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SUMMARY
Many organs are formed through folding of an epithelium. This change in shape is usually attributed to tissue
heterogeneities, for example, local apical contraction. In contrast, compressive stresses have been pro-
posed to fold a homogeneous epithelium by buckling. While buckling is an appealing mechanism, demon-
strating that it underlies folding requires measurement of the stress field and the material properties of the
tissue, which are currently inaccessible in vivo. Here, we show that monolayers of identical cells proliferating
on the inner surface of elastic spherical shells can spontaneously fold. By measuring the elastic deformation
of the shell, we infer the forces acting within the monolayer and its elastic modulus. Using analytical and nu-
merical theories linking forces to shape, we find that buckling quantitatively accounts for the shape changes
of our monolayers. Our study shows that forces arising from epithelial growth in three-dimensional confine-
ment are sufficient to drive folding by buckling.
INTRODUCTION

Epithelium folding is essential for the formation of many or-

gans, such as the gut during gastrulation and the central ner-

vous system during neurulation (Davidson, 2012; Lecuit et al.,

2011). Historically, morphogenesis through epithelium folding

was studied using gastrulation of simple embryos (sea urchins

and cnidarians) as models. In the early 20th century, Rhumbler

and Assheton discussed the mechanical processes by which

epithelium could fold during gastrulation (Assheton, 1910;

Rhumbler, 1902). They proposed that accumulation of

stresses within the layer could lead to folding. The origin of

these stresses could be growth under confinement or active

contractile forces. Rhumbler and Assheton very well pictured

that these contractile forces had to be local and polarized—

occurring only on one face of the embryo—to fold the epithe-

lium. By imaging how excised animal poles of embryos would

invaginate in absence of compressive stresses of surrounding

tissues, Moore and Burt showed that active contraction was

an essential mechanism of folding (Moore and Burt, 1939).

This polarized active contraction—now called apical constric-

tion—was further showed to rely on the acto-myosin belt
Developmental Cell 54, 655–668, Septe
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found at the apical surface of epithelial cells (Davidson,

2012; Harris, 2018; He et al., 2014; Lecuit and Lenne, 2007;

Leptin, 1995; Leptin and Grunewald, 1990; Martin et al.,

2009; Wang et al., 2012). Apical constriction is driven by the

activation of myosin-II by the Fog pathway, downstream of

Twist (Barrett et al., 1997; Kölsch et al., 2007; M€uller and Wie-

schaus, 1996; Parks and Wieschaus, 1991). More generally, is-

lets of more contractile cells can form domains within a

growing mesenchyme and lead to its folding (Hughes et al.,

2018). All active bending mechanisms rely on a subpopulation

of cells that have specific mechanical properties within the tis-

sue (more contractile, more rigid, or more motile) and that

locally generate mechanical stresses. Following the impressive

example of Rhumbler (Rhumbler, 1902), many studies showed

that mechanical models of apical constriction could predict

accurately the global shape of gastrulated embryos but also

of individual cells (Driquez et al., 2011; Ho�cevar Brezav�s�cek

et al., 2012; Krajnc and Ziherl, 2015; Odell et al., 1980,

1981; Pouille and Farge, 2008; Rauzi et al., 2013; �Storgel

et al., 2016; Streichan et al., 2018).

However, because they are local and are generated by a small

number of cells, these forces may be too weak to deeply
mber 14, 2020 ª 2020 The Authors. Published by Elsevier Inc. 655
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Figure 1. Characterization of Epithelium Growth and Folding in a Spherical Capsule

(A) Schematic of experimental setup (see also Figure S1).

(B) Left, confocal plane and right, maximum Z-projection of a fully formed MDCK spherical monolayer (Red, deep red CellMask, membrane and green, FITC-

alginate, capsule).

(C) Maximum Z-projection of a fixed and folded MDCK monolayer stained with Phalloidin-Alexa488 (actin), respectively.

(D) Maximum projections of confocal planes of MDCK-Myr-PALM-GFP cells forming spherical epithelial monolayer that folds after 45 h.

(E) Confocal equatorial planes of 1-fold (top) and 2-fold (bottom) of epithelium. Asterisks indicate folds.

(legend continued on next page)
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invaginate large tissues. Also, they must be counteracted by

contractility of cells surrounding the invagination. Alternatively,

compressive stresses arising from growth under confinement

could fold epithelium by buckling without requiring heterogene-

ities or the generation of local stresses. Buckling is a bending

instability occurring in elastic materials under compressive

forces (Landau and Lifshitz, 1975). For example, a paper sheet

lying on a table buckles when pushed inwards on opposite sides.

This mechanism, while being implicit in Rhumbler and Asshe-

ton’s work (Assheton, 1910; Rhumbler, 1902), was best formu-

lated by Rashevsky (Rashevsky, 1940): Embryos usually grow

under the confinement of a protective elastic shell (Gilbert and

Barresi, 2017), which could drive buckling of the ectoderm

during gastrulation. While the role of this elastic shell in the

gastrulation is under intense interest (Bailles et al., 2019;M€unster

et al., 2019), it is usually considered to be essential to gastrula-

tion (Gilbert and Barresi, 2017). For example, the vitelline layer

is essential to gastrulation in C. elegans (Schierenberg and Jun-

kersdorf, 1992). Theoretical studies proposed that cell prolifera-

tion in confined geometries induce epithelium folding through

buckling (Drasdo, 2000; Hannezo et al., 2014; Ho�cevar Bre-

zav�s�cek et al., 2012; Rauzi et al., 2015).

The shapes of many organs, for example, plant leaves (Liang

and Mahadevan, 2009), villi in the mice gut (Shyer et al., 2013),

and the Drosophila wing (Tozluoǧlu et al., 2019), are compatible

with shapes resulting from buckling. In several of these exam-

ples, confinement is not generated by an external elastic shell

but rather by surrounding tissues (smooth muscles in Shyer

et al., [2013]) or heterogeneities within the tissue (Tozluoǧlu
et al., 2019). Importantly, apical constriction and buckling are

not mutually exclusive, and their added contributions were theo-

retically predicted to set the exact shape of cells and epithelium

in many cases (Drasdo, 2000; Ho�cevar Brezav�s�cek et al., 2012;

Krajnc and Ziherl, 2015; Odell et al., 1981; Rauzi et al., 2013; To-

zluoǧlu et al., 2019).

In all cases, it is however required to measure the mechan-

ical stresses in the epithelium and its mechanical properties in

order to evaluate the specific contribution of buckling to

epithelium folding. Several techniques are available for

measuring mechanical stresses in single cells and tissues

(Roca-Cusachs et al., 2017). A first category relies on local

elastic deformation of the substrate balancing the internal

forces of the tissue or cells, such as traction force microscopy

(Mandal et al., 2014). Another category relies on mechanical

probes embedded into the tissue, such as oil droplets (Mon-

gera et al., 2018) or mechanosensitive lipid probes (Colom

et al., 2018). Finally, these forces can be inferred from the dy-

namics of tissue deformations during morphogenesis, with

some assumptions (Etournay et al., 2015; Guirao et al.,

2015). Many of these techniques require knowledge of the

tissue’s material properties, which are often impossible to

measure directly. In this study, we aimed at measuring

compressive stresses within folding epithelium using elastic

properties of an alginate capsule, into which an epithelial

monolayer grows.
(F) Mean cell number per capsule over time; three experiments, n = 53 capsules

(G) A confocal equatorial image of a folded MDCK II monolayer after fixed and i

(green, actin). Scale bars, 100 mm.
RESULTS

Cell Encapsulation Recapitulates Epithelial Monolayer
Folding under Confinement
To directly test if mechanical stresses generated by proliferation

can induce buckling of epithelia, we undertook an in vitro

approach and studied the growth of a cell monolayer confined

in a spherical shell. The spherical geometry presents several

advantages over others: it is the one of the early embryos, and

it does not have boundaries, such that all cells experience the

same three-dimensional (3D) environment. Specifically, we

encapsulated MDCK-II cells in hollow alginate spheres, hereon

referred to as capsules. To form them, we used a 3D-printed

microfluidic device to generate three-layered droplets. Their

outer layer consisted of alginate, which underwent gelation in

a 100 mM CaCl2 solution (Figures 1A and S1 and STAR

Methods) (Alessandri et al., 2016; Alessandri et al., 2013). The in-

ner surface of the capsules was coated with a 3–4-mm thick layer

of Matrigel to which cells adhered (Figures 1G and S1) (Alessan-

dri et al., 2016) and on which they formed epithelial monolayers

(Figure 1B).

Encapsulated cells were imaged using 3D time-lapse

confocal microscopy. Time zero corresponds to the start of

imaging, 24 h after capsule formation (STAR Methods), unless

mentioned otherwise. Initially, MDCK-II cells were sparsely

distributed on the capsule’s inner surface. Through prolifera-

tion, cells first formed clusters, which then merged into a

monolayer (Figure 1D). Monolayers reached confluency at

8.8 ± 0.8 h (mean ± SEM, as in the rest of the text, unless

noted, n = 54). Monolayers folded after 14.5 ± 0.8 h (n = 54)

in approximately 80–90% of the capsules. In this process, a

portion of the monolayer detached from the alginate shell

and progressively bent inward (Figures 1C–1E; Video S1). Pro-

liferation was unaffected by confluency or folding, as the cell

number increased linearly with a rate of 3.6 ± 0.1 cells per

hour (n = 54) for 55 h (Figure 1F), consistent with the estab-

lished growth dynamics of MDCK cells (Soderberg et al.,

1983). From these observations, we concluded that cell

monolayers confined in a spherical shell can spontane-

ously fold.

Epithelial Monolayer Folding Is Due to Buckling
Before investigating in detail whether epithelium folding in our

experiments was due to buckling, we checked whether other

processes contributed to folding. First, monolayers of MDCK-II

cells on micro-patterned substrates have been reported to

form osmotically swelling domes by ionic pumping through the

cell monolayer (Latorre et al., 2018). To sustain the osmotic pres-

sure difference that grow the domes, the substrate needs to be

impermeable to these ions, and the monolayer must have no

holes. In our experiments, themonolayer remained sealed during

folding, as evidenced by negligible fluorescein loss from the

monolayer lumen (Figure S2). The exchange of volume between

the lumen of the monolayer and its exterior during folding can be

accounted for by the flux of water through the monolayer
; error bars are SDs.

mmunostaining with antiLaminin-A568 (red, Matrigel) and phallodin-Alexa488
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(Methods S1, Section 1). In contrast to the experiments in

(Latorre et al., 2018), where polydimethylsiloxane (PDMS) was

used as a substrate, alginate shells cannot maintain significant

osmotic pressure differences: Alginate is highly permeable to

small molecules, as we showed by fast fluorescein diffusion

from the capsule exterior to its interior (Figure S2).

Second, in some morphogenetic processes, active cell flows

induce sufficient stresses to fold epithelia (Etournay et al.,

2015;M€unster et al., 2019). In our assay, however, no large-scale

collective cellular flows were observed (Figure 2A). Altogether,

we concluded that none of these mechanisms explained mono-

layer folding in our assay, and we further investigated the possi-

bility of epithelium buckling due to stresses by cell proliferation

under confinement.

Finally, acto-myosin contractility can lead to folding, for

example, through apical constriction or in presence of differ-

ences between basal and lateral tension (Sui et al., 2018). Since

the apical side of our encapsulated monolayers faced the inte-

rior of capsules (Figure S3), apical constriction would rather

oppose than promote folding in our system (Diaz-de-la-Loza

et al., 2018; Krajnc and Ziherl, 2015; Lecuit and Lenne, 2007;
�Storgel et al., 2016). We further investigated the role of acto-

myosin contractility in folding by treating capsules with 10 mM

blebbistatin to inhibit myosin II. In that case, cells did not

detach from the alginate shell, and no fold emerged (Figure 2B;

Video S2). This result was fully consistent with our recent work

showing that contractility of epithelial cells was required to

detach the cell monolayer encapsulated in alginate tubes

(Maechler et al., 2019). In these alginate tubes, the epithelium

detached but did not fold, and blebbistatin inhibited detach-

ment. In those tubes, cell monolayers did not fold because cells

were not confined, as they can grow along the tube axis almost

indefinitely. We, however, wanted to test further if acto-myosin

constriction was essential to folding in the spherical capsules

after detachment.

To bypass the effect of confinement, we blocked cell prolifer-

ation. To this end, we treated encapsulated epithelia with 10 mM

Mitomycin C to block their proliferation at the time they reached

confluency. After 10 h of Mitomycin treatment, no folds were

observed, whereas epithelia were folded in control capsules

(Figure 2B; Video S3). Over a longer time period, cell monolayers

detached, tore, and reorganized but never folded (Figure S4).

These results showed that when proliferation is blocked and

contractility is not affected, monolayer detachment is observed,

but not folding, supporting our previous findings that cell

contractility is involved in detachment and not in folding (Maech-

ler et al., 2019). It also shows that confinement is essential to

folding.

To further check that confinement was essential, we dissolved

capsules using alginate lyase immediately after monolayers

reached confluency. In this case either, we could not observe

monolayer folding (Figure 2C; Video S4). We concluded that

confinement is essential for monolayer folding. Interestingly, if

capsules were dissolved after folding, epithelia just detached

or partially folded relaxed to a round shape, while fully folded

epithelium only partially relaxed (Figure 2C). At the longer over-

night timescale, fully formed folds almost fully relaxed. This sug-

gested that epithelia were under compressive stresses during

folding and supported the buckling hypothesis.
658 Developmental Cell 54, 655–668, September 14, 2020
Measurements of Compressive Stresses Due to
Monolayer Proliferation and Folding
Since alginate is elastic, stresses caused by cell proliferation can

be inferred from capsule deformations: The alginate shell un-

dergoes expansion and thinning during proliferation (Figure 3A).

Capsuleswithout cells kept a constant wall thickness (Figure S5).

To infer the effective pressure corresponding to these compres-

sive stresses, we measured the average capsule radius and wall

thickness in confocal images (Figures 3B–3D), and their elasticity

modulus (Young’s modulus) by atomic force microscopy (AFM)

(Figure 3E; STARMethods), for four different alginate concentra-

tions (1, 1.5, 2, and 2.5%, see STAR Methods; Figure S5). For all

alginate concentrations, the pressure increased during approxi-

mately 55 h, reaching a maximal value of 300–400 Pa (Figure 3F).

The proliferation rate being constant during the the first 40–50 h,

we concluded that pressures below 300 Pa did not significantly

affect the proliferation rate.

The pressure at folding measured stresses required for folding

and was between 50 and 100 Pa for 1.5, 2, and 2.5% alginate

concentration (Figure 3G). Thus, it did not significantly depend

on the capsule stiffness. For 1%, however, the monolayer did

not detach from the capsule shell upon folding in approximately

65% of the cases. Rather, the shell was pulled in by the folding

monolayer (Figures 3H and 3I; Video S5), confirming that osmotic

pressure was not at the origin of folding. We estimated the force

exerted by cells onto 1% alginate shells by using Hooke’s law for

the deformation of the capsule (Figure 3H). The effective spring

constant (0.03 ± 0.003 N/m, n = 44) was measured using an

FT-S100 indenter (FemtoTools, Buchs, Switzerland, see STAR

Methods, Figures 3J, 3K, and S5). This value resulted in an

average maximal deflection force of 1.8 ± 0.2 mN (n = 20), about

a hundred times larger than themaximal force exerted by a single

cell (Mandal et al., 2014). Dividing this value by the invagination

area, we obtained a pressure of 128 ± 6 Pa (n = 20) (STAR

Methods; Figure 3L), which is of the same order as for other algi-

nate concentrations (Figure 3G).

Continuum Theory of the Buckling Transition Supports
Buckling
We theoretically determined the compressive stresses within the

monolayer corresponding to the pressure at folding. To this end,

we used a continuum description without cellular details. Cell

monolayers are described as a circular elastic ring in two dimen-

sions, reproducing the geometry in an equatorial confocal plane

(Figures 4A and 4B; Methods S1, Section 2). Confinement is ac-

counted for by restricting the cellular ring to a circular domain of

radius R. If not confined, the ring is circular and has a radius r. If

confinedand r >R, then the ring isdeformed, namely, compressed

orbent. Twoelasticparameterscharacterize its resistance to these

deformations: thebending rigidityK and the compressional rigidity

l (Methods S1, Section 2). For r > R, confinement is achieved by a

harmonic forceof springconstant k,which represents theelasticity

of the capsule. The ring shape is determinedbyminimizationof the

total energy, which is a combination of the bending, compression,

and confinement energies (Methods S1, Section 2).

In our theory, we captured monolayer size by the excess strain

Dε=DL/2pR,whereDL= 2p(r�R) is the excess length (Figure 4B).

This system exhibits a first order buckling transition controlled by

the excess strain Dε (Chan and McMinn, 1966; Lo et al., 1962)



Figure 2. Monolayer Folding is Due to Buckling

(A) Top; confocal equatorial planes of Myr-PALM-GFP-

MDCK monolayer during folding. Time T = 0 corresponds

to the beginning of folding. Bottom; Kymograph along the

red line shown above 10 h post-folding. Time is towards

the bottom (see arrow on the right). Timescale bar, 5 h.

(B) Confocal equatorial planes of MDCKII monolayers.

Top, non-treated control; middle, application of 10 mM

Mitomycin-C; bottom, application of 10 mM blebbistatin.

T = 0 corresponds to cell confluency.

(C) Confocal equatorial planes of MDCKII monolayer

relaxation due to capsule dissolution with alginate lyase.

Asterisks highlight relaxation. Scale bars, 100 mm.
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(Figure S6; Methods S1, Section 3). If the rigidity of the capsule is

much higher than the one of the epithelium (l/kR2 < 1), the

threshold excess strain at the transition can be deduced by

comparing the energies in two limiting cases: a compressed un-

buckled ring (Figure 4C) and an uncompressed buckled ring (Fig-

ure4D). In thefirstcase (Figure4C), stationary ringsaccommodate

Dε through compression, resulting in circular shapes. The local

strain scales as � Dε and the compressed ring length as �R, re-

sulting in a compressive energy per unit length DE � lRDε2

(Methods S1, Section 3). In the second case (Figure 4D), rings

accommodate Dε through bending deformations. We estimated

the energy of a buckled ring by splitting it into two parts: a folded

segment and an undeformed ring segment (Figure 4D). The fold is

characterized by its depth d and its opening angle a (Figures 4D

andS6).Minimizing the energy for this shapewhile keeping the to-

tal length constant yields a � Dε1/3 and d � RDε2/3 (Methods S1,

Section 3). The fold average curvature scales as � d/(Ra)2, and

the folded segment length scales as � Ra, resulting in a bending

energy per unit length of the buckled ringDE�KDε1/3/R (Methods

S1, Section3). Thebuckling transitionoccurswhen theenergiesof

both the constraint ring and the buckled ring are comparable,

which happens for a threshold excess strain Dεc � (K/lR2)3/5.

This threshold depends on both the tissue material properties

and theconfinementgeometry (Figure4E;MethodsS1,Section3).

From this, the pressure at buckling can be determined. Below

the threshold (Dε < Dεc), the ring compression is stabilized by a

uniform pressure P exerted by the confinement (Figure 4C).

The energy associated with this pressure is �PR2Dε and equals

the ring compression energy DE�lRDε2, yielding P�lDε/R (Fig-

ure S6;Methods S1, Section 4). Hence, the pressure at the buck-

ling transition Pbuckling, when Dε �Dεc,

Pbuckling � l2=5K3=5
.
R11=5Pbuckling � l2=5K3=5

.
R11=5

(Equation 1)

depends only on the material properties of the monolayer and

on the capsule geometry, but not on the capsule stiffness k

(Figure S6), in agreement with our experimental observations (Fig-

ures3Gand3K).Above the threshold (Dε>Dεc), a uniformpressure

PB on the undeformed ring segment contributes to stabilization of

the buckled ring (Figure 4D; Methods S1, Section 4).
Figure 3. Measurements of Compressive Stresses Due to Monolayer P

(A) Schematic of capsule thinning during epithelium proliferation.

(B) Confocal equatorial plane of thinning alginate capsule. Red contours corresp

(C) Superimposed contours of inner and outer boundaries corresponding to diffe

(D) Normalized mean capsule thickness as a function of time for different alginat

(E) Young’s modulus (kPa) as a function of the alginate concentration measured b

0.4 kPa (n = 52), 2%, 20.7 ± 0.7 kPa (n = 46) and 2.5%, 19.5 ± 0.7 kPa (n = 29). Differ

tailed p value 0.7042.

(F) Evolution of pressure (Pa) within capsules over time during epithelium prolifer

(G)Mean buckling pressure (Pa) for different alginate concentration. For (D), (F), an

bars are SEM. Difference between 1.5% and 2% alginate, and between 2.5% an

0.4909, respectively.

(H) Schematic of capsule invagination following epithelium folding.

(I) Confocal equatorial planes showing capsule invagination for 1% alginate caps

(J) Left, schematic of an indentation experiment with the FemtoTools indenter (se

(K) Box plot of spring constant for 1% alginate.

(L) Box plot of pressure at buckling (Pa) for 1% alginate capsule calculated from
We then tested this theory against experimental data. In order

to do this, we aimed at comparing how the shape of folds de-

pends on the pressure in the capsules with theoretical predic-

tions. For this, we experimentally characterized the shape of sin-

gle folds by their opening angle F, defined as the angle between

the fold axis and the line connecting thelumen’s center to the

epithelium detachment point and their depth d (Figure 4G). We

reasoned that since epithelia are adhering to the capsules,

experimental F should be comprised between two extreme

values defined theoretically in absence of adhesion: a, the open-

ing angle; and g, the inflexion angle (Figure 4D). We find that PB

can be expressed in terms of a and d, and independent of l

(Chan and McMinn, 1966) (Figure S6; Methods S1, Section 4).

F, d, and PB can be experimentally measured in capsules with

a single fold. First, the sharp transition in experimental values

of F and d with time (Figure 4F) agrees with buckling being a

first-order transition. Moreover, the dependence of F with d is

framed by the ones of a and g with d, fulfilling theoretical predic-

tion with no other free parameter (Figure 4F), supporting that the

folded monolayer’s shape emerges from buckling. Thus, the

continuum theory of buckling correctly accounts for the shape

of folds.

Next, we sought to test if our theory was accounting for the

value of the buckling pressure. To test this, we estimated the

elastic parameters K and l of the monolayer. From the rela-

tion between a2/d and PB, we found for the bending rigidity

K�0.5 ± 0.2 mNmm (approximately 10�12 J, Figure 3I). Given

that the pressure at buckling is of the order of 100 Pa (Fig-

ures 3G and 3L), we estimated l z 0.1 N/m from Equation 1

(Table 1; Methods S1, Section 5). An independent experi-

mental measure of l can be deduced from rigidity differences

between empty versus monolayer-filled capsules measured

through capsule indentation (Figures 4J and S5), yielding

l = 0.15 ± 0.13 N/m (Table 1; Methods S1, Section 5) in

agreement with the previous estimate. Also, previous mea-

surements established that the Young modulus of cell mono-

layers was 20 kPa (Harris et al., 2012). Multiplying this value

by the cell size, 10 mm, gives l = 0.2 N/m, in agreement with

our findings. Altogether, the agreement between continuum

theory and experimental values of elastic parameters

and buckling pressure supports that folding results from

buckling.
roliferation and Folding

ond to the capsule inner perimeter at T = 0 h.

rent time points.

e concentrations.

y AFM. Respective Young moduli are: 1%, 7.1 ± 0.3 kPa (n = 25), 1.5%, 11.5 ±

ence between 2%and 2.5%alginate is not statistically significant (ns) with two-

ation and for different alginate concentrations (see STAR Methods).

d (G): 1%alginate, n = 22; for 1.5%, n = 35; for 2%, n = 25; for 2.5%, n = 53; error

d 1.5% are not statistically significant (ns) with two-tailed p values 0.1119 and

ule.

e also Figure S5). Right, a representative plot of force with indentation depth.

capsule deformation (see STAR Methods). Scale bars, 100 mm.
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Figure 4. Continuum Theory of the Buckling Transition and Comparison to Experimental Data

(A) Confocal equatorial planes of epithelial monolayer bending.

(B) Equilibrium shapes of a buckled elastic ring (red) under circular confinement (cyan) as a function of ring excess strain (Dε), calculated from continuum theory

(see Figure 4B and Supplemental Information).(C) Schematic of a compressed elastic ring (red) under the pressure P of the confinement ring (cyan). (D) Schematic

of a buckled elastic ring (red) under the pressure PB of the confinement ring (cyan).

(E) Equilibrium shapes as a function of K /lR2 and the excess strain Dε. The dashed line stands for the threshold given by Equation S25 in Method S1. List of

parameters: K = 10�2, k = 105, R = 1, and l varies from 10 to 105.

(F) Experimental values of d (n = 43 from 3 replicates) andF (n = 43 from 3 replicates) as a function of time. Time point 0 corresponds to themonolayer confluence.

(G) Experimental measurements of d, F, R depicted on a confocal equatorial scan of a capsule with a buckled monolayer.

(H) Blue dots, experimental values of (F;d), (n = 24, from 3 replicates). Solid lines; theoretical relations between d and a (green) and d and g (purple) for the

compressional rigidity 10 8.

(I) Blue dots, experimental values (F,PBR
3), n = 14, from (F). Only dots where dwas smaller thanRwere kept for the fit. Solid green line fits to the theoretical relation

between a and PBR
3 giving K = 0.5 mN.mm.

(J) Spring constant values of 2.5% alginate capsules with (n = 17 from 2 replicates) and without (n = 31 from 3 replicates) a cell monolayer (see Figure S5). The

difference is not statistically significant with two-tailed p value 0.5809.

ll
OPEN ACCESS Article
The Role of Adhesion and Proliferation in Buckling
Studied by Numerical Simulations
The continuous equilibrium theory pictures well the experimental

pressure and associated shapes of folds. This approach is

appropriate, when dynamic processes, such as proliferation
662 Developmental Cell 54, 655–668, September 14, 2020
and friction/detachment from the capsule shell, occur on time-

scales that are slow in comparison with the elastic relaxation of

the cell monolayer. To study the effects of these processes in

amore general case, we numerically analyzed themonolayer dy-

namics inside alginate capsules using a two-dimensional (2D)



Table 1. Estimation of the Material Parameters of the Physical Model

E Capsule Elastic Modulus 19.5 ± 0.7 kPa (n = 29)

Y Capsule Poisson ratio ½

H Capsule thickness 19.9 ± 0.4 mm (n = 54)

R Capsule radius 97 ± 1 mm (n = 54)

Kcap = Eh3= ð12ð1 � y2ÞÞ Capsule bending rigidity 17 ± 1 mNmm (n = 54)

lcap = Eh= ð1 � y2Þ Capsule compressional rigidity 0.52 ± 0.02 mN/mm

Kcap Capsule without tissues spring constant 0.064 ± 0.003 mN/mm (n = 30)

K Capsule with tissues spring constant 0.074 ± 0.007 mN/mm (n = 16)

K Tissue bending rigidity 0.5 ± 0.2 mNmm

l Tissue compressional rigidity 0.15 ± 0.13 mN/mm

Dεc Critical excess strain at the buckling

transition

� 0:1

Pbuckling Pressure at the buckling transition � 100Pa

Errors are SEM.
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vertex model (Ho�cevar Brezav�s�cek et al., 2012; Merzouki et al.,

2016; Merzouki et al., 2018; Rauzi et al., 2015). When simulations

start, cells are characterized by a resting area A0 and a resting

edge length L0 (Figure 5A; Methods S1, Section 6). Deviations

from these values are penalized by harmonic spring energy

terms with constants K and for the area and the length, respec-

tively (Figure 5A; Methods S1, Section 6) (Br€uckner et al., 2017;

Merzouki et al., 2016). In addition, large bending deformations of

the monolayer are penalized by a harmonic spring energy term

with constant cb (Methods S1, Section 6). The cell elasticity K

can be estimated by K � l/A0 � 109 N/m3. As in the continuum

theory, the monolayer is confined to a circular domain of radius

R by a spring constant (Methods S1, Section 6). To simulate pro-

liferation, at each iteration, one cell is selected to enter a growth

phase (linear increase with time) that ends by division when the

cell has increased two times its resting area. All other cells

cannot enter growth or division until the growing cell has divided.

We kept the other two elastic parameters and cb undefined.

Interestingly, we previously showed that when the division rate

is faster than the mechanical relaxation time, circular epithelia

spontaneously fold because gradient of stresses appear (Mer-

zouki et al., 2018). However, this situation is most likely irrelevant

to our MDCK cells, which have a division time of several tens of

hours (Soderberg et al., 1983) and a mechanical relaxation time

of a few tens of minutes (Harris et al., 2012; Wyatt et al., 2020).

Simulations started with 40 cells, similar to the cell number in a

confocal section at confluency and ended when the cell number

doubled. Simulations reproduced folding (Figures 5B and 5C;

Video S6). However, at later times, the shapes of the folds

differed from those observed experimentally; due to cell flows,

the simulated folds exhibited narrow ‘‘neck regions’’ at their ba-

ses (Figure 5D). We reasoned that in experiments, cell adhesion

to the Matrigel acts as an effective friction that suppressed cell

flows (Figure 2A) and kept the bases wide. We found in our sim-

ulations that a friction force FNS � 5:10�3mN prevented lateral

cell displacements on the capsule’s inner surface resulting in

shapes resembling the experimental ones (Figures 1D and 5D;

Video S6).

Another consequence of friction was, on average, to produce

more and deeper folds thanwithout friction (Figure 5D). In the ex-
periments, 2-fold is the most frequent case (50%) followed by 1-

fold (20%) (Figure 5F). This is different from the continuum the-

ory, where equilibrium shapes feature a single fold (Methods

S1, Section 3). In case of 2-fold, angles between folds were be-

tween 150� and 180�, whereas in case of 3-fold, they were be-

tween 90� and 120� (Figures 5E and 5G). We thought that friction

could prevent mechanical relaxation away from the fold. But

when friction was removed at the onset of buckling, while cells

were kept proliferating, no obvious change in the shape of folds

was seen even if therewere fewer folds (Figure 5I).We suspected

that proliferation could counteract the expected relaxation after

removal of friction. When friction and proliferation were both

removed at the onset of buckling, a clear relaxation was

observed when compared to the situation where only prolifera-

tion was stopped (Figure 6A). We concluded that proliferation,

by sustaining growth of the folds, and friction, by hindering prop-

agation of the relaxation, synergistically increased the number

of folds.

To fix the values of the elastic parameters ks and cb, we

computed the distributions of folds for various values and

compared the distributions with the experimental distribution

(Figure S7; Methods S1, Section 7). The distribution of fold num-

ber is similar to experiments only along the line ks=cb = 0:1,

where ks = ks

KA0 and cb = cb

KðA0Þ2 are normalized parameter used in

simulations (Figures 5F and S7). Furthermore, along this line,

the shape of folds obtained in our simulations matched the

ones observed in our experiments and continuum theory, as

seen from the agreement with the relation between F and

d (Figure 6B).

We wondered if this set of parameters could also match the

pressure dynamics in capsules. The continuum theory predicts

that the pressure after buckling decreases as the excess strain

increases (Figure S6). Upon a continuous increase of the excess

strain (as in growing monolayers), a sharp pressure drop should

be observed at the onset of folding. Instead, in the experiments,

the monolayer pressure typically grew continuously over time

before and after buckling—only in 2% alginate capsules the

pressure decreased after folding (Figure 3F). Similarly, in our sim-

ulations, pressure increased monotonically after buckling for
Developmental Cell 54, 655–668, September 14, 2020 663



Figure 5. Numerical Simulations of Epithelial Growth and Buckling

(A) Theoretical model for numerical simulations.

(B) Representative ending shapes of simulations executed with different couples of (cb,ks). Asterisks show folds.

(C) Confocal equatorial planes of MDCK monolayer with 1–5-fold. Asterisks highlight folds. Arrows show high curved folds. Scale bar 100 mm.

(D) Top, shape evolution of a cell ring simulated without friction force. Bottom, shape evolution of the same cell ring simulated using the same sequence as on top,

but with friction force FNS = 5:10�3mN.

(E) Experimental measurement of the angle between consecutive folds, q.

(F) Histogram of fold number for 2.5% alginate capsules (n = 43 from 3 replicates) and fold number obtained in silico for ks=cb =0:1 (n = 184 independent

simulations).

(legend continued on next page)

ll
OPEN ACCESS Article

664 Developmental Cell 54, 655–668, September 14, 2020



Figure 6. Numerical Simulations of Epithelial Relaxation upon Friction Removal

(A) Top, shape evolution of a cell ring simulated with friction, FNS = 5:10�3mN, which was removed after ten cell divisions together with cell proliferation. Bottom,

shape evolution of a cell ring simulated with friction, FNS = 5:10�3mN, which was kept, however, while cell proliferation was removed after ten cell divisions.

(B) Angles as a function of d/R obtained from experiments (red, n = 24 from 3 replicates), continuum theory (green and purple lines) and simulations (gray, n = 1,297

points from >100 independent simulations, and dark gray, n = 39 points averaged from the 1,297 points).

(C) Mean pressure as a function of cell number in experiments (n = 53 from 5 replicates) and in silico (n = 184 independent simulations); error bars are SDs.

(D) Pressure as a function of cell number of individual numerical simulations (solid lines; n = 41 per each pair of normalized parameters (cb,ks)) and mean pressure

(dots; n = 41 per each pair of normalized parameters (cb,ks)) as a function of cell number for three different pairs of normalized parameters (cb,ks); error bars

are SDs.
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ks=cb = 0:1 (Figures 6C–6E). Away from this value, the pressure

could drop after buckling (Figure S7; Methods S1, Section 8).

We, thus, concluded that with the specific set of parameters

that matches the experimental shape, number, and angular dis-

tributions of folds, we also reproduced the pressure dynamics

observed in most experiments.

DISCUSSION

In this study, we quantitatively showed that an epithelium

growing under spherical confinement buckles due to the

compressive stresses arising from cell proliferation. Importantly,
(G) Angle distribution between consecutive folds for two (red, n = 21 from 3 replic

(H) Angle distribution between consecutive folds for two (red, n = 97 independent

silico for ks=cb = 0:1.

(I) Top, shape evolution of a cell ring simulated with friction, FNS = 5:10�3mN. Midd

start, which then got removed after ten cell divisions. Bottom, shape evolution o
in this case, all cells are mechanically similar, as theoretically

proposed before (Ho�cevar Brezav�s�cek et al., 2012; Rauzi et al.,

2013). However, in other studies, folding was obtained by differ-

ential tensions between the apical and baso-lateral sides (Odell

et al., 1981; Pouille and Farge, 2008; Rauzi et al., 2013; Streichan

et al., 2018) or between the lateral, and the basal sides could

drive the deformation (Sui et al., 2018), without the requirement

of confinement and compressive forces. While our study does

not exclude the importance of different contractile properties

of the cells, it shows that forces required to fold the cell mono-

layer are in the range of micronewtons and cannot be generated

by a small (<100) group of cells. In fact, in the MDCK cell
ates) and three (blue, n = 15 from 3 replicates) folds in 2.5% alginate capsules.

simulations) and three (blue, n = 63 independent simulations) folds obtained in

le, shape evolution of a cell ring simulated with friction FNS = 5:10�3mN from the

f a cell ring simulated without any friction.
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monolayer, contractile forces were shown to flatten a buckled

epithelium (Wyatt et al., 2020) rather than causing folding. As

high as these forces are, the pressure necessary for epithelium

buckling is at least five times lower than that required to hinder

cell proliferation, which makes proliferation a potent mechanism

for epithelium folding. In support of this, it was recently shown

that heterogeneous growth in the Drosophila wing epithelium

generates buckling of proliferating cells under the confinement

of surrounding tissues (Tozluoǧlu et al., 2019). This supports

that tissues with different growth rates can fold epithelia at

different scales during organogenesis, as previously shown for

the gut and the brain gyration (Savin et al., 2011; Tallinen

et al., 2014).

Even if our theoretical analysis was done in 2D, whereas the

real system is 3D, all themain conclusions emerging for this study

are valid, starting with the buckling transition being still present in

3D. Besides this, qualitative features of our description are still

valid in 3D, such as the presence of a single fold at equilibrium af-

ter the buckling transition or the buckling pressure being inde-

pendent of thecapsule rigidity.Other quantitative features should

also be the same, because they are independent of dimension-

ality, such as the fold’s shape and the buckling pressure. Some

features are expected to change with dimensionality, such as

the specific values of the vertex model parameters, as well as

the specific power-law relations derived in our theory.

Furthermore, while our study provides first estimates of the

bending rigidity and the compressibility modulus of cell mono-

layers, it is difficult to estimate how these values would evolve

with cell’s activity (proliferation and contractility) and cell’s me-

chanical parameters (elasticity and viscosity). The drug treat-

ments commonly used to reduce cell’s proliferation, contractility,

and elasticity turned out to be so drastic that we could not obtain

a dose-response, precluding any quantitative assessment of the

coupling between cell’s activity and macroscopic tissue

parameters.

While our study does not unravel the mechanism of epithelium

folding in embryos, it identifiesbuckling asapotentialmechanism

that drives enough forces to do so. Our study also identifies the

importance of friction/adhesion to the shell surrounding the tis-

sue to promote large deformations. This is consistent with recent

reports that gastrulationonly completes if adhesion to thevitelline

membrane is not impaired in Drosophila embryos (Bailles et al.,

2019; M€unster et al., 2019). Most probably, buckling will comple-

ment apical constriction and other contractile mechanisms to

drive folding in the embryo. Thesemechanisms are not exclusive

to each other, and the relative contribution of each one may vary

in different physiological conditions. For example, we previously

identified that in our system, contractility of cells, together with

the curvature of the alginate tube, was involved in releasing of

adhesion but not in folding (Maechler et al., 2019). In the specific

case of gastrulation, which our encapsulation assay intends to

mimic, we imagine that apical constriction could set the position

and the timing of the fold, and that buckling would drive the prop-

agation of the invagination.
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Nair, R.V., Garreta, E., Montserrat, N., Del Campo, A., et al. (2018). Active

superelasticity in three-dimensional epithelia of controlled shape. Nature

563, 203–208.

Lecuit, T., and Lenne, P.F. (2007). Cell surface mechanics and the control of

cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8,

633–644.

Lecuit, T., Lenne, P.F., and Munro, E. (2011). Force generation, transmission,

and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev.

Biol. 27, 157–184.

Leptin, M. (1995). Drosophila gastrulation: from pattern formation to morpho-

genesis. Annu. Rev. Cell Dev. Biol. 11, 189–212.

Leptin, M., and Grunewald, B. (1990). Cell shape changes during gastrulation

in Drosophila. Development 110, 73–84.

Liang, H., andMahadevan, L. (2009). The shape of a long leaf. Proc. Natl. Acad.

Sci. USA 106, 22049–22054.

Lo, H., Bogdanoff, J.L., Goldberg, J.E., and Crawfor, d.R.F. (1962). A buckling

problem of a circular ring. In Proceedings of the 4th U.S. National Congress of

Applied Mechanics, 1 (American Society of Mechanical Engineers),

pp. 691–695.

Maechler, F.A., Allier, C., Roux, A., and Tomba, C. (2019). Curvature-depen-

dent constraints drive remodeling of epithelia. J. Cell Sci. 132, jcs222372.

Mandal, K., Wang, I., Vitiello, E., Orellana, L.A., and Balland, M. (2014). Cell

dipole behaviour revealed by ECM sub-cellular geometry. Nat. Commun.

5, 5749.

Martin, A.C., Kaschube, M., and Wieschaus, E.F. (2009). Pulsed contractions

of an actin-myosin network drive apical constriction. Nature 457, 495–499.

Merzouki, A., Malaspinas, O., and Chopard, B. (2016). The mechanical prop-

erties of a cell-based numerical model of epithelium. Soft Matter 12,

4745–4754.

Merzouki, A., Malaspinas, O., Trushko, A., Roux, A., and Chopard, B. (2018).

Influence of cell mechanics and proliferation on the buckling of simulated tis-

sues using a vertex model. Nat. Comput. 17, 511–519.

Mongera, A., Rowghanian, P., Gustafson, H.J., Shelton, E., Kealhofer, D.A.,

Carn, E.K., Serwane, F., Lucio, A.A., Giammona, J., and Campàs, O. (2018).
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Roux (aurelien.roux@unige.ch).

Data and code availability
The datasets/code generated during this study are available at Mendeley data https://doi.org/10.17632/3vfxhr2m34.1.
e2 Developmental Cell 54, 655–668.e1–e6, September 14, 2020

mailto:aurelien.roux@unige.ch
https://doi.org/10.17632/3vfxhr2m34.1
https://fiji.sc/


ll
OPEN ACCESSArticle
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Generation of Cell Lines
Madin-Darby Canine Kidney II (MDCK-II) cells were cultured in DMEM supplemented with 1% (vol/vol) Penicillin-Streptomycin, 1%

(vol/vol) nonessential amino acids (NEAA) 100X, and 10% (vol/vol) FBS in cell culture flasks (TPP) at 37 �C and 5% CO2.

The cell line MDCKH2B-eGFPmCherry-Actin was a kind gift from the lab of Prof. Daniel J. M€uller (BSSE, ETH Zurich, Switzerland).

The cell lineMDCKMyr-Palm-GFP, a kind gift from the lab of Dr. Matthieu Piel (Institut Curie, Paris, France), was used to generate the

cell lineMDCKMyr-Palm-GFPH2B-mCherry. The plasmidH2B-mCherry, a gift fromRobert Benezra, was inserted into the pLenti6.3/

V5-DEST vector (containing C-terminal mCherry) using the Gateway cloning system. Lentiviral particles were generated in HEK293T

cells using third generation lentiviral packaging vectors and MDCKMyr-Palm-GFP cells were infected with pLenti-H2B-mCherry. Af-

ter infection, cell clones expressing both markers were sorted by Fluorescence Activated Cell Sorting (FACS) using a Beckman

Coulter MoFlo Astrios, and monoclonal cells with unchanged morphology and sufficient expression level of the transgenes was

selected. Cell lines were regularly tested negative for contamination with mycoplasma.

METHOD DETAILS

Microfluidic Device Fabrication
The microfluidic device was printed with EnvisionTEC Micro Hi-Res Plus 3D printer using the resin HTM 140 V2 (EnvisionTEC), with

the following printing parameters (set automatically based on the resin used): burn-in range thickness 400 mm, base plate of 300 mm,

and exposure time 3000 ms. The printed device was washed using ethanol and air dried using an air gun. A thin layer of PDMS (poly-

dimethylsiloxane) at a ratio of 1:10 (curing agent: elastomer) was put on the cone of the chip with the help of a syringe needle and

baked at 70 �C for 30 minutes and subsequently baked using a UV chamber for 10 minutes. To ensure hydrophobicity and reduce

the diameter of the device tip, Bohlender PTFE tubingwas used. The tubingwas cut under a stereo binocular (Leica) using a scalpel to

obtain a size of around 200 - 300 mm in length and glued on the tip of the microfluidic device with epoxyglue EAM-31CL (Loctite) and

left to solidify for 1h at RT. Tomake the inlets, three 19-gauge stainless steel needles were cut into segments 1:5 cm long and polished

using a Dremel 8000 WorkStation to avoid sharp edges. A small droplet of glue EA M-31CL was spread at the edges of the needles

and they were inserted into the inlets of the devices, after which the glue was left to solidify for 24 hours at RT.

Device Operation and Cell Encapsulation
The working principle of the microfluidic device (MD) is explained in detail in (Alessandri et al., 2016). In brief, the system comprises

the MD, three glass syringes connected to a pump (neMESYS) for flow rate control, a Matrigel cooling part, and both an Alginate

charging part and a copper ring (21 mm OD, RadioSpare) connected to a High Voltage DC Power Supply (Stanford Research

PS350). TheMD consists of three coaxial cones inside which three different solutions are injected. The outermost cone contains algi-

nate solution (AL), the intermediate cone contains 300 mM sorbitol solution (IS) and the innermost cone contains cells/Matrigel/sor-

bitol solution (CS) in a ratio of 2:1:2 (v/v), with a cell number in the range of 2*106. The AL and IS solutions are loaded into two syringes

controlled by the pumps for injection into the MD. The CS is injected into a cooling part to maintain Matrigel liquid, and this part is

connected to a third syringe containing sorbitol that pushes out CS into the MD. The flow rates are set to 45 mL/h, 45 mL/h and

30 mL/h for AL, IS and CS, respectively, ensuring droplet formation upon exiting the MD. Once connected to the pumps the MD

is positioned 50 - 60 cm above the petri dish with a 100 mM CaCl2 solution for collection of capsules. To improve capsule shape

andmono-dispersity of size an alginate charging part and copper ring, both connected to a high voltage (2000V) generator, are intro-

duced. The alginate charging part is a glass T connector that on opposite sides of the T has a high voltage wire (coming from the

generator) and a tubing containing AL that flows down the T. The HV wire is coupled to a silver wire (OD 1 mm) that crosses the T

such that it is in contact with the alginate and charges the solution, after which the charged AL then flows into the MD. The copper

ring is held below the tip of the MD at a distance of 0.5 cm and centered with respect to the MD tip. The charged formed droplets

passing through the copper ring under electrical tension get deflected as they cross the ring, creating a shower-like jet that prevents

capsule merging. Once formed inside the calcium bath, capsules are washed with DMEM and transferred to cell culture medium.

Fluorescent Labeling of Alginate
0.25 g Alginate was dissolved in 25 mL 0.1M MES pH 6.0 to get 1% Alginate solution. Next, 5 mg ATTO647N-amine or 13 mg Fluo-

resceinamine dissolved in 200 mL DMSO (anhydrous) was added into the tube with 25 mL 1% Alginate solution and let mix, rotating,

for 10min. Next, 21.5 mg sulfo-NHS dissolved in 200 mL of 0.1 M MES pH 6.0 was added and let mix for 30 min. Finally, 24 mg EDC

dissolved in 200 mL of 0.1 MMES pH 6.0 was added and let mix and react for overnight. After this, the labeled alginates solution was

transferred to Slide-A-LyzerTM dialysis cassette 10K 12–30mL capacity and let dialyze in milliQ water for 1 day and 1 night changing

the water first twice every 2 h and then, last time, for overnight dialysis. After dialysis the labeled alginate was filtered with an Acrodisc

syringe filter and keep it at 4 �C before use. The final alginate concentration was 0.5%.

To get 2.5%, 2%, 1.5%or 1%ATTO647N-labeled alginate solutions, to 10mLmilliQ water, with both 10mL SDS 20% solution and

1 mL 0.5% ATTO647N alginate, 0.27 g, 0.165 g, 0.22 g, 0.11 g of alginate powder was added, respectively, and mixed overnight at

room temperature. To get 2.5% FITC-labeled alginate solution, 10 mL milliQ water was mixed with 1 mL 0.5% FITC alginate, 0.25 g
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alginate powder and 10 mL SDS 20% solution, mixed overnight at room temperature. Before use the solutions were spun down at

48000 g for 30 min at 20 �C, after what alginate was filtered with a sterile glass fiber Acrodisc syringe filter.

Imaging
To maintain capsules in set positions for several days of time-lapse acquisitions, 20 - 25 capsules were selected 24 hours post cell

encapsulation and embedded in 0.4% low-melting agarose (0.04 g in 10mL) in a 35mmMatTek glass-bottom dish. The agarose was

left to solidify for 15minutes and 2mL of MEMcontaining no phenol red, supplemented with 1% (vol/vol) Penicillin-Streptomycin, 1%

(vol/vol) non-essential amino acids (NEAA) 100X, 10% (vol/vol) FBS and 1% (vol/vol) GlutaMax were added. Live time-lapse confocal

images of samples were obtained using inverted LSM780microscope (Carl Zeiss) using the objective Plan-Apochromat 20x/0.8 M27

(FWD=0.55mm) . During imaging, capsules were maintained at 37 �C with 5% CO2. For each capsule, 3D confocal Z-stacks with a

range of 100 mm to 250 mm with 2 mm interval were acquired, and each capsule was imaged every 2. 5 – 3 h for 25 – 30 cycles using

with definite focus (autofocus). For imaging of fixed samples, upright microscope LSM710 NLO was used with the objective W Plan-

Apochromat 20x/1.0 DIC M27 75mm.

Immunostaining
Cell monolayers in capsules were fixed with warm 4% PFA in MEM, no phenol red (not PBS, to avoid dissolving alginate capsule) for

30 min at RT. Once fixed, capsules were washed with 100 mM Glycine and 1% Gelatin in MEM. Cells were permeabilized using 1%

Gelatin/0.1% Saponin in PBS 100mMGlycine and 0.5 mMEDTA for about 45minutes at RT until capsules dissolved followed by cell

washing with 100mMGlycine and 1%Gelatin inMEM. Cells were then incubated with primary antibodies: anti-Laminin (1 : 200), anti-

paxillin (1:250), anti E-cadherin (1:50), anti-Ezrin (1:50), anti-p120 catenin (1:50) and anti-occludin (1:50) diluted in 1X PBS 100 mM

Glycine 0.5 mM EDTA overnight at 4 �C. Cell monolayers were washed 3 times with 1X PBS 100 mM Glycine and incubated with

secondary antibody AlexaFluor 568 donkey anti-mouse or anti-rabbit (1:1000) for 1 hour at RT (diluted in 100 mM Glycine 1X PBS

with 1%Gelatin, and counterstained for f-actin and nuclei using Phalloidin488 (1:40) and Hoechst 33342 (1:1000), respectively. Sam-

ples were rinsed 3 times with 1X PBS 100 mM Glycine.

Capsule Dissolution with Alginate Lyase
For high-temporal resolution experiment, cell monolayers in capsules were embedded in 0.4% agarose for imaging in a 35mmglass-

bottom dish. TheMatTek dishwas priced on the sidewith a 19G hot needle to introduce teflon tubing into the dish sterilely for alginate

lyase (Sigma-Aldrich, ref. A1603) injection. The MatTek dish was mounted onto inverted LSM780 NLO microscope (Carl Zeiss) (sec-

tion Imaging). The 1mL of PBS alginate lyase solution (20 units per 1mL of PBS) was added both after 1min of imaging and after 20min

of imaging, resulting in total amount of alginate lyase of 40 units in MatTek petri dish. The imaging was performed with microscope

parameters mentioned in section Imaging. For each capsule, confocal equatorial planes were acquired with time interval of 15 s for 2

hours with definite focus (autofocus). For low-temporal resolution, the experiment was conducted as a high-temporal resolution with

addition of medium alginate lyase solution giving final alginate lyase amount of 75 units in MatTek dish. The imaging of capsule equa-

torial planes was performed with time interval of 10 min for 19 hours and with definite focus (autofocus).

Fluorescein Diffusion Experiments
For fluorescein (FITC) diffusion from capsule exterior to its interior, cell monolayers in capsules were embedded in 0.4% agarose for

imaging in a 35 mm glass-bottom dish. The MatTek dish was priced on the side with a 19G hot needle to introduce teflon tubing into

the dish sterilely for FITC injection. The MatTek dish was mounted onto inverted LSM780 microscope (Carl Zeiss). Once imaging

started, 10 mL of 10mg/ml medium FITC solution was added. The imaging was performed with microscope parameters mentioned

in section Imaging. For each capsule, confocal equatorial planeswere acquiredwith time interval of 10 s for 2 hourswith definite focus

(autofocus). For FITC diffusion from capsule interior to its exterior, cell monolayers in capsules were pre-incubated with FITC solution

(100 mg/ml) for 2.5 hours followed by careful washing with medium. Then, cell monolayers in capsules were imbedded in 0.4%

agarose for imaging. For each capsule, confocal equatorial planes were acquiredwith time interval of 10min for 12 hours with definite

focus (autofocus).

Blebbistatin and Mitomycin C controls
For Blebbistatin experiments, cell monolayers in capsules were embedded in 0.4% agarose for imaging, then 10 mM of Blebbistatin

was added to capsules, after 1 hour of incubation at 37 �C with CO2 control, monolayers were imaged. For Mitomyocin C experi-

ments, cell monolayers in capsules at the stage of confluence were incubated with 10 mM Mitomyocin C for 1 hour followed by

washing with warm medium before imaging. The imaging conditions in both cases were as described in section Imaging.

Capsule Spring Coefficient Measurements
There were three types of indentation experiments: i) 1% empty alginate capsule indentation, ii) 2.5% empty alginate capsule inden-

tation and iii) 2.5% alginate capsule with a formed cellular monolayer (48 h capsule post-formation). Capsules were transferred into

glass-bottomMattek petri dish withMEMcontaining no phenol red solution for empty capsules and L-15Medium supplemented with

1% (vol/vol) Penicillin-Streptomycin, 1% (vol/vol) non-essential amino acids (NEAA) 100X, and 10% (vol/vol) FBS at 37 �C. The me-

diumwas changed every 2 h. Capsules were indented normally to the glass-bottom surface usingmicro-mechanical testingmachine
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(FT-FS1000, FemtoTools) with indenter FT-S100. The indenter of the probe has flat silicon tip with a tip size of 50 mm by 50 mmwith a

force range ±100 mNandwith resolution at 10 Hz 0.005 mN. For all capsule indentation experiments indentation parameters were step

size 0.2 mm, speed 1 mm/s, force threshold 50 mN and signal record time 0.1 s, indentation depth was varying from 5 mm to 40 mm. The

process of indentation was monitored by bright-field microscopy. To calculate capsule stiffness coefficient, the dependences of

force versus indentation depth were plotted and the part of the indention was fitted with a linear fit.

Capsule AFM Indentation
Indentation measurements were performed at 37�C using a Nanowizard 4 AFM equipped with a Petri-dish heater (JPK Instruments)

and an optical inverted microscope (Observer D1, Zeiss). Measurements were carried out using a PNP-TR-TL cantilevers (Nano-

world) with a nominal spring constant of 0.08 N/m after attaching a sphere of 5 mm diameter to the tip.

The force-indentation curves of Alginate capsules in concentration ranging from 1 – 2.5% were acquired then analyzed using the

JPK data processing software (JPK Instruments, Germany) in which the cantilever approach curves are fitted with the Hertz and

Sneddon modified model for a spherical indenter

F =
E

1� n2

�
R2 + r2

2
log

R+ r

R� r
�Rr

�
; (Equation S1)

and,

d =
R

2
log

R+ r

R� r
; (Equation S2)

where F is the indentation force, d is the indentation depth, r is the indenter radius,R is the radius of the circular contact area between

indenter and sample, y is the Poisson’s ratio and is set to 0.5 and finally, E is the apparent Young’s modulus of the measured sample

and is extracted from the fitted curve.

QUANTIFICATION AND STATISTICAL ANALYSIS

Capsule Pressure Calculated from Capsule Deformations
To calculate the buckling pressure from capsule thinning, confocal images at capsule equatorial planes were thresholded with Fiji to

get black-whitemasks. Then, thesemaskswere processed using a homemadeMATLAB script that detectedmasks boundaries (Fig-

ure S5B), corrected for drifts (Figure S5C), and computed outer and inner capsule radii (Roðt; qÞ and Riðt;qÞ, resp.) as a function of the

polar angle q with the origin at the inner capsule surface centroid (Figure S5D and S5E). At each polar angle q, the capsule thickness

hðt; qÞ = Roðt; qÞ � Riðt; qÞ; (Equation S3)

was calculated from the capsule radii, and the capsule pressure Pðt; qÞ was approximated as

Pðt; qÞ = 4Ehðt; qÞðRiðt; qÞ � Rið0; qÞÞ
Riðt; qÞ2

(Equation S4)

whereE corresponds to the capsule Young’smodulus andRið0;qÞ, corresponds to the capsule inner radius at the start of imaging. For

spherical geometries, Equation S4 corresponds to the theoretical relation between the inner pressure P and the geometrical defor-

mations of a linear-elastic spherical shell with thickness h, radius R, Poisson ratio y= 0:5 and that satisfies h=R � 1. For more details

concerning the derivation of Equation S4, we refer the reader to (Landau and Lifshitz, 1975, Theory of elasticity) in the main text. For

instance, the reported values in Figures S5F and S5G are the mean over the polar angle q of the thickness given by Equation S3 and

the pressure given by Equation S4, respectively.

Capsule Pressure Calculated from Capsule Bending
To calculate the buckling pressure from capsule bending deformations, the capsule boundary displacement was monitored on

confocal scans at capsule equatorial planes. Since alginate capsules exhibit an elastic behavior and its spring constant k was

measured from indentation experiments, the maximal force Fm was calculated according to Hooke’s law: Fm = kxm, where xm is

a maximal capsule boundary displacement (see Figure 3 in the main text). To convert force to pressure, we use the formula P =

Fm=S, where S is the surface of the deformed capsule that was approximated by a spherical cap: S = 2pRh, where R is the radius

of the spherical cap and h is the height of the spherical cap.

Fold Opening Angle and Fold Depth Calculation
Both the fold opening angle, 2a, and fold depth d, were manually measured on the confocal scans of equatorial planes of the mono-

layers that exhibit one-fold buckling (see Figure 4G in the main text). The center of capsules was considered the centroid of capsule

inner surface. The fold ends in contact with the capsule inner surface were considered the points where cell nuclei lied parallel to the

capsule inner surface, and the angular distance between themdefines the fold opening angle 2F (see Figure 4G in themain text). Fold
Developmental Cell 54, 655–668.e1–e6, September 14, 2020 e5



ll
OPEN ACCESS Article
depth dwas considered themaximum radial distance between the fold and the capsule inner surface (see Figure 4G in themain text).

Fold opening angle and fold depth were measured over time for each capsule. The same folds at different time points were consid-

ered as independent.

Fold Number and Fold Angular Position Calculation
Fold number was measured from the confocal scans at equatorial planes of the monolayers that exhibit developed folds. The center

of capsules was considered the centroid of inner capsule surface. To analyze fold position distribution, the angles in between adja-

cent folds were calculated (see definition of q in Figure 5E). Angles q larger than 180� were subtracted �360�.

Statistical Analysis
All statistical analyses for experimental data were performed in Origin (Origin Lab Corp., Northampton, MA, USA). For comparing two

populations, two sample a t-test withWelch’s correction was used, at p < 0.05 two samples were assumed to be different. Error bars

represent mean + SEM (Standard Error of the Mean) unless stated otherwise. Sample sizes are specified in figure legends.
e6 Developmental Cell 54, 655–668.e1–e6, September 14, 2020
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FIG. S1: 3d-printed microfluidic device and cell encapsulation experimental setup. Related to Fig. 1. A, 3D-printed
microfluidic device. B, draft of the side view of the microfluidic device. The green, blue and yellow colors represent alginate,
sorbitol solution and cell solution flows, respectively. C, draft of the back view of the microfluidic device. The green, blue and
yellow colors represent alginate, sorbitol solution and cell solution flows, respectively. D, a photo of the experimental setup. E,
Phase-contrast microscope image of 2.5% alginate capsule with growing epithelial monolayers, at 24h after capsule formation.
F, Box-plot of mean capsule radius as a function of alginate solution percentage.
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FIG. S2: Capsule permeability and monolayer integrity controls. Related to Fig. 2. A, FITC diffusion from exterior
to interior of a capsule. Top; FITC image of a confocal scan of a capsule equatorial plane containing buckled MDCK mCherry-
ActinH2B-GFP monolayer. Bottom; Transmitted light image of the same capsule. B, Dependence of mean fluorescence
intensity over time for ROIs depicted on A. C, FITC diffusion from interior to exterior of a capsule. Top; FITC image of a
confocal scan of a capsule equatorial plane containing not yet buckled MDCK mCherry-ActinH2B-GFP monolayer. Bottom;
Transmitted light image of the same capsule. D, Dependence of mean fluorescence intensity over time for ROIs depicted on
C. E, FITC diffusion from interior to exterior of a capsule. Top; FITC image of a confocal scan of a capsule equatorial plane
containing buckled MDCK mCherry-ActinH2B-GFP monolayer. Bottom; Transmitted light image of the same capsule. F,
Dependence of mean fluorescence intensity over time for ROIs depicted on E. G, Mean normalised fluorescence intensity as a
function of time for both ROIs 3 (corresponding to the ROI in the monolayer lumen) at C and E. Scale bars, 100 µm.
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FIG. S3: Confocal scans of immunostained formed monolayers. Related to Fig. 2. MDCK monolayers were fixed and
immunostained to see the distribution Paxillin, Ecadherin, Ezrin, p120-Catanine and Occludin proteins. Nuclei were stained
with Hoechst and filamentous actin with Phalloidin-Alexa488. Scale bars, 100 µm.
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1.5% Alginate-ATTO647 mCherry-Actin H2B-GFP10mM Mitomycin C

FIG. S4: Confocal equatorial planes of MDCK mCherry-ActinH2B-GFP monolayers treated with 10 µM
Mitomycin-C. Related to Fig. 2. Scale bars, 100 µm.
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FIG. S5: Measurement procedures of buckling pressure, fold opening angle, fold depth, and consecutive fold
angle position. Related to Fig. 3. A, FemtoTools micro-mechanical testing machine. B, superimposed capsule contours
of inner and outer boundaries corresponding to different time points. C, superimposed capsule contours of inner and outer
boundaries corresponding to different time points in polar coordinates with the origin at capsule inner surface centroid. D,
superimposed plots of outer capsule radii as a function of polar angle corresponding to different time points. The radii correspond
to the outer contours in C. E, superimposed plots of inner capsule radii as a function of polar angle corresponding to different
time points. The radii correspond to the inner contours on c. F, mean capsule thickness as a function of time for the contours
in C. Each point represents a mean of 360 capsule thickness measurements corresponding to 360 angles of polar coordinates.
Error bars are SDs. G, mean capsule pressure as a function of time for the contours in C. Each point represents a mean of 360
capsule pressures measurements corresponding to 360 angles of polar coordinates. Error bars are SDs. H, Normalized mean
capsule thickness as a function of time for empty capsules (i.e. without cells) made of 2.5% alginate solution; n=22; error bars
are SEMs. Scale bars, 100 µm.
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3/K) as a function
of the normalized capsule stiffness (kR2/λ) for the same compressional rigidity values as in panel B. PBuckling is given by
Eq. S26. D, Schematic of a buckled elastic ring (red) under the pressure PB of the confinement ring (cyan). The buckled
segment is characterized by its height δ and its opening angle α. Both forces FC = PBR tan (α) and FB = PBR/ cos (α)
relate to the pressure PB . E, Fold height δ as a function of the excess strain ∆ε. Magenta (Green) curve corresponds to
δ of stationary shapes for an increasing (decreasing) ramp of ∆ε from 0% (2%) to 2% (0%) at regular intervals of 0.05%.
Initial conditions correspond to the stationary shape at the preceding excess strain with small amplitude fluctuations. Set of
parameters: K = 10−2, λ = 102, k = 105 and R = 1. Error bars are SD with N=30. F, Experimental values of δ and Φ as a
function of the length of monolayers with one fold. Solid lines are linear fits. G-I, Opening angle α, fold height δ/R and force
FBR

2/K as a function of the excess strain ∆ε, respectively. For each panel, each curve corresponds to a distinct value of the
normalized compressional rigidity (λR2/K) between 104 and 108 as indicated in the legends.
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FIG. S7: Tissue buckling within different parameter regions. Related to Fig. 5. A, Distribution of the number of
folds as a function of the normalised spring coefficient ks/KA0 and the normalised bending rigidity cb/K(A0)2. The parameter
regions where the distribution of number of folds match the experimental observations are coloured in red. B, Pressure evolution
within different parameter regions. Evolution over time (the number of cells increase from 40 to 80) of the pressure P applied
by the growing tissue on the elastic capsule within different parameter regions (ks/KA0 and cb/K(A0)2). In both panels, the
red square marks the parameters regime that fits best experiments.
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Method S1. Theoretical and Numerical appendix. Related to Fig 4, 5 and 6

Section 1: Estimation of the water flux across a monolayer upon folding

In the following, we estimate the flux of small molecules across a monolayer and compare its value with measurements
for epithelial monolayers.

The volume of a monolayer lumen (i.e. hollow space enclosed by the monolayer) is estimated by considering that a
monolayer lumen is a sphere with a radius R ∼ 100 µm. Hence its volume is of the order of V ∼ 4·10−12 m3. Similarly,
the area of a monolayer lumen can be estimated by assuming a spherical geometry with the same characteristics as
above, yielding an area of the order of A ∼ 10−7 m2. Next, we consider that over the T ∼ 2 h ∼ 7000 s that folding
lasts, a monolayer lumen loses half of its volume due to a water outflow J across the surface of the monolayer lumen.
Therefore, this water outflow is of the order of

J =
V/2

AT
∼ 2 · 10−9 m/s. (S1)

Of note, the premise that the total volume lost is half of the initial volume is in general an overestimation, according
to our experiments. Previous measurements of small-molecule fluxes across epithelial monolayers in other contexts
range between 10−6 − 10−8 m/s, depending on the molecule type (Rosenthal et al, 2019, p. e13334; Rosenthal et al,
2010, pp. 1913-1921). This suggests that water evacuation from the lumen to the exterior is not hindering the kinetics
of monolayer folding.

Section 2: Description of a confined elastic ring (macroscopic approach)

In this section, we introduce a description for the mechanics of epithelial monolayers weakly adhered to the inner
surface of an elastic spherical shell. In particular, we focus our attention on the understanding of the tissue dynamics
near the transition between a spherical state into a buckled state.

Alginate capsules act as rigid containers that constrain the growth of tissues. To a good approximation in our setting
(see main text), alginate capsules are regarded as thin linear elastic materials with a Young’s modulus E ∼ 20 kPa,
a thickness h ∼ 20 µm and a Poisson ratio ν = 1/2. Hence, in the thin-layer limit, alginate capsules are akin to
elastic shells with bending rigidity Kcap = Eh3/12(1 − ν2) and compressional rigidity λcap = Eh/(1 − ν2) (Landau
and Lifshitz, 1975, Theory of elasticity). These material parameters are of the order of Kcap = 20 µN·µm and
λcap = 0.5 µN/µm, according to the parameter set in Table 1 in the main text.

Epithelial monolayers are active materials with the capacity to spontaneously undergo morphological changes reg-
ulated by cell forces. When confined to flat surfaces, epithelial cells often reach a confluent state in which the cell
density plateaus and cell motion is drastically reduced, similar to glass phases of dense active particle suspensions.
Since the experimental analysis is done for a confocal slice, we describe the cell layer as a cylindrical shell and assume
translational invariance along the cylinder axis. Unless otherwise stated, we consider only the cross section of the
cylinder and look at deformations of a ring. The lack of cell flows at the onset of the buckling transition suggests
that the complex mechanics of encapsulated epithelial monolayers can be approximated by a 2d thin elastic ring.
Unlike alginate capsules, their bending rigidity K and compressional rigidity λ are regarded as independent material
parameters a priori, which might be regulated through cell-cell adhesion, cell-matrigel adhesion or cell contractility.
Therefore the global energy per unit length of the 2d system constituted by the monolayer and the capsule reads

E = K

∫
L

κ2ds+ λ

∫
L0

(∣∣∣∣ ∂r∂s0
∣∣∣∣− 1

)2

ds0 + k

∫
L

(|r| −R)2H(|r| −R)ds, (S2)

The first term represents bending energy with κ being the local mean curvature in 2d. The second term represents
the strain energy where the integrand stands for the relative displacement between two material points with respect
to their equilibrium configuration. The third term represents the adhesion-free interaction between the tissue and
the capsule. For small capsule deformations, this interaction is approximated by a piece-wise harmonic potential
with a spring constant k dependent on the material properties of the capsule, where H(|r| − R) is a Heaviside step
function and R is the radius of the alginate capsules (see Fig. 4 in the main text). The current elastic-ring shape is
parametrized by the arc-length s with its length being L, whilst the equilibrium elastic-ring shape in the absence of
constraints is parametrized by the arc-length s0 with its length being L0.
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The area of the monolayer is found experimentally to increase over time as a result of cell proliferation. The
observed linear growth in cell number yields a doubling time scale of about ∼ 60 hours. Remarkably, this time scale is
significantly larger than the time scale of buckling formation ∼ 10 hours, suggesting that L0 variations can be ignored
during tissue folding dynamics as a first order approximation. The separation of these two time scales enables to
decouple the dynamics driven by cell division to the mechanical relaxation of cellular forces. Thereby, as a simplifying
approximation we assume that the system equilibrates before large density variations occur and presume that the
resting length L0 is a time-independent parameter. The effects induced by the competition between cell proliferation
and cell mechanics relaxation time scales is discussed elsewhere. Therefore taking as unit length R and as energy unit
K/R, the mechanics of elastic-ring folding are fully characterized by three dimensionless parameters: the elastic-ring
compressional rigidity λR2/K, the capsule spring constant kR4/K and the ratio between the elastic-ring length and
the capsule length L0/2πR.

Numerical methods

The details of the numerical method employed to study the statistical properties of our system are as follows:
at a given instant of time, the state of an elastic ring is described by the position of N material points which are
located at positions ri = (xi, yi) with i ∈ (0, N − 1). Typically, N = 100. The energy per unit length assigned to a
certain configuration is given by the discretized form of the mechanical energy (S2), namely

E∗([xi, yi]) = K

N−1∑
i=0

κ2i |∆ri|+ λ

N−1∑
i=0

(|∆ri| − L0/N)2

L0/N
+ k

N−1∑
i=0

(|ri| −R)2H(|ri| −R)|∆ri|, (S3)

where |ri| =
√
x2i + y2i , |∆ri| =

√
(xi+1 − xi)2 + (yi+1 − yi)2 and κi = 4((yi+1 − 2yi + yi−1)(xi+1 − xi−1) − (xi+1 −

2xi + xi−1)(yi+1 − yi−1))/((xi+1 − xi−1)2 + (yi+1 − yi−1)2)3/2 is the curvature at the i-th position. Because of the
ring geometry xN = x0 and yN = y0.

To compute the configurations with minimal energy, we introduce an artificial dissipative dynamics that drives the
system toward a local minimum of the energy (S3). For each material point dynamics is determined by

dri
dt

= − 1

τK/R

∂E∗

∂ri
for i ∈ [0, N − 1] (S4)

For us, the time scale τ is arbitrary and thus, it is set to τ = 1. Notice that the system might be trapped in metastable
states in the absence of bulk fluctuations.

Section 3: Buckling instability induced by confinement elasticity

In the present section, we revisit the problem of an inextensible elastic ring introduced inside an undeformable rigid
circular ring. This problem has been investigated to various degrees and in different ways by a number of researchers:
see for instance (Lo et al, 1962, pp. 691-695; Chan and McMinn, 1966, pp. 433-442) in the main text.

For simplicity, we focus first in the limit of inextensible rings and underformable confinements, meaning that
λ/KR2, k/KR4 � 1 in Eq. S2. Thereby the elastic-ring forces are neither sufficient to deform capsules nor to
compress/extend material elements (i.e. L = L0). We solve numerically Eq. S3 to obtain the equilibrium shapes.
When the monolayer length is smaller than the length of the capsule (L0/2πR ≤ 1), the elastic ring attains a circular
shape regardless of the confinement as there are no contact interactions between them. When the ring length is larger
than the length of the confinement (L0/2πR > 1), however a buckling instability occurs. Note that elastics rings
attain a shape with a single fold induced by geometrical confinement.

To investigate further the emergence of a buckled ring shape above a certain length L0, we study analytically
the behaviour of elastic rings near the transition point. To this end, we propose to account for the morphological
variations as the system undergoes the buckling transition by the following parametrization for the ring shape

r(θ) = R

(
1− δ

1 + (sin (θ − θi)/α)2

)
, (S5)

where r and θ are the radial and angular coordinate with respect to the confinement center of mass, respectively. In
cartesian coordinates, the shape curve is parametrized as (x(θ), y(θ)) = (r(θ) cos (θ), r(θ) sin (θ)). For δ 6= 0, the ring
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exhibits a folded region located at the random angular position θi. Its shape is characterized by two coefficients: δ
that controls the fold amplitude and α that controls its angular width.

The length of an inextensible ring parametrized by Eq. S5

L0 =

∫ 2π

0

√
(x(θ)′)2 + (y(θ)′)2dθ (S6)

is a conserved quantity. Considering that the coefficients δ, α� 1, the leading order corrections in δ and α of Eq. S6
can be recast as

L0 = 2πR

(
1 +

δ2

8α
− δα

)
(S7)

By defining the excess strain ∆ε = ∆L/2πR as the excess length ∆L = L0 − 2πR of the ring with respect to the
confinement perimeter normalized by the latter, Eq. S7 can be expressed as

∆ε =
δ2

8α
− δα. (S8)

Likewise, the bending energy of an inextensible ring parametrised by Eq. S5 is expressed as

E = K

∫ 2π

0

κ2
√

(x(θ)′)2 + (y(θ)′)2dθ, (S9)

where the local curvature reads κ = (y(θ)′′x(θ)′−y(θ)′x(θ)′′)/((x(θ)′)2 + (y(θ)′)2)3/2. Up to leading order corrections
in δ and α, Eq. S9 can be recast as

E =
2πK

R

(
1 +

3δ2

4α3

)
, (S10)

Combining Eqs. S8,S10 and calculating the shape that minimizes the energy (S10) with the geometrical constraint
given by Eq. S8, we deduce power-law relations between the geometrical properties of the buckled ring (δ, α) and its
current excess strain ∆ε, which read

δ = 4(5/2)1/3∆ε2/3 (S11)

α = (2/5)1/3∆ε1/3 (S12)

As ∆ε increases progressively beyond the value at the buckling transition, both parametric coefficients increase but
the relative variation of them is different. We predict that for the same variation in L0, the amplitude of the fold δ
increases more than the angular width α, thereby conditioning tissue growth.

The sub-linear variations of the energy per unit length of the minimal buckled shape against the excess strain read

E − 2πK/R

2πK/R
= 30 · (5/2)2/3∆ε1/3, (S13)

Equilibrium number of folds at the buckling instability

Here we present an argument to show that the minimal shape near the buckling transition exhibits at most
one prominent fold. To address this question, we follow a similar argument as above and parametrize a ring shape
with n equal folds by the function

r(θ) = R

(
1−

n∑
i=1

δ

1 + (sin (θ − θi)/α)2

)
. (S14)

We ignore geometrical heterogeneities among folds as presumably they would lead to configurations with overall
higher mechanical energies. Remember that r and θ are the radial and angular coordinate with respect to the
capsule’s geometrical center, respectively. For δ 6= 0, the shape is buckled n times at the angular positions θ1, ..., θn
with the distance between two consecutive folds θi+1 − θi = 2πR/n being constant.
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As we introduced above, when the excess strain ∆ε = (L0 − 2πR)/2πR � 1, the deformations of the ring shape
are expected to be small as well, meaning that both parametric coefficients δ, α � 1. In this situation, we can cast
the leading corrections of the length L0, which is constant for inextensible elastic rings, as follows

∆ε = n

(
δ2

8α
− δα

)
. (S15)

Notice that the excess strain of a ring with n folds is simply given by the excess strain of a single fold (S8) times the
number of folds n, as expected from mean-field considerations. Similarly, the correction to the total energy per unit
length (S2) near the buckling transition also scale linearly with the number of folds and it reads

E − 2πK/R

2πK/R
= n

3δ2

4α3
. (S16)

Combining Eqs. S15-S16 and calculating the minimum of (S16) with the geometrical constraint given by Eq. S15, we
deduce the power-law relations between the geometrical properties of the buckled ring (δ, α) and its excess strain ∆ε
and number of folds n, which read

δ = 4(5/2)1/3(∆ε/n)2/3 (S17)

α = (2/5)1/3(∆ε/n)1/3 (S18)

In contrast to the ring length L0 Eq. S15 , the geometrical properties of the fold are not proportional to the number
of folds. Both parametric coefficients follows a power law with the number of folds n and the exponent is smaller than
1. From the expression of δ and α, the energy per unit length of the minimal buckled shapes becomes

E − 2πK/R

2πK/R
= 30 · (5/2)2/3n2/3∆ε1/3. (S19)

Remarkably, the energy increases with the number of folds n in a sublinear manner. As a result, the shape with
overall minimal energy has one fold for small excess strain ∆ε� 1.

Asymptotic limits of the buckling transition for confined elastic rings

In the sections above, we focus our study in the ideal limit of an inextensible elastic ring and rigid capsules
to understand the mechanics of buckled tissues under confinement. However, the compressibility of epithelial cells
can not be disregarded in our setting, as prior to the buckling transition, cell shape variations are observed. These
observations suggest that cells have a finite compressional rigidity λ whose value is estimated from experimental
measurements of capsule elastic deformations (see Table 1 in the main text). In the present section, we explore how
the buckling transition is influenced by the capsule and tissue rigidities.

In the general situation, two limiting cases can be distinguished for elastic-ring deformations controlled by the
rigidity of capsules. When comparing the energetic contribution attributed to elastic-ring and capsule deformations
in Eq. S2, a dimensionless parameter emerges λ/kR2. Hence, the tissue growth is influenced by the ratio between the
cellular compressional rigidity λ and the stiffness of the capsule k. Notice that the spring constant k relates to the
material properties of the capsule such that k = λcap/R2, as it is discussed in the section below. In consequence, the
dimensionless parameter λ/kR2 is independent of the capsule radius R, but not of capsule and cell mechanics.

For λ/kR2 � 1, the deformations of cell shapes are energetically favorable against capsule deformations, meaning
that below the buckling transition, cells tend to accommodate the internal stress generated by cell proliferation
through shape deformations. As a consequence, when cells are compliant, the threshold of the buckling transition
is set by balancing bending and compressional cell deformations. In particular, for λR2/K � 1 cells are infinitely
compressible, so that the excess strain ∆ε is fully accommodated through cell compression. In this situation, the
minimal shape of the elastic ring is a circle of radius R and the leading correction of the total energy per unit length
as a function of the small excess strain ∆ε = (L0 − 2πR)/2πR� 1 reads

E − 2πK/R = λ(2πR)∆ε2. (S20)

Alternatively, the limit of inextensible elastic rings (i.e. λR2/K � 1) yields an energy per unit length of the minimal
buckled ring that is given by Eq. S13. The boundary between these two regimes can be delimited by comparing both
energies (S13) and (S20), setting a critical excess strain

∆ε5/3c = 30 · (5/2)2/3
K

λR2
. (S21)
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Next, we further investigate the influence of tissue elastic parameters on the buckling transition. We numerically
compute minimal shapes as a function of the excess strain ∆ε and the dimensionless parameter K/λR2. Fig. 4e in
the main text shows two distinct morphological patterns for elastic rings, corresponding to circular rings and buckled
rings. The critical excess strain ∆εc given by Eq. (S21) is in qualitative agreement with numerical simulations.
Consequently, when ∆ε < ∆εc, the ring attains a compressed circular shape of radius R, but for ∆ε > ∆εc, the ring
buckles.

Next, we investigate the nature of the buckling transition by studying the stability of minimal shapes of Eq. S2
near the transition point. To this end, we numerically compute minimal shapes as a function of the excess strain ∆ε
for a fixed set of elastic parameters. The excess strain ∆ε, first increases from 0 to 0.02 and second decreases from
0.02 to 0 at regular intervals of 0.0005. At a certain ∆ε, the initial condition corresponds to the stationary shape
at the preceding excess strain plus small amplitude fluctuations. Fig. S6e shows the height of the folded region of
an elastic ring δ as a function of the excess strain, being δ = 0 for circular rings and δ 6= 0 for buckled rings. We
observe signatures of hysteresis that is characteristic of first order transitions. The threshold for the increasing ramp
of ∆ε is not coincident with the threshold on the decreasing ramp, delimiting a coexistence region for intermediate
excess strains, that in addition is manifested by larger error bars. We checked that the hysteresis region is robust to
variations in the elastic parameters. Therefore, we conclude that the nature of the buckling transition is first order.

For λ/kR2 � 1, the deformations of the capsule are energetically favourable against cell deformations, meaning
that below the buckling transition, cells tend to expand and deform the capsule to accommodate the forces generated
by cell proliferation. As a consequence, when capsules are compliant, the threshold of the buckling transition is set
by balancing cell bending deformations and capsule compressional deformations. In particular, for kR4/K � 1 the
capsules are infinitely compressible, so that the excess strain ∆ε is fully accommodated through capsule inflation. In
this situation, the minimal shape of the elastic ring is a circle of radius L0/2π > R and the leading correction of the
total energy per unit length as a function of the small excess strain ∆ε = (L0 − 2πR)/2πR� 1 reads

E − 2πK/R = k(2πR3)∆ε2. (S22)

In a similar spirit as above, the energy per unit length given by Eq. S13 for an inextensible ring inside an undeformable
capsule can be employed to estimate the boundary between these two limiting cases, which sets the critical value for
the excess length

∆ε5/3c = 30 · (5/2)2/3
K

kR4
. (S23)

Consequently, when ∆ε < ∆εc, the ring attains a circular shape of radius L0/2π > R, but for ∆ε > ∆εc, the ring
buckles.

Section 4: Forces of the ring-confinement system

In our setting, we can investigate the interplay between spherical alginate capsules and the morphological changes
of epithelial tissues, and how these in turn are driven by the mechanical forces generated at the interface between
capsules and cells. Indeed, epithelial monolayers can build up large-scale collective forces mediated by cell-cell
contacts. These forces suffice to induce large deformations on capsules with elastic modulus of ∼ 10 kPa. In the
course of tissue buckling, distinct modes of deformations are identified. In the present section, we summarize the
analytical arguments used to estimate the tissue forces from capsule deformations.

Isotropic pressure of an elastic ring before buckling

At the early stages, cells migrate freely on the inner surface of alginate capsules. Upon reaching a confluent
state, in which no free spaces remain across the monolayer, cells keep on replicating and thus generating local
force dipole at each of these events. The equilibration of these forces at the tissue-scale lead to an overall cellular
compression, evidenced by the observed progressive increase of cell height or decrease of cell in-plane area. These
compressive forces are transmitted to the substrate underneath, resulting in a measurable expansion of the alginate
capsule. This first phase terminates, when the tissue folds.

To investigate the nature of the forces before buckling, let us consider a 3d elastic shell of radius R + δR > R
with δR � 1 that is confined in a shell of smaller radius R under the action of a uniform pressure P , Fig. S6a.
The departure of the capsule from its equilibrium state is balanced by the work done by an external pressure P
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Fig. S6a. The variation of the curvature in the compressed state is ∼ δR/R2, and the total bending energy scales as
K(δR/R2)2R2. Besides the total stretching energy is λ(δR/R)2R2, where the strain on single cells scales as ∼ δR/R.
These elastic deformations are a consequence of the external compressional pressure P that represents the constraining
forces by the alginate capsules, and so the total work supplied to the elastic ring is ∼ PR2δR. The ring deformations
are computed through the minimization of the total energy

E ∼ K(δR/R2)2R2 + λ(δR/R)2R2 − PR2δR, (S24)

with respect to δR, yielding the compressive pressure as a function of the excess strain ∆ε = δR/R

P ∝ λ∆ε

R

(
1 +

K

λR2

)
(S25)

in terms of the geometrical and mechanical properties of the elastic ring.
For the parameter set in Table 1 in the main text, the term K/λR2 � 1 is negligible, meaning that Eq. S25 is

further simplified to P ∝ λδR/R2 for epithelial monolayers. Thereby, at the buckling transition for epithelia the
excess strain ∆ε ∼ ∆εc takes the value given by Eq. S21, and thus the pressure at buckling reads

Pbuckling ∝
λ2/5K3/5

R11/5
. (S26)

Similar arguments can be used to obtain the harmonic interaction between the elastic ring and the confinement in
Eq. S2 and in particular the scaling of the spring constant k with the material properties of alginate capsules. Through
similar arguments the reactive force of alginate capsules to an expanding internal pressure P ∗ can be computed, leading
to an equivalent result to Eq. S25, except that the mechanics of the capsule are probed instead of the ring mechanics
and the displacement δR is outwards. Consequently Eq. S25 turns into

P ∗ ∝ λcapδR

R2

(
1 +

Kcap

λcapR2

)
, (S27)

for a 3d spherical capsule confronted to an internal expanding pressure P ∗. In consequence as we anticipated in
Eq. S2, the capsule behavior resembles an harmonic potential with a spring constant k = λcap/R2(1 +Kcap/λcapR2),
which according to the parameter set in Table 1 in the main text can be further approximated to k ∼ λcap/R2.

Forces between confinement and an elastic ring after buckling

At the intermediate stages, the compressional forces accumulation results in a buckling transition, in which a
macroscopic part of the tissue detaches from the inner surface of the capsule and folds. From this point on, the
buckled tissue is not in physical contact with the capsule, except for a thin region at the edge through which
compressive forces from the capsule may stabilize the tissue shape.

To further investigate the interplay between the buckled tissue and the compressional forces at the contact region,
we assume that the tissue behaves as a 2d thin elastic ring with a bending modulus K and compressional modulus
λ. The following results has been reported previously elsewhere, (Chan and McMinn, 1966, pp. 433-442) in the main
text. Here we revisit them in the context of tissue mechanics, but for more details about the intermediate calculations
we refer to the original reference (Chan and McMinn, 1966, pp. 433-442) in the main text.

Let us consider a buckled elastic ring as illustrate in Fig. S6d, where the depth of the buckled ring is δ and the
opening angle α. When adhesion is neglected, the part of the confinement in contact with the unbuckled segment of
the ring withstands a uniform pressure PB and a pair of normal forces per unit length Fc = PBR tanα at the contact
points (red dots in Fig. S6d). These forces condition the shape of the inner elastic ring. In particular, enforcing force
balance at the level of the contact points of the inner ring, results in a pair of compressive forces per unit length along
the x-axis applied on the ends of the buckled ring, whose amplitude depends on the confinement-based forces through
FB = PBR/ cosα. These external forces applied to the buckled ring cancel out, however, they are sufficient to buckle
the ring and stabilize its shape. Therefore, the local force balance equation for a material element of the buckled ring
reads

K
d2φ

ds2
= −FB sinφ, (S28)
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where φ is the angle between the tangent unit vector and the x-axis and s is the arc-length of the equilibrium shape.
Thanks to the symmetry of the shape at the plane x = 0, the boundary conditions can be expressed as

φ(s = 0) = 0, (S29)

φ(s = S∗) = α, (S30)

where 2S∗ is the length of the buckled ring and 2α is the opening angle, Fig S6d. These set of equations determine
a unique solution for φ, which is a complicated function of α, S∗ and FB . However these physical quantities are not
independent, but they are related to the excess strain of the elastic ring ∆ε = (L− 2πR)/2πR through conditions of
self-consistency. In particular, at the contact points we enforce continuity of the curvature (i.e. dφ/ds = 1/R) and
continuity of the buckled ring (x(s = S∗), y(s = S∗)) = (sinα, cosα). Lastly, the excess strain is the sum of the axial
strain of the unbuckled part and the difference in length of the buckled part compared with the original arc

∆ε =
(

1− α

π

) FB cosα

λ
+
FB sinα

πλ
+

(
S∗

πR
− α

π

)
. (S31)

Notice that for λ→∞, we recover the expected result for an inextensible ring.
For a given excess strain ∆ε and λ, there is a unique shape of the buckled ring that obeys all these conditions.

These relations are transcendental and thus not analytically solvable. In Fig. S6g-i, we summarize some of the relevant
geometrical properties of the buckled shape as a function ∆ε and λR2/K: from left to right the depth of the buckled
ring δ, the opening angle α and the dimensionless buckling forces FBR

2/K. All of them obey a power-law with the
excess strain ∆ε and most remarkably to a good approximation they are independent of the compressional modulus
λ. Consequently, the shape of the buckled ring provides a simple readout of the dimensionless mechanical forces at
the contact line FBR

2/K.
Here, we detail the fitting method used to construct Figs. 4h-i in the main text. As explained above, by enforcing

force balance, we obtain the triad of parameters (α, δ/R, PBR
3/K cosα) as a function of ∆ε and λR2/K only. From

these parameters, we computed the angle γ at which the curvature is zero defining an inflection point for the fold
shape, as shown in Fig. 4d in the main text. In Fig. 4h in the main text, we plot the pairs (α, δ), and (γ, δ) for
a single value of the dimensionless compressional rigidity λR2/K, and compare it to experimental measurements
without free parameters. In Fig. 4i in the main text, we plot the pairs (δ/R, PBR

3/K) for a single value of the
dimensionless compressional rigidity λR2/K, and from the comparison with the experimental measurements, we find
the best fit at the bending rigidity K ∼ 0.5± 0.2µN · µm.

Restoring force of indented elastic rings before buckling

In the following, we study the elastic forces of a system made of a spherical monolayer prior to folding that
is adhered to the inner side of an spherical elastic capsule that is subjected to a normal force FI , mimicking the effect
of an indenter. Let us approximate the previous system by two concentric 3d elastic shells. The inner (outer) shell
of radius R describes the tissue (alginate capsule), whose mechanical properties are characterized by the bending
rigidity K (Kcap) and the compressional rigidity λ (λcap).

The system deforms under the action of a small external point-like force FI , which is localized and directed normal
to the surface, forming a small bulge with radius d = Rα and depth δ. This problem was addressed in (Landau and
Lifshitz, 1975, Theory of elasticity) in the main text, and here, we restrict the analysis to α, δ � 1. At the bulge, the
curvature of both surfaces scales as δ/d2, and the total bending energy integrated over the deformed surface (∝ d2)
is ∼ (K + Kcap)(δ/d2)2d2. Besides, the strain at the bulge area scales as ∼ δ/R and the total stretching energy
due to the external force is ∼ (λ + λcap)(δ/R)2d2. Therefore, the work generated by the external load ∼ Fδ is thus
transformed into elastic deformations near the region where the force is applied. The shape of the bulge is given by
the condition that the total mechanical energy

E ∼ (K + Kcap)

(
δ

d2

)2

d2 + (λ+ λcap)

(
δ

R

)2

d2 − Fδ (S32)

is minimal, yielding the following relation for the minimal radius d and depth δ

d ∼
(
K + Kcap

λ+ λcap

)1/4

R1/2, (S33)

F ∼ 4
√

(λ+ λcap)(K + Kcap)
δ

R
. (S34)
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In conclusion, prior to the buckling transition the response of the system subjected to a point-like force is a restoring
force proportional to the displacement of the bulged region δ. Hence, let us define two spring constant:

K = 4
√

(λ+ λcap)(K + Kcap)/R (S35)

for capsules with unbuckled confluent monolayers and

Kcap = 4
√
λcapKcap/R =

√
4/3Eh2/(1− ν2)R (S36)

for capsules without tissues (K = λ = 0).
To characterize the mechanical properties of epithelial tissues experimentally, we measure the linear regime of force-

displacement curves by inducing small deformations with an indenter. Our findings permit to measure the spring
constants under different configurations. In particular we compare the measured spring constant of capsules with and
without tissues and we find that in general capsules are stiffer than the tissues underneath K � Kcap and λ� λcap,
meaning that the ratio between both coefficient can be approximated by

K

Kcap
∼ 1 +

1

2

(
K

Kcap
+

λ

λcap

)
, (S37)

a simple relation that permits to decipher the mechanics of tissues.

Section 5: Estimated parameters from the macroscopic approach

In this section, we summarize the main arguments used to determine the macroscopic parameters of epithelial
monolayers that are bound to the inner surface of passive elastic shells in Table 1 in the main text.

The properties of alginate capsules are controlled externally. For the scale of tissue forces, alginate capsules behave
as linear elastic materials with an elastic modulus E = 19.5± 0.7 kPa for 2.5% alginate capsules (Fig. 3 in the main
text) and a Poisson ratio ν = 1/2. The typical thickness of the capsules is about h = 19.9±0.4 µm and their spherical
shape has an inner radius of R = 97 ± 0.9 µm. Since the thickness is smaller than the radius (h � R), capsules are
approximated by elastic shells with a bending rigidity Kcap = Eh3/(12(1− ν2)) = 17± 1 µN·µm and a compressional
rigidity λcap = Eh/(1− ν2) = 0.52± 0.02 µN/µm, (Landau and Lifshitz, 1975, Theory of elasticity) in the main text.
To estimate the macroscopic parameters of the monolayer, and in particular their bending and compressional rigidities
(K and λ), we require an additional independent measurement that is provided by the shape and mechanics of folded
tissues. On the one hand according to Fig. S6g-i, there is a one-to-one λ-independent relation between the opening
angle α of a buckled elastic ring and the dimensionless force at the contact points FBR

2/K, as both are invertible
functions. The latter is related to the pressure on the capsule by PB = FB cosα/R. As explained in the main text by
fitting the curve between the fold height δ and the capsule pressure PB , we obtain that the tissue bending rigidity is
K = 0.5± 0.2 µN·µm (see Fig. 4i in the main text), which is of the order of K ∼ 108 kBT .

When a point-like force is applied on a capsule, it forms a small bulge whose restoring force is different whether
the inner surface is coated with a tissue or not. The slope of the force displacement curve defines an effective spring
constant. The measured spring constant for capsules is Kcap ∼ 0.064± 0.003 µN/µm (see Fig. 4j in the main text).
When the spring constant is measured for capsules with a confluent tissue, its value rises slightly to K ∼ 0.074±0.007
µN/µm (see Fig. 4j in the main text), suggesting that the monolayer resist the applied load.

Next, we use the ratio between K/Kcap ∼ 1.16 ± 0.12 (see Fig. 4j in the main text) to obtain from Eq. S37
that λ/λcap ∼ 0.28 ± 0.24 as K/Kcap ∼ 0.03 ± 0.01 was determined above. Therefore, the compressional rigidity is
λ = 0.15± 0.13 µN/µm for the value of λcap listed in Table 1 in the main text.

A scaling argument allows to estimate the order of magnitude of the pressure at buckling Pbuckling. Let us consider
that K ∼ 1 µN·µm, λ = 0.1 µN/µm and R ∼ 100 µm, so that the dimensionless number K/λR2 ∼ 10−3 � 1. The
threshold of the excess strain at which the circular elastic ring buckles is ∆εc ∼ 10−1, where the numerical factor has
been set to 10 in Eq. S21. By introducing this value to the relation between the pressure and the excess strain S25,
we obtain that the pressure at buckling Pbuckling ∼ 100 Pa.

Section 6: Description of a confined elastic ring (microscopic approach)

We showed in (Merzouki, Malaspinas and Chopard, 2016, pp. 4745-4754; Merzouki et al, 2018, pp. 511-519) in
the main text how simulated growing cell monolayers can fold in the absence of external constraints. We found that
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the evolution of the cell monolayer morphology depends on the competition between the cell proliferation rate and
the cell monolayer relaxation time. The cell mechanics affect directly the time needed by the cell monolayer to relax
following a cell division, as well as the cell monolayer’s geometry, which are discriminant characteristics of folded
tissues. In this work, we extend this buckling study by investigating the growth of cell monolayers inside elastic
environments. Our simulations are compared to experiments, where spherical cell monolayers are cultured inside
hydrogel microcapsules.

Cell monolayer cross-section

A circular cell monolayer cross-section is modelled by a ring of quadrilateral cells. Each cell has two lateral
edges, which separate it from its neighbour cells, as well as two boundary edges, corresponding to the basal and
apical edges. A cell monolayer is characterised by the area elasticity of its cells, the elasticity of its cell edges and
the bending rigidity between two neighbour cells. The energy function H of the cell monolayer cross-section is the
following:

H =
∑

all cells α

Kα

2

(
Aα −A0

α

)2
+

∑
all edges eij

ksi,j
2

(
Li,j − L0

i,j

)2
+

∑
all boundary edges eij ,eik

cb

2

(
1− N̂i,j · N̂i,k

)2 (S38)

The first term of the energy represents the cell area elasticity. Kα and A0
α are the area elasticity coefficient and the

preferred area of the cell α, respectively. In what follows, we set Kα = K = 109 N/m3, (Merzouki, Malaspinas and
Chopard, 2016, pp. 4745-4754; Merzouki et al, 2018, pp. 511-519) in the main text and A0

α = A0 = 300 µm2 for all the
cells α. The second term models the elasticity of the cell edges. ksi,j and L0

i,j are the spring coefficient along an edge eij
and its preferred (resting) length, respectively. The higher ksi,j , the more resistant are the cell edges to deformation
(extension/compression). This term prevents cells from adopting triangular shapes under lateral compression. In

what follows, we set L0
i,j = L0 =

√
A0 for all edges eij . Finally, the third term stands for the bending rigidity of the

cell monolayer, where cb is the local bending rigidity coefficient. N̂i,j · N̂i,k is the dot product between the vectors

N̂i,j and N̂i,k. The latter are the unit vectors that are normal to the boundary (basal/apical) edges eij and eik. This
energy term is minimised when the normal vectors of neighbour cells are parallel and the tissue curvature is null.

By deriving this energy function H with respect to a vertex position ri, we compute the internal force Fi applied
on the vertex vi.

Fi = −dH
dri

= −1

2

∑
cell α contains vi

Kα

(
Aα −A0

α

)(
ROT

(
90◦
)
·
(
rαi−1

− rαi+1

))
−

∑
all edges eij

ksi,j
Li,j − L0

i,j

li,j

(
ri − rj

)
−

∑
all boundary edges eij ,eik

cb
(
1− N̂i,j · N̂i,k

)
·

((
ri − rj

)
+
(
ri − rk

)
Li,j · Li,k

+ N̂i,j · N̂j,k

(
ri − rj(
Li,j

)2 +
ri − rk(
Li,k

)2 )
)

(S39)

where

ROT (θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(S40)

is the rotation matrix in two dimensions, and rαi−1
and rαi+1

are the positions of the previous and next vertices,
vαi−1

and vαi+1
, of the vertex vi in the cell α, when the vertices of α are ordered counterclockwise

Heterogeneous elastic capsules

We constrain the cell monolayer cross-section using an elastic ring environment with a spring coefficient kring.
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This ring is characterised by its centre cring. The ring could have a homogeneous shape and its geometry be solely
characterised by a radius Rring. However, for more realistic modelling of the experimental hydrogel micro-capsules, we
actually constrain the growing cell monolayer cross-sections inside ’circular’ elastic environments with heterogeneous
borders. We perturb the circle radius with a set of sinusoidal signals. See Eq. (S41).

Rring(θ) = R0
ring +

n∑
i=1

sin(αi · θ + φi) ·Ai, (S41)

where Rring(θ) is the radius of the ring at an angle θ, n is the number of sinusoidal noises disturbing the initial radius
of the ring R0

ring, and αi, φi and Ai are the frequency, phase and amplitude of the ith sinusoidal perturbation.
The contact of the cells with the inner surface of the capsule yields a friction that restrains the movement of the cells.

Cells are subjected to non-slipping forces along the capsule border. In our model, when a vertex vi at a position ri is
close to the border of the capsule, ||ri−cring|| > Rring(θi)−ε, it is subjected to a force that resists its tangential force
component F tani up to a given force threshold FNS , where the subscript NS stands for ”Non-Slipping”. In contrast,
when the vertex is far from the capsule border or when its tangential force component F tani exceeds the non-slipping
force threshold FNS , then the vertex is free from the non-slipping force exerted along the capsule’s surface.

Section 7: Folding quantification

For each simulation, the contour of the confining capsule is stored as well as the basal contour of the cell monolayer
over time. The contours are stored in .csv files. Each line contains the (X,Y ) coordinates of a point along the contour.
Points are ordered counter-clockwise. The basal contour of the cell monolayer is defined by the counter-clockwise
sequence of basal vertices vi, at positions ri = (xi, yi), along the cell monolayer cross-section. The dynamics of the
cell monolayer can then be followed over time.

From the sequence of vertex positions ri = (xi, yi), we compute the radius Ri = ||ri−cring|| of each vertex (distance
to the capsule center cring) and its angle θi along the cell monolayer contour. The first characteristic property of
a fold is its detachment from its initial unfolded configuration and its displacement from the border to the interior
of the capsule. In order to identify a detachment, we compute the difference between a given contour profile R(θ)
and the reference profile Rref (θ); dist(θ) = R(θ)−Rref (θ). The reference profile corresponds to the initial unfolded
profile subjected to the confinement constraints. When the tissue detaches from the capsule and moves inward, the
distance dist(θ) to the reference profile in this region is negative; dist(θ) < 0. In contrast, when dist(θ) > 0, this
corresponds to a tissue that pushes outward on its confining environment. Because the number of cells (and vertices)
of the growing simulated tissue evolves over time, the comparison between the tissue profiles requires a pre-processing.
All the profiles are first interpolated to get their radius at specific angles θ ∈]0, 2π].

The identification of detachments along the tissue contour starts with finding the local minima of the distance
function with respect to the angle dist = f(θ). In order to ignore noises and minor detachments, we set a threshold
εdist, ex. εdist = −10µm, above which a local minimum is dismissed. The second step aims at delimiting the
detachment, i.e. finding its start and end points. From each significant distance local minimum, we look backward
and forward along the tissue contour for points with dist ≈ 0, ex. dist > −1µm. These start and end points allow us
to compute the width of the detachment. Moreover, the position of a detachment is computed as the mean position
between the start and end points delimiting the detachment. In case different distance local minima have the same
start and end points, they are considered as potential folds being part of a unique detachment.

There, we distinguish between a detachment and a fold. The fold delimitation is not solely based on the distance to
the reference contour, but it is also characterised by an increased local curvature. The local curvature is the second
derivative of the distance function dist = f(θ). In summary, a fold is characterised by a distance to the capsule and
a curvature which exceed given thresholds εdist and εcurv, respectively. In what follows, we use εdist = −10µm and
εcurv = 5e−4. The start and end points of a fold are the points along the contour (before and after the fold position)
where the first and second derivatives of the distance change sign.

Section 8: Simulations and results

Effect of cell mechanics on buckling

In this section, we show how different cell and tissue mechanical properties, namely the cell stiffness and the
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tissue bending rigidity, affect the timing of tissue folding as well as the number, the width and the position of folds
that form.

For this purpose, we simulate 45 cell monolayer cross-sections for a set of normalised parameters (k̄s, c̄b), where

k̄s = ks

KA0 and c̄b = cb

K(A0)2 . For each couple of normalised parameters (k̄s, c̄b), we start with a relaxed ring of 40 cells.

All the cells are assigned the same preferred area A0 = 300 µm2 and an area elasticity coefficient K = 109 N/m3.
The cell monolayer cross-section is confined inside an elastic heterogeneous ring, with kring = 0.06 N/m and a non-
slipping force FNS = FNSK(A0)3/2 with FNS = 0.01, which corresponds to FNS = O(10−8) N . The radius of
the heterogeneous ring is perturbed using n = 5 sinusoids with frequencies αi = i,∀i = 1..n, random amplitudes
Ai ∈]0...0.02 · R] and random phases φi ∈]0...2π]. Fig. S7a presents the distribution of the number of folds forming
after 40 cell divisions and the number of cells when the first fold appears for each set of normalised parameters (k̄s, c̄b).

We observe that higher bending rigidity c̄b, which increases the differential tension between the boundary and the
lateral cell edges, enhances cell monolayer thickening and therefore postpones and reduces tissue folding. In contrast,
higher cell stiffness k̄s, which resists cell compression, accelerates and enhances tissue folding in response to cell
proliferation.

In Fig. S7a, we highlight in red the histograms matching the experimental observations, i.e. a majority of 2 folds
formation, followed by cases where 1 fold is observed, then fewer cases displaying 3 folds. This parameter region
corresponds to a first fold forming at approximately 70 cells and an average cell aspect ratio at buckling AR = 2−2.5,
while regions with larger bending rigidity show a postponed buckling when cells are much more elongated (AR = 3−6).
We found that along the line k̄s/c̄b = 0.1, the fold number (Fig. S7a) was similar to experiments (see Fig. 5 in the
main text).

The forces applied by the tissue on the capsule (and the other way around, the external forces applied by the capsule
on the tissue) over time were monitored during our simulations. The evolution of the estimated pressure over time are
presented in Fig. S7b. Experimentally, the force applied by the growing tissue on the capsule at buckling is estimated
to be in the order of the micronewton O(µN) (F = 0.4− 4 µN), and the pressure to be in the order O(0.1 kPa). In
the highlighted regions of the model parameters (matching the experimental distribution of the number of forming
folds), the first folds appear in our simulated tissues when the number of cells reaches ≈ 60−70. In this time interval,
the force applied by the simulated tissue cross-section on its elastic environment FCSext =

∑
i

||F iext|| varies between

0.5 µN − 1 µN . The force FCSext is the sum of all the external force norms applied by the tissue cross-section on the
capsule. In 3D, we estimate the force applied by the spherical tissue FSPext on the capsule to be:

FSPext =
FCSext · nbCellsCS

π
(S42)

Therefore, the pressure P at buckling in our simulations is computed as P =
FSP

ext

S , where S = 4πR2 is the surface of
the sphere with radius R. In our simulations, R ≈ 100µm. Experimentally, the capsule radius varies between 75µm
and 175µm, which corresponds to a 150µm− 350µm diameter. Finally, with approximately 70 cells at buckling, and
a force applied by the tissue cross-section FCSext between 0.5 µN and 1 µN , we estimate that the pressure at buckling
in our simulations to be P ≈ 0.17 kPa for values of ks ∼ 3 ∗ 10−3 µN/µm and cb ∼ 9 µN·µm Fig. S7b. This is
consistent with the experimental pressure in the order of 0.1 kPa estimated when the cultured cell monolayers buckle
inside the elastic microcapsule.

Effect of confining environment

The non-slipping forces applied by the capsule on the cells play an important role on the timing, the number
and the shape of the folds that form. We analysed the folding of simulated cell monolayers growing inside capsules
with normalised non-slipping forces FNS = FNS

K(A0)3/2
varying between 0.001 and 0.01.

We found that an increased friction between the capsule’s inner surface and the cell monolayer leads to accelerated
folds formation. More folds appear and they present wider shapes. In general, once a fold forms, the lateral cell
compression in this region decreases. Without friction, the cells around the fold migrate into the fold, leading to the
constriction of the fold’s neck and the formation of a highly curved inward bud. In contrast, increased non-slipping
forces prevent the migration of the cells into the fold that just formed. Therefore, the fold grows wider, other parts
of the cell monolayer keep on accumulating lateral compressive stress due to cell proliferation, and additional folds
form. Click here to watch the video, or follow the link: https://youtu.be/C73R6kLNfQk.

https://you tu.be/C73R6kLNfQk
https://youtu.be/C73R6kLNfQk
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