,50 (iii)     CH     53.6     2,30 (iii)     CH     57.7     1,72 (iiii)       22     CH     33.9     1,38 (iii)     CH     32.2     1,30 (iiii)     CH     57.8 (iiii)       23     CH     33.9     1,38 (iii)     CH     32.9     1,30 (iiii)     CH     57.8 (iiii)       24     CH     33.8 (iiii)     CH     37.4     7.48 (iiii)     1,50 (iiii)     1,50 (iiii)       25     CH     13.5 (iiii)     CH     17.9     5.8 (iiii)     1,51 (iiii)     1,50 (iiii)       26     CH     13.5 (iiii)     CH     13.6 (iiii)     CH     13.6 (iiii)     1,51 (iiiii)       27     CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13               | CH₃             | 23.7         | 1.67 (s)                                     | CH₃             | 22.2              | 1.69 (s)                                 | CH₃             | 22.2               | 1.69 (s) <sup>m</sup>                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>15         | CH₃<br>C        | 7.8<br>171.6 | 2.34 (s)                                     | CH <sub>3</sub> | /./<br>170.0      | 2.30 (s)"                                | CH₃<br>C        | 7.5<br>171.0       | 2.14 (s)"                                      |
| 17       Ch       128       Ch       128 <th< td=""><td>16</td><td>c</td><td>137.0</td><td></td><td>c</td><td>131.5</td><td></td><td>c</td><td>131.1</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                      | 16               | c               | 137.0        |                                              | c               | 131.5             |                                          | c               | 131.1              |                                                |
| 18       CH       124       6.33 (d. 15.8, 6.5)       CH       124       5.33 (d. 15.8, 8.6)       CH       124       5.73 (m) <sup>2</sup> 21       CH       83.8 (d. 15.8, 6.5)       CH       134       5.73 (m)       CH       83.8 (m)         21       CH       83.8 (d. 15.8, 6.5)       CH       134       5.73 (m)       CH       83.0 (m)         22       CH       83.8 (d. 15.0, 1.5)       CH       73.2       2.76 (m)       CH       73.0       2.35 (m)         23       CH       70.1       2.36 (m)       CH       73.2       2.46 (m)       CH       73.2       3.44 (m)         24       CH       81.3< (d. 15.2, 1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17               | СН              | 129.8        | 6.16 (d, 5.8)                                | СН              | 132.6             | 6.14 (d, 8.6)                            | СН              | 128.8              | 5.79 (m)°                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18               | CH              | 128.2        | 5.93 (dd, 15.9, 5.8)                         | CH              | 128.7             | 6.30 (dd, 15.9, 8.6)                     | CH              | 129.7              | 5.77 (m)°                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19               | CH              | 134.1        | 5.81 (dd, 15.9, 9.3)                         | CH              | 134.7             | 5.97 (dd, 15.9, 8.4)                     | CH              | 134.2              | 5.21 (t, 11.3)                                 |
| 22       CH       33.8       134 (m)       CH       33.2       178 (m)       CH       31.5       132 (m)         24       CH       36.9       140 (m)       CH       74.4       147 (m)       CH       42.0       145 (m)         24       CH       36.9       140 (m)       CH       77.4       147 (m)       CH       42.0       145 (m)         25       CH       77.6       135 (m)       CH       77.8       32.9 (m)       CH       77.3       2.79 (k)       145 (m)       145 (m)         27       CH       81.5       33.8 (d, 3.2.7)       CH       77.8       32.0 (k)       CH       72.3       3.54 (m)       142.5       5.35 (d, 11.8)         28       CH       144.4       6.37 (d, 12.8)       CH       11.2       0.56 (d, 12.3)       CH       144.4       6.27 (12.3)       CH       144.2       5.36 (d, 11.8)       11.2       0.56 (d, 12.7)       CH       142.4       5.36 (d, 11.8)       11.2       0.56 (d, 12.7)       CH       11.2       0.56 (d, 12.7)       CH       11.2       0.56 (d, 11.8)       11.2       0.56 (d, 12.7)       CH       11.2       0.56 (d, 15.7)       CH       11.2       0.56 (d, 15.7)       CH       13.6 <td>20</td> <td>СН</td> <td>68.9</td> <td>3.68 (m)<sup>e</sup></td> <td>СН</td> <td>69.8</td> <td>3.74 (d. 10.0)</td> <td>СН</td> <td>68.0</td> <td>3.30 (m)</td>                                                                                                                                                                                                                                                                                  | 20               | СН              | 68.9         | 3.68 (m) <sup>e</sup>                        | СН              | 69.8              | 3.74 (d. 10.0)                           | СН              | 68.0               | 3.30 (m)                                       |
| 23     CH     79.0     2.85 (cd, 10.0, 1.9)     CH     72.2     2.90 (10.1, 3.1)     CH     77.3     2.79 (1.2, 7)       24     CH     37.0     3.10 (m)     CH     37.4     1.47 (m)     CH     77.3     1.44 (m)       27     CH     81.5     5.33 (dc, 12.8, 3.27)     CH     78.6     1.36 (m)     CH     78.2     3.44 (m)       28     CH     11.2     5.33 (dc, 12.8, 3.27)     CH     15.6     5.06 (dc, 12.3, 6.5)     CH     11.14     4.91 (1.0, 3.1)       23     CH     14.4     5.33 (dc, 12.8, 3.27)     CH     11.6     5.06 (dc, 12.3, 6.5)     CH     11.14     4.91 (1.0, 3.1)       33     CH,     14.4     0.95 (d. 7.7)     CH,     12.4     0.98 (d. 6.7)     CH,     11.1     0.83 (m)       34     CH,     14.4     0.96 (d. 6.7)     CH,     12.6     0.96 (d. 6.7)     CH,     11.1     0.83 (m)       34     CH,     14.8     0.96 (d. 6.7)     CH,     17.6     CH     17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22               | СН              | 33.8         | 1.84 (m) <sup>r</sup>                        | CH              | 33.2              | 1.78 (m) <sup><i>i</i></sup>             | СН              | 31.5               | 1.62 (m)                                       |
| 24     CH     39.4     1.86 (m)     CH     39.7     1.46 (m)     CH     42.0     1.96 (m)       24     CH     77.0     1.35 (m)     CH     77.8     3.26 (L, 5.0)     CH     78.2     3.54 (m)       27     CH     81.5     3.85 (m)     CH     77.8     3.26 (L, 5.0)     CH     78.2     3.55 (m)       23     CH     142.4     6.37 (m)     CH     78.8     3.52 (L, 5.0)     CH     142.5     5.85 (m)       23     CH     144.4     6.37 (m)     CH     78.8     3.52 (L, 5.0)     CH     142.5     5.85 (m)       23     CH     144.4     6.37 (m)     CH     144.4     6.27 (m)     CH     111     0.50 (m)       33     CH     144.4     0.38 (m)     CH     111     0.50 (m)     CH     111     0.50 (m)       34     CH     14.4     174 (m)     1.00 (m)     CH     10.10 (m)     CH     111     0.50 (m)       35     C     174 (m)     0.50 (m)     CH     10.0 (m)     CH     10.0 (m)     CH     10.0 (m)       41     CH     2.50 (m)     CH     10.0 (m)     CH     2.50 (m)     CH     10.0 (m)       14     CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23               | CH              | 79.0         | 2.85 (dd, 10.0, 1.8)                         | CH              | 78.2              | 2.90 (10.1, 3.1)                         | СН              | 77.3               | 2.79 (t, 2.7)                                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24               | CH              | 36.9         | 1.60 (m)                                     | CH              | 37.4              | 1.47 (m)                                 | CH              | 42.0               | 1.95 (m) <sup><math>p</math></sup>             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25               | СН              | 37.0         | 4.30 (dd, 9.5, 1.0)<br>2 13 (m) <sup>d</sup> | СН              | 37.6              | 4.54 (d, 10.3)<br>1 26 (m)               | СН              | 35.3               | 5.14 (b) S)<br>1.44 (m)                        |
| 28         CH         112.9         5.3 (cd) (12.8, 5.9)"         CH         115.9         5.06 (d) (12.1, 3.)         CH         114.4         4.91 (1.0.3)           33         CH         21.1         2.66 (d)         CH         14.4         6.27 (1.2.3)         CH         14.2         2.01 (0)           33         CH         2.11         2.06 (d)         CH         14.4         6.27 (1.2.3)         CH         14.4 (0)         CH         12.4         2.01 (0)           34         CH         13.4         0.86 (1.7.2)         CH         11.2         0.18 (1.7.1)         CH         12.4         0.56 (0.5.1)           35         C         T1.8         2.02 (0)         CH         13.4         0.38 (m) <sup>7</sup> CH         14.6 (0)         CH         10.0         11.4 (0)         0.56 (0)         0.56 (0)         1.34 (0)         CH         10.0         CH         10.0         CH         10.0         CH         10.0         CH         10.0         CH         10.5 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)         CH         10.5 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)         1.56 (0)                                                                                                                                                                                                                                                                                                                                                               | 27               | СН              | 81.5         | 3.85 (dd, 9.3, 2.7)                          | СН              | 78.8              | 3.82 (d, 5.9)                            | СН              | 78.2               | 3.54 (m)                                       |
| 29       CH       146.4       6.77 (6.12.8)       CH       142.4       6.27 (d. 12.3)       CH       12.5       6.86 (d. 11.8)         33       CH       34       0.83 (d. 6.7)       CH       12.5       0.86 (d. 6.7)       CH       12.5       0.86 (d. 6.7)       CH       12.5       0.86 (d. 6.7)       CH       13.4       0.83 (m <sup>2</sup> )         34       CH       13.4       0.83 (d. 7.2)       CH       13.7       CH       13.4       0.83 (m <sup>2</sup> )         35       C       174.1       C       C       173.6       CH       13.4       0.38 (d. 7.1)         36       CH       13.8       1.07 (d. 3.3)       CH       18.7       1.10 (d. 6.3.)       CH       13.4       0.30 (m <sup>7</sup> )         41       C       41.6       C       43.3 (d. 12.2 (b.3)       CH       2.16 (d. 12.0)       C       0.10 (d. 6.3)       CH       13.4       0.30 (m <sup>7</sup> )         K1       CH       42.6       43.3 (d. 12.2 (b.3)       CH       2.33 (b.1 (b.2)       1.30 (m <sup>7</sup> )       CH       2.33 (b.1 (b.2)       1.30 (m <sup>7</sup> )         K3       CH       42.4       42.6 (d. 10.1)       CH       2.34 (b.12.3)       2.34 (b.12.3)       1.50 (m <sup>7</sup> )       1.60 (m <sup>7</sup> )                                                                                                                                                                                                                                                                                                                                                               | 28               | СН              | 112.9        | 5.13 (dd, 12.8, 9.3) <sup>g</sup>            | СН              | 115.9             | 5.06 (dd, 12.3, 6.5)                     | СН              | 111.4              | 4.91 (t, 10.3)                                 |
| 33       CH1       211       2.06 (a)       CH1       202       1.34 (a)       CH1       2.01 (b)         33       CH1       2.11       2.06 (a)       CH1       1.22       0.18 (a, 7.1)       CH1       1.24       0.58 (b, 7.1)         34       CH1       1.34       0.38 (a, 7.2)       CH1       1.12       0.18 (a, 7.1)       CH1       1.24       0.58 (b, 5.1)         35       C       17.4       C       17.3       D.04 (a)       CH1       D.74 (a)       D.58 (a)       CH1       CH1       D.58 (a)       CH1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29               | CH              | 146.4        | 6.37 (d, 12.8)                               | CH              | 144.4             | 6.27 (d, 12.3)                           | CH              | 142.5              | 5.85 (d, 11.8)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30               | CH₃<br>CH₂      | 21.1         | 2.06 (s)                                     | CH₃<br>CH₂      | 20.2              | 1.94 (s)                                 | CH₃<br>CH₂      | 20.8"              | 2.01 (s)<br>0.83 (m) <sup>g</sup>              |
| 34         CH <sub>2</sub> 12.4         0.18 (d, 7.1)         CH <sub>3</sub> 12.4         0.18 (d, 7.1)         CH <sub>3</sub> 12.4         0.08 (d, 7.1)           35         C         17.4         -         C         173.6         -         C         173.6         -         C         160.6         -         110.6         20.9         1.44 (c)         0.90 (m)           36         CH <sub>3</sub> 13.8         1.07 (d, 6.3)         CH         63.7         4.30 (d) (12.2, 6.3)         CH         66.7         4.72 (m)           K3         C         40.8         5.06 (d) (12.7, 6.3)         CH         66.7         4.72 (m)         C         4.30 (d) (12.2, 6.3)         CH         66.7         4.72 (m)           K4         C         17.6         C         17.0         C         4.33 (d) (12.2, 6.3)         CH         67.8         2.33 (t) (16.2)           K5         CH <sub>2</sub> 43.5         2.66 (t) (15.9)         CH         2.45 (t) (15.3)         CH         43.4         2.33 (t) (16.2)           K10         CH         7.3.5         2.23 (d) (15.2, 0.1.1)         1.30 (m)         CH         2.45 (t) (15.3)         CH         2.33 (t) (16.2)         1.30 (m)         CH         4.35 (t) (15.3)                                                                                                                                                                                                                                                                                                                                                              | 33               |                 | 9.4          | 0.69 (d. 6.7)                                |                 | 9.5               | 0.60 (d, 6.7)                            | CH₃<br>CH₃      | 11.1               | $0.83 \text{ (m)}^{q}$                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34               | CH₃             | 13.4         | 0.38 (d, 7.2)                                | CH <sub>3</sub> | 11.2              | 0.18 (d, 7.1)                            | CH₃             | 12.4               | 0.56 (d, 5.1)                                  |
| 36       CH-1       21.3       20.2 (s)       CH-1       21.3       20.4 (s)       CH-1       20.3 (s)       1.34 (s) <sup>2</sup> K1       CH       68.0 (d, 12.7, 6.3)       CH       69.7 (d, 4.3)       1.05 (s)       CH       2.33 (d, 15.2)       2.33 (d, 15.6)       CH       2.33 (d, 15.6)       CH       2.33 (d, 15.6)       CH       2.33 (d, 15.5, 2.9, 1.1)       CH       82.8 (d, 15.3)       CH       2.43 (d, 15.3)       2.33 (d, 15.6)       CH       2.33 (d, 15.7, 2.9, 1.1)       CH       82.8 (d, 16.3)       CH       2.33 (d, 15.7, 2.9, 1.1)       CH       82.0 (d, 16.3, 0.1)       CH       2.33 (d, 15.7, 2.9, 1.1)       CH       82.0 (d, 16.3, 0.1)       CH       <                                                                                                                                                                                                                                                                                                | 35               | С               | 174.1        |                                              | С               | 173.6             |                                          | С               | 169.8 <sup>v</sup> |                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36               | CH <sub>3</sub> | 21.8         | 2.02 (s)                                     | CH <sub>3</sub> | 21.3              | 2.04 (s)                                 | CH <sub>3</sub> | 20.9               | 1.94 (s) <sup>p</sup>                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K1<br>K2         | CH <sub>3</sub> | 19.8         | 1.07 (d, 6.3)<br>5.06 (dd 12.7, 6.3)         |                 | 18.7              | 1.10 (d, 6.3)<br>4.93 (dd 12.2, 6.3)     | CH <sub>3</sub> | 18.4               | 0.90 (m)<br>4 72 (m)                           |
| K4     C     40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K3               | C               | 176.4        | 5.00 (44, 12.7, 0.5)                         | C               | 176.6             | 4.00 (00, 12.2, 0.0)                     | C               | 175.1              | 4.72 (III)                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K4               | C               | 40.8         |                                              | С               | 43.5              |                                          | C               | 40.0 <sup>z</sup>  |                                                |
| NB       C       1/2.0       C       1/10.5       C       1/2.0       1/2.0         K7       CH2       43.5       2.56 (d. 16.9)       CH2       45.5       2.62 (d. 15.3)       CH2       43.3       2.36 (d. 16.2)         K8       CH3       2.33 (d. 16.9)       CH4       45.5       2.62 (d. 15.3)       CH3       CH3       2.33 (d. 15.2)         K10       CH2       33.5       2.23 (d. 15.5, 2.9, 1.1)       CH4       58.0       2.11 (d. 14.8, 0.0)       CH2       32.4       1.80 (m)*         K11       CH2       74.9       4.10 (m)       CH4       74.0       4.01 (m)       CH2       94.6       5.04 (m)*         K12       CH3       5.9       5.45 (m)*       CH4       74.0       4.01 (m)       CH2       94.6       5.04 (m)*         K14       CH4       75.7       3.56 (d.9, 0.5.3)       CH       74.8       3.56 (d.9, 0.5.3)       CH </td <td>K5</td> <td>CH₃</td> <td>26.2</td> <td>1.17 (s)</td> <td>CH₃</td> <td>27.0</td> <td>1.23 (s)<sup>j</sup></td> <td>CH₃</td> <td>25.3</td> <td>1.05 (s)</td>                                                                                                                                                                                                                                                             | K5               | CH₃             | 26.2         | 1.17 (s)                                     | CH₃             | 27.0              | 1.23 (s) <sup>j</sup>                    | CH₃             | 25.3               | 1.05 (s)                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K6<br>K7         | C<br>CHo        | 172.3        | 2.66 (d. 16.9)                               | C<br>CHo        | 170.5             | 2 62 (d. 15 3)                           | C<br>CH         | 172.0              | 2 36 (d. 16 2)                                 |
| K8       CH3       24.9       1.23 (s)       CH3       25.1       1.36 (s)       CH3       24.3       1.07 (s)       CM3         K9       CH4       97.2       456 (d) 90.1.1)       CH3       95.0       450 (m) <sup>2</sup> CH3       95.0       450 (m) <sup>2</sup> K10       CH2       33.5       2.23 (dd, 155.2.9.1.1)       CH3       92.8       2.11 (d1.14.6.3.0)       CH4       95.0       CH4       95.0       CH4       97.0       1.80 (m) <sup>2</sup> K11       CH2       7.9       3.46 (m) <sup>2</sup> CH3       6.7       6.7 (d.5.2)       CH3       1.87 (m)       1.80 (m) <sup>2</sup> K13       CH4       7.5       3.36 (m) <sup>2</sup> CH3       1.7 (d.5.2)       CH3       1.87 (m)       8.34 (s)       NH       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)       NH                                                                                                                                                                                                                                                                                                                                                                                                                               | K/               |                 | 43.5         | 2.00 (d, 10.9)<br>2.53 (d, 16.9)             |                 | 40.0              | 2.02 (d, 15.3)<br>2.45 (d, 15.3)         |                 | 43.4               | 2.30 (d, 16.2)<br>2.31 (d. 16.2)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K8               | CH₃             | 24.9         | 1.23 (s)                                     | CH <sub>3</sub> | 25.1              | 1.36 (s)                                 | CH₃             | 24.3               | 1.07 (s)                                       |
| K10       CH2       33.5       2.23 (ddd, 15, 2, 2, 1, 1)<br>1.83 (m) <sup>2</sup> CH2       32.8       2.11 (dt, 14, 6, 3, 0)<br>1.80 (m) <sup>2</sup> CH2       32.4       1.97 (m)<br>1.80 (m) <sup>2</sup> K11       CH       74.9       4.10 (m)       CH       74.0       4.01 (m)       CH2       73.7       4.40 (m)         K12       CH2       95.4       5.13 (s) <sup>2</sup> CH2       95.0       5.09 (s)       4.75 (m)       4.75 (m)         K13       CH       75.9       3.64 (m) <sup>2</sup> CH       75.7       3.55 (dd, 9, 0, 5.3)       CH       69.3       3.23 (m)         K14       CH3       75.9       3.64 (m) <sup>2</sup> CH       77.7       3.55 (dd, 9, 0, 5.3)       CH       9.89 (dd, 8.8, 3.5)         K14       CH4       70.5       3.36 (m)       CH       77.3       1.24 (d, 6.2)       CH3       18.3       1.13 (d, 6.0)         N1       NH       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)       9.0 (s)         J4A2       J4.41       I       I       I       IIII       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K9               | СН              | 97.2         | 4.65 (dd, 9.0, 1.1)                          | СН              | 98.0              | 4.50 (m) <sup>k</sup>                    | СН              | 96.7               | 4.47 (d, 3.5)                                  |
| K11<br>K12CH<br>CH274.9<br>95.4 $4.10 (m)$<br>(m)CH<br>CH274.0<br>95.0 $4.01 (m)$<br>(m)CH<br>$4.01 (m)$ 73.7<br>CH2 $1.80 (m)$<br>95.0 $1.40 (m)$<br>(m)K13CH75.9 $3.56 (m)^{\circ}$<br>(M)CH $75.7$<br>(M) $3.55 (dc, 9.0, 5.3)$<br>(CH2CH<br>(M)74.8 $3.59 (dc, 8.8, 3.5)$ K14CH75.5 $3.36 (m)^{\circ}$<br>(CH2CH1 $75.7$<br>(M) $3.55 (dc, 9.0, 5.3)$<br>(CH2CH1<br>(M)74.8 $3.59 (dc, 8.8, 3.5)$ K14CH77.5 $3.56 (m)^{\circ}$<br>(CH2CH3 $3.31 (m)$<br>(CH4CH4 $9.83 (s)$<br>(CH3CH4 $9.83 (s)$<br>(CH3N1NH12.60 (s)NH $8.34 (s)$<br>(CH2NH $8.34 (s)$<br>(CH2NH $9.86 (s)$ J4-A2OH12.60 (s)CH2 $4.35$ $4.46 (m)^{1}$<br>$4.26 (dc, 14.6, 5.1)$ OH $9.86 (s)$ J4-A3J4-A4CHT2.60 (s)CH2 $12.80$ $7.23 (m)^{12}$<br>(CH $22.8$ $0.90 (m)'$ J4-A4CHCH2 $12.80$ $7.23 (m)^{12}$ CH3 $0.90 (m)'$ J4-A5CHCH $12.80$ $7.23 (m)^{12}$ $CH3$ $0.90 (m)'$ J4-A6CHCH3CA8 $0.90 (m)'$ $CH3$ $0.90 ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K10              | CH <sub>2</sub> | 33.5         | 2.23 (ddd, 15.5, 2.9, 1.1)                   | CH <sub>2</sub> | 32.8              | 2.11 (dt, 14.6, 3.0)                     | CH <sub>2</sub> | 32.4               | 1.97 (m)                                       |
| K12       CH2       95.4       5.13 (b) <sup>2</sup> CH2       95.0       5.00 (m)       CH2       94.6       5.04 (m)         K13       CH       75.9       3.64 (m) <sup>4</sup> CH       75.7       3.55 (dd, 9.0, 5.3)       CH       74.8       3.59 (dd, 8.8, 3.5)         K14       CH       70.5       3.36 (m)       CH       77.7       3.55 (dd, 9.0, 5.3)       CH       78.8       3.23 (m)         K15       CH3       1.81       1.27 (d. 6.2)       CH3       1.87 (t. 6.2)       CH3       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)         N1       NH       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S       S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K11              | СН              | 74 9         | 1.83 (m)<br>4 10 (m)                         | СН              | 74 0              | 4 01 (m)                                 | СН              | 73 7               | 1.80 (m) <sup>2</sup>                          |
| K13CH75.9 $3.64$ (m)*CH76.7 $3.55$ (d. 9.0, 5.3)CH76.7 $3.55$ (d. 9.0, 5.3)CH76.8 $3.32$ (m) $3.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                | K12              | CH <sub>2</sub> | 95.4         | 5.13 (s) <sup>g</sup>                        | CH <sub>2</sub> | 95.0              | 5.09 (s)                                 | CH <sub>2</sub> | 94.6               | 5.04 (m)                                       |
| K13       CH       75.9 $3.64 (m)^{\circ}$ CH       75.7 $3.55 (dd, 9.0, 5.3)$ CH       74.8 $3.59 (dd, 8.8, 3.5)$ K14       CH       70.5 $3.36 (m)$ CH       70.2 $3.11 (m)$ CH       60.3 $3.22 (m)$ K15       CH <sub>3</sub> 18.8 $1.27 (d, 6.2)$ CH       18.7 $1.24 (d, 6.2)$ NH       8.34 (s)       NH       9.30 (s)       9.30 (s)         N2       OH $8.34 (s)$ NH $6.60 (t, 5.1)$ OH       9.86 (s) $-10 (m)^{\circ}$ J4A1       I       I       I       I       CH $12.60 (s)$ CH $12.60 (s)$ OH       9.86 (s)       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | _               |              | 4.87 (s)                                     | _               |                   | 4.82 (s)                                 | _               |                    | 4.75 (m)                                       |
| K14       CH $f_{0.5}$ $3.36$ (m)       CH $f_{0.2}$ $3.31$ (m)       CH $69.3$ $3.23$ (m)         K15       CH <sub>3</sub> 18.8       1.27 (d. 6.2)       CH <sub>3</sub> 18.7       1.24 (d. 6.2)'       CH <sub>3</sub> 1.13 (d. 6.0)         N1       NH       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)         OH-8       OH       12.60 (s)       CH <sub>2</sub> 43.5       4.46 (m) <sup>4</sup> OH       9.86 (s)         J4-A1       CH <sub>2</sub> 43.5       4.46 (m) <sup>4</sup> OH       9.86 (s)       OH       9.86 (s)         J4-A4       CH       12.80 (m)       C       138.7       CA (m) <sup>4</sup> OH       9.86 (s)         J4-A4       CH       128.7       7.30 (m) <sup>4</sup> CH       128.7       7.30 (m) <sup>4</sup> J4-A4       CH       128.7       7.23 (m) <sup>4</sup> CH <sub>2</sub> 2.88       0.90 (m)'         K2-R1       KZ-R3       CH       128.7       7.30 (m) <sup>4</sup> CH <sub>2</sub> 2.84 (m) <sup>4</sup> / <sup>4</sup> KZ-R4       C       CH       128.7       7.30 (m) <sup>4</sup> CH <sub>2</sub> 2.84 (m) <sup>4</sup> / <sup>4</sup> KZ-R4       C       C       165.6       C12 (m) <sup>4</sup> / <sup>4</sup> CH </td <td>K13</td> <td>CH</td> <td>75.9</td> <td>3.64 (m)<sup>e</sup></td> <td>CH</td> <td>75.7</td> <td>3.55 (dd, 9.0, 5.3)</td> <td>CH</td> <td>74.8</td> <td>3.59 (dd, 8.8, 3.5)</td>                                                                                                                                                                                                                        | K13              | CH              | 75.9         | 3.64 (m) <sup>e</sup>                        | CH              | 75.7              | 3.55 (dd, 9.0, 5.3)                      | CH              | 74.8               | 3.59 (dd, 8.8, 3.5)                            |
| N11       NH       8.34 (s)       NH       8.34 (s)       NH       9.30 (s)         NZ       NH       6.60 (t, 5.1)       NH       9.86 (s)         OH-8       OH       12.60 (s)       NH       6.60 (t, 5.1)       NH       9.86 (s)         J4-A1       CH2       4.35       4.46 (m) <sup>4</sup> 4.26 (dd, 14.6, 5.1)       OH       9.86 (s)         J4-A3       CH2       138.7       CH       128.0       7.23 (m) <sup>1/4</sup> CH       22.80       0.90 (m) <sup>7</sup> J4-A4       CH       128.7       7.30 (m) <sup>1/4</sup> CH       24.8       1.83 (m) <sup>7</sup> J4-A5       J4-A6       CH       128.0       7.23 (m) <sup>1/4</sup> CH       24.8       1.83 (m) <sup>7</sup> KZ-R1       CH       128.0       7.23 (m) <sup>1/4</sup> CH2       2.83       0.90 (m) <sup>4</sup> KZ-R3       CH       128.0       7.23 (m) <sup>1/4</sup> CH2       2.83       0.90 (m) <sup>4</sup> KZ-R4       CH       128.0       7.23 (m) <sup>1/4</sup> CH2       2.12 (m) <sup>1/4</sup> KZ-R4       CH       128.0       7.23 (m) <sup>1/4</sup> CH2       48.9       3.65 (br s) <sup>4</sup> KZ-R4       CH       128.0       7.23 (m) <sup>1/4</sup> CH2                                                                                                                                                                                                                                                                                                                                                                                                                                             | K14<br>K15       | CH              | 70.5<br>18.8 | 3.36 (M)<br>1.27 (d. 6.2)                    | CH              | 70.2<br>18.7      | 3.31 (m)<br>1.24 (d. 6.2)√               | CH<br>CH        | 69.3<br>18.3       | 3.23 (m)<br>1 13 (d 6 0)                       |
| N2         NH         6.60 (t 5.1)           OH-80         OH         12.60 (s)           J4-A1         CH2         43.5         4.46 (m) <sup>4</sup><br>4.28 (dd, 14.6, 5.1)           J4-A2         CH2         43.5         4.46 (m) <sup>4</sup><br>4.28 (dd, 14.6, 5.1)           J4-A3         C         138.7           J4-A4         CH         128.7         7.30 (m) <sup>1/2</sup> CH         128.7         7.30 (m) <sup>1/2</sup> CH         22.8"           J4-A4         CH         128.7         7.30 (m) <sup>1/2</sup> CH         22.8"         0.90 (m)'           J4-A4         CH         128.0         7.23 (m) <sup>1/2</sup> CH2         26.8         1.83 (m) <sup>2</sup> J4-A5         CH         128.7         7.30 (m) <sup>1/2</sup> CH2         2.8"         0.90 (m)'           KZ-R1         CH         128.0         7.23 (m) <sup>1/2</sup> CH2         2.8         1.83 (m) <sup>2</sup> KZ-R2         KZ-R3         CH         128.0         7.23 (m) <sup>1/2</sup> CH2         6.8         1.83 (m) <sup>2</sup> KZ-R4         KZ-R4         CH         128.0         7.23 (m) <sup>1/2</sup> CH2         6.8         2.12 (m) <sup>2</sup> KZ-R4         KZ-R4         CH         128.0<                                                                                                                                                                                                                                                                                                                                                                                         | N1               | NH              | 10.0         | 8.34 (s)                                     | NH              | 10.7              | 8.34 (s)                                 | NH              | 10.5               | 9.30 (s)                                       |
| OH-8<br>J4-A1     OH     12.60 (s)       J4-A2     CH2     43.5     4.46 (m) <sup>k</sup><br>4.28 (dd, 14.6, 5.1)       J4-A3     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A4     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A5     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A6     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A7     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A6     CH     128.0     7.30 (m) <sup>1/k</sup><br>CH       J4-A7     CH     128.0     7.23 (m) <sup>1/k</sup> KZ-R1     CH     128.0     7.23 (m) <sup>1/k</sup> KZ-R3     CH     128.0     7.23 (m) <sup>1/k</sup> KZ-R4     CH     128.0     7.23 (m) <sup>1/k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                  | N2               |                 |              |                                              | NH              |                   | 6.60 (t, 5.1)                            |                 |                    |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OH-8             | ОН              |              | 12.60 (s)                                    |                 |                   |                                          |                 |                    | / .                                            |
| J4A1       CH2       4.35       4.48 (III)         J4A2       C       138.7         J4A3       CH       128.7       7.30 (m) <sup>1/2</sup> J4A4       CH       128.7       7.30 (m) <sup>1/2</sup> J4A4       CH       128.7       7.30 (m) <sup>1/2</sup> J4A4       CH       128.7       7.30 (m) <sup>1/2</sup> J4A5       CH       128.7       7.30 (m) <sup>1/2</sup> J4A7       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R1       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R2       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R3       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R4       CH       128.0       128.0         KZ-R4       CH       128.0       128.0         KZ-R4       CH       128.0       128.0         KZ-R6       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OH-R8            |                 |              |                                              | CH              | 10 E              | 1 16 (m)k                                | ОН              |                    | 9.86 (s)                                       |
| J4-A2       C       138.7         J4-A3       CH       128.0       7.23 (m) <sup>1/2</sup> J4-A4       CH       128.7       7.30 (m) <sup>1/2</sup> J4-A5       CH       128.7       7.30 (m) <sup>1/2</sup> J4-A6       CH       128.7       7.30 (m) <sup>1/2</sup> J4-A6       CH       128.7       7.30 (m) <sup>1/2</sup> J4-A7       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R1       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R2       CH       128.0       7.23 (m) <sup>1/2</sup> KZ-R4       CH       128.0       1.83 (m <sup>3/2</sup> )         KZ-R4       C       128.0       1.83 (m <sup>3/2</sup> )         KZ-R4       C       128.0       1.83 (m <sup>3/2</sup> )         KZ-R6       C       156.4       1.83 (m <sup>3/2</sup> )         KZ-R7       C       156.4       1.85 (m <sup>3/2</sup> )         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J4-A1            |                 |              |                                              |                 | 43.5              | 4.46 (III)<br>4.26 (dd. 14.6, 5.1)       |                 |                    |                                                |
| J4-A3       CH $128.0$ $7.23 (m)^{1/2}$ J4-A4       CH $128.7$ $7.30 (m)^{1/2}$ J4-A5       CH $127.4$ $7.27 (m)^{1/2}$ J4-A6       CH $128.7$ $7.30 (m)^{1/2}$ J4-A7       CH $128.7$ $7.30 (m)^{1/2}$ KZ-R1       CH $128.7$ $7.30 (m)^{1/2}$ KZ-R2       CH $128.0$ $7.23 (m)^{1/2}$ KZ-R4       CH $128.7$ $7.30 (m)^{1/2}$ KZ-R4       CH $128.0$ $7.23 (m)^{1/2}$ KZ-R4       CH $20.8^{1/2}$ $0.90 (m)^{1/2}$ KZ-R4       CH $22.8 (m)^{1/2}$ $2.12 (m)^{1/2}$ KZ-R4       CH $24.8 (m)^{1/2}$ $2.48 (m)^{1/2}$ KZ-R6       C       CH2 $46.9$ $3.65 (br s)^{1/2}$ KZ-R7       C $156.4$ C $117.9$ KZ-R7       C $145.5$ CH3 $20.8^{1/2}$ KZ-R10       C $145.4$ C $117.9$ KZ-R11       C $145.5$ CH3 $20.8^{1/2}$ KZ-R13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J4-A2            |                 |              |                                              | С               | 138.7             |                                          |                 |                    |                                                |
| J4-A4<br>J4-A5<br>J4-A6<br>J4-A7       CH $128.7$ $7.30 (m)^{1/4}$ CH $127.4$ $7.27 (m)^{1/4}$ CH $128.7$ $7.30 (m)^{1/4}$ J4-A7       CH $128.0$ $7.23 (m)^{1/4}$ KZ-R1       CH $128.0$ $7.23 (m)^{1/4}$ KZ-R2       CH $128.0$ $7.23 (m)^{1/4}$ KZ-R3       CH $128.0$ $7.23 (m)^{1/4}$ KZ-R4       CH $128.0$ $7.23 (m)^{1/4}$ KZ-R4       CH $20.8^{1/4}$ $0.90 (m)^{1/4}$ KZ-R5       CH $22.8 (m)^{1/4}$ $2.12 (m)^{1/4}$ KZ-R6       CH       CH $24.8 (m)^{1/4}$ KZ-R6       C $156.4$ CH         KZ-R7       CH $94.0$ $6.51 (s)$ KZ-R6       C $156.4$ C         KZ-R6       C $117.9$ C         KZ-R8       C $145.5$ C         KZ-R10       C $145.5$ C         KZ-R11       KZ-R13       CH $91.3 6.77 (s)$ KZ-R14       CH $20.8^{1/4} (m)^{1/4}$ $24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J4-A3            |                 |              |                                              | СН              | 128.0             | 7.23 (m) <sup><math>tx</math></sup>      |                 |                    |                                                |
| J4-A6       CH       12.4       7.20 (m) <sup>1/x</sup> J4-A7       CH       128.0       7.23 (m) <sup>1/x</sup> KZ-R1       CH       128.0       7.23 (m) <sup>1/x</sup> KZ-R2       CH       128.0       7.23 (m) <sup>1/x</sup> KZ-R3       CH       128.0       7.23 (m) <sup>1/x</sup> KZ-R4       CH       20.8"       0.90 (m)'         KZ-R5       CH2       65.8       2.12 (m)"         KZ-R6       CH2       65.8       2.48 (m) <sup>3/x</sup> KZ-R6       CH2       46.9       3.65 (br s)"         KZ-R8       C       156.4       CH         KZ-R9       C       156.4       CH       CH         KZ-R11       C       156.4       C       117.9         KZ-R12       CH3       20.8"       0.84 (m) <sup>3/x</sup> KZ-R14       CH3       20.8"       0.84 (m) <sup>3/x</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J4-A4            |                 |              |                                              | CH              | 128.7             | 7.30 (m) <sup><math>tx</math></sup>      |                 |                    |                                                |
| J4-A7       CH       128.0       7.23 (m) <sup>1/x</sup> CH <sub>3</sub> 20.8 <sup>w</sup> 0.90 (m) <sup>1</sup> KZ-R1       KZ-R3       CH       128.0       7.23 (m) <sup>1/x</sup> CH <sub>3</sub> 20.8 <sup>w</sup> 0.90 (m) <sup>1</sup> KZ-R3       CH       128.0       7.23 (m) <sup>1/x</sup> CH <sub>3</sub> 20.8 <sup>w</sup> 0.90 (m) <sup>1</sup> KZ-R3       CH       128.0       7.23 (m) <sup>1/x</sup> CH <sub>2</sub> 2.8       1.83 (m) <sup>5</sup> KZ-R4       CH       24.8       1.9       2.12 (m) <sup>n</sup> 2.12 (m) <sup>n</sup> KZ-R5       CH <sub>2</sub> 52.8       2.48 (m) <sup>1/y</sup> 2.48 (m) <sup>1/y</sup> KZ-R6       KZ-R7       CH <sub>2</sub> 46.9       3.65 (br s) <sup>u</sup> KZ-R7       KZ-R8       C       156.4       C       156.4         KZ-R10       C       156.4       C       117.9       C       145.5         KZ-R10       KZ-R11       CH <sub>3</sub> 2.0.8 <sup>v</sup> (m) <sup>0</sup> 2.48 (m) <sup>1/y</sup> 2.48 (m) <sup>1/y</sup> KZ-R12       KZ-R13       CH <sub>2</sub> 46.9       3.65 (br s) <sup>u</sup> 2.48 (m) <sup>1/y</sup> KZ-R14       CH <sub>2</sub> 46.9       3.65 (br s) <sup>u</sup> 2.48 (m) <sup>1/y</sup> 2.48 (m) <sup>1/y</sup>                                                                                                                                                                                                                                                                                                                                                                                        | J4-A5<br>.I4-A6  |                 |              |                                              | СН              | 127.4             | $7.27 (m)^{x}$<br>7.30 (m) <sup>/x</sup> |                 |                    |                                                |
| KZ-R1<br>KZ-R2<br>KZ-R3CH3<br>$20.8^{w}$ $0.90 (m)^{v}$<br>$CH$ $24.8$<br>$24.8$ $1.83 (m)^{s}$<br>$2.12 (m)^{n}$<br>$2.12 (m)^{n}$<br>$2.12 (m)^{n}$ KZ-R4CH2 $65.8$<br>$2.12 (m)^{v}$ $2.12 (m)^{v}$<br>$2.48 (m)^{t/v}$<br>$2.48 (m)^{t/v}$<br>$2.48 (m)^{t/v}$<br>$3.65 (br s)^{u}$ KZ-R5CH2 $52.8$<br>$2.48 (m)^{t/v}$<br>$2.48 (m)^{t/v}$<br>$3.65 (br s)^{u}$ KZ-R6CH2 $56.4$<br>C<br>CKZ-R7C $156.4$<br>C<br>CKZ-R8C $117.9$<br>C<br>CKZ-R9C $117.9$<br>CKZ-R10CH1 $91.3$<br>CH2KZ-R11CH3<br>CH2 $20.8^{u}$<br>$2.48 (m)^{v/v}$<br>$2.48 (m)^{v/v}$ KZ-R12CH2 $46.9$<br>CH2KZ-R13CH3<br>CH2KZ-R14CH2 $2.82 (48 (m)^{v/v})$<br>$2.48 (m)^{v/v}$ KZ-R14CH2 $52.8 (2.48 (m)^{v/v})$<br>$2.48 (m)^{v/v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J4-A7            |                 |              |                                              | СН              | 128.0             | 7.23 (m) <sup>tx</sup>                   |                 |                    |                                                |
| KZ-R2       CH       24.8       1.83 (m) <sup>5</sup> KZ-R3       CH <sub>2</sub> 65.8       2.12 (m) <sup>n</sup> KZ-R4       CH <sub>2</sub> 52.8       2.48 (m) <sup>4</sup> <sup>y</sup> KZ-R5       CH <sub>2</sub> 52.8       2.48 (m) <sup>4</sup> <sup>y</sup> KZ-R6       CH <sub>2</sub> 65.9       3.65 (br s) <sup>u</sup> KZ-R7       CH       94.0       6.51 (s)         KZ-R8       C       156.4         KZ-R9       C       156.4         KZ-R8       C       156.4         KZ-R10       C       156.4         KZ-R10       C       117.9         KZ-R11       C       145.5         KZ-R12       CH <sub>3</sub> 0.84 (m) <sup>67</sup> KZ-R13       CH <sub>3</sub> 20.8 <sup>v</sup> 0.84 (m) <sup>67</sup> KZ-R14       CH <sub>2</sub> 46.9       3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KZ-R1            |                 |              |                                              |                 |                   |                                          | CH₃             | 20.8 <sup>w</sup>  | 0.90 (m) <sup>r</sup>                          |
| KZ-R3       CH2       65.8       2.12 (m) <sup>n</sup> KZ-R4       CH2       52.8       2.48 (m) <sup>4</sup> <sup>n</sup> KZ-R5       CH2       46.9       3.65 (br s) <sup>u</sup> KZ-R6       C       156.4       3.65 (br s) <sup>u</sup> KZ-R7       C       156.4       52.8         KZ-R9       C       156.4       52.8         KZ-R9       C       156.4       52.8         KZ-R10       C       156.4       52.8         KZ-R11       C       117.9       7.7         KZ-R13       CH3       20.8 <sup>v</sup> 0.84 (m) <sup>a</sup> KZ-R13       CH3       20.8 <sup>v</sup> 0.84 (m) <sup>a</sup> KZ-R14       CH2       52.8       2.48 (m) <sup>bv</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KZ-R2            |                 |              |                                              |                 |                   |                                          | CH              | 24.8               | 1.83 (m) <sup>s</sup>                          |
| KZ-R4       CH2       52.8       2.48 (m) <sup>4</sup> /v         KZ-R5       CH2       46.9       3.65 (br s) <sup>4</sup> KZ-R6       C       156.4         KZ-R7       CH       94.0       6.51 (s)         KZ-R9       C       156.4         KZ-R9       C       156.4         KZ-R9       C       156.4         KZ-R10       C       156.4         KZ-R11       C       145.5         KZ-R12       CH3       0.77 (s)         KZ-R13       CH3       20.8 <sup>o</sup> KZ-R14       CH2       3.65 (br s) <sup>on</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KZ-R3            |                 |              |                                              |                 |                   |                                          | CH <sub>2</sub> | 65.8               | 2.12 (m) <sup>n</sup><br>2.12 (m) <sup>n</sup> |
| KZ-R5     2.48 (m) <sup>4</sup> y       KZ-R6     CH2     46.9     3.65 (br s) <sup>4</sup> KZ-R6     C     156.4       KZ-R7     CH     94.0     6.51 (s)       KZ-R9     C     156.4       KZ-R9     C     156.4       KZ-R10     C     145.9       KZ-R11     C     145.5       KZ-R13     CH3     20.8 <sup>y</sup> KZ-R13     CH3     20.8 <sup>y</sup> KZ-R14     CH2     46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KZ-R4            |                 |              |                                              |                 |                   |                                          | CH <sub>2</sub> | 52.8               | 2.48 (m) <sup>t,y</sup>                        |
| KZ-R5       CH2       46.9       3.65 (br s) <sup>u</sup> KZ-R6       C       156.4         KZ-R7       CH       94.0       6.51 (s)         KZ-R9       C       156.4         KZ-R9       C       117.9         KZ-R10       C       145.5         KZ-R12       CH       91.3       6.77 (s)         KZ-R13       CH2       2.88       2.48 (m) <sup>4</sup> y         KZ-R14       CH2       46.9       3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 |              |                                              |                 |                   |                                          |                 | -                  | 2.48 (m) <sup>́t,y</sup>                       |
| KZ-R6     C     156.4       KZ-R7     CH     94.0     6.51 (s)       KZ-R8     C     156.4       KZ-R9     C     145.5       KZ-R10     CH     91.3     6.77 (s)       KZ-R12     CH3     20.84 (m) <sup>9</sup> KZ-R13     CH2     52.8     2.48 (m) <sup>9</sup> KZ-R14     CH2     46.9     3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KZ-R5            |                 |              |                                              |                 |                   |                                          | CH <sub>2</sub> | 46.9               | $3.65 (br s)^{u}$                              |
| KZ-R7       CH       94.0       6.51 (s)         KZ-R8       C       156.4         KZ-R9       C       145.5         KZ-R10       CH       91.0       6.77 (s)         KZ-R12       CH       91.3       6.77 (s)         KZ-R13       CH2       52.8       2.48 (m) <sup>4y</sup> KZ-R14       CH2       46.9       3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K7-R6            |                 |              |                                              |                 |                   |                                          | C               | 156.4              | 3.65 (Dr s)"                                   |
| KZ-R8     C     1564     KZ-R9       KZ-R10     C     117.9       KZ-R11     C     145.5       KZ-R12     CH     91.3     6.77 (s)       KZ-R13     CH3     20.8°     0.84 (m)°       KZ-R14     CH2     46.9     3.65 (br s)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KZ-R7            |                 |              |                                              |                 |                   |                                          | Сн              | 94.0               | 6.51 (s)                                       |
| $ \begin{array}{cccc} KZ-R9 \\ KZ-R10 \\ KZ-R10 \\ KZ-R11 \\ KZ-R12 \\ KZ-R13 \\ KZ-R13 \end{array} \qquad \qquad \begin{array}{cccc} C & 117.9 \\ C & 145.5 \\ CH & 91.3 & 6.77  (s) \\ CH_3 & 20.8^{v} & 0.84  (m)^{q} \\ CH_3 & 20.8^{v} & 0.84  (m)^{q} \\ CH_2 & 52.8 & 2.48  (m)^{4y} \\ & 2.48  (m)^{4y} \\ KZ-R14 \end{array} \qquad \qquad \begin{array}{cccc} CH_2 & 46.9 & 3.65  (brs)^{u} \\ CH_2 & 2.65  (brs)^{u} \\ CH_2 & 2.65  (brs)^{u} \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KZ-R8            |                 |              |                                              |                 |                   |                                          | c               | 156.4              |                                                |
| KZ-R10       C       145.5         KZ-R11       CH       91.3       6.77 (s)         KZ-R12       CH <sub>3</sub> 20.8 <sup>o</sup> 0.84 (m) <sup>o</sup> KZ-R13       CH <sub>2</sub> 52.8       2.48 (m) <sup>i</sup> <sup>j</sup> KZ-R14       CH <sub>2</sub> 46.9       3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KZ-R9            |                 |              |                                              |                 |                   |                                          | С               | 117.9              |                                                |
| KZ-R12     CH     91.3     6.77 (s)       KZ-R13     CH <sub>3</sub> 20.8°     0.84 (m)°       KZ-R14     CH <sub>2</sub> 52.8     2.48 (m) <sup>4</sup> KZ-R14     CH <sub>2</sub> 46.9     3.65 (br s)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KZ-R10           |                 |              |                                              |                 |                   |                                          | C               | 145.5              | 6 77 (a)                                       |
| KZ-R13     CH2     52.8     2.48 (m) <sup>4</sup> / <sup>2</sup> KZ-R14     CH2     46.9     3.65 (br s) <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KZ-R11<br>KZ-R12 |                 |              |                                              |                 |                   |                                          | CH∘<br>CH∘      | 91.3<br>20.8º      | 0.77 (S)<br>0.84 (m) <sup>q</sup>              |
| KZ-R14 2.48 (m)*y<br>CH <sub>2</sub> 46.9 3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KZ-R13           |                 |              |                                              |                 |                   |                                          | CH <sub>2</sub> | 52.8               | 2.48 (m) <sup>t,y</sup>                        |
| KZ-R14 CH <sub>2</sub> 46.9 3.65 (br s) <sup>u</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                 |              |                                              |                 |                   |                                          | 1               |                    | 2.48 (m) <sup>t,y</sup>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KZ-R14           |                 |              |                                              |                 |                   |                                          | CH <sub>2</sub> | 46.9               | 3.65 (br s) <sup>u</sup>                       |

## Table S4. <sup>1</sup>H and <sup>13</sup>C chemical shifts of Kang A, J4, and KZ.<sup>a</sup>

<sup>a 1</sup>H and <sup>13</sup>C NMR data were obtained at 600 and 150 MHz, respectively, at 25 °C on a Bruker Avance NMR with a TCI triple resonance cryoprobe. Solvents used were:  $CD_2Cl_2$  (Kang A),  $CDCl_3$  (J4), and  $DMSO-d_6$  (KZ).

<sup>b</sup> Numbering of J4 and KZ carbon atoms is shown in Figure S12. Numbering of KZ carbon atoms has been modified from the numbering system for rifalazil presented in: Mae *et al.*, Isolation and identification of major metabolites of rifalazil in mouse and human, *Xenobiotica*, 1999, 29, 1073-1087.

<sup>°</sup> KZ exhibited broad <sup>1</sup>H peaks in a number of common NMR solvents, possibly due to a conformational exchange process as previously reported for other benzoxazinorifamycins (Gill *et al.*, Structure-based design of novel benzoxazinorifamycins with potent binding affinity to wild-type and rifampin-resistant mutant *Mycobacterium tuberculosis* RNA polymerases, *J Med Chem*, 2012, 55, 3814-3826). Low temperature experiments were attempted in an effort to improve the spectra, but were unsuccessful. The dataset presented here was collected at 25 °C in DMSO-d<sub>6</sub>, which yielded the sharpest peaks of the conditions tested. While the presence of the KZ synthetic modification is apparent in the signals for KZ carbons R1 to R14 and their associated protons, the broadness of the proton peaks resulted in some ambiguity in multiplicity analysis and in peak assignments at other parts of the molecule.

<sup>*d-u*</sup> overlapping <sup>1</sup>H signals.

<sup>*v*,*w*</sup> overlapping <sup>13</sup>C signals.

<sup>x,y 1</sup>H signal overlapped with solvent peak.

<sup>*z* <sup>13</sup>C signal overlapped with solvent peak.</sup>





Figure S14.  $^{13}$ C NMR spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S15. HMQC spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S16. HMBC spectrum of Kang A in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S17. COSY spectrum of Kang A in  $CD_2Cl_2$ .



Figure S18. <sup>1</sup>H NMR spectrum of J4 in CDCl<sub>3</sub>.



Figure S19. <sup>13</sup>C NMR spectrum of J4 in CDCl<sub>3</sub>.



Figure S20. HSQC NMR spectrum of J4 in CDCl<sub>3</sub>.



Figure S21. HMBC NMR spectrum of J4 in CDCl<sub>3</sub>.











Figure S26. HMBC NMR spectrum of KZ in DMSO-d<sub>6</sub>.



Figure S27. COSY NMR spectrum of KZ in DMSO-d<sub>6</sub>.