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1. PURPOSE OF THE STUDY AND BACKGROUND 

 

1.1. Purpose of the study 

We want to develop an online machine learning model system that calculates an individual’s risk 

of developing complications from spine and brain surgery. This model will be constructed based 

on NSQIP national database and then be further validated using de-identified clinical data from 

University of Rochester Medical Center (URMC). This online system will help patients and 

doctors providing a systematic, evidence-based method for estimating risks of post-operative 

complications faced by individual patients that undergo surgery. It will provide better 

understanding of the continuum of brain and spine care, perform early individualized 

intervention to reduce the readmission and reoperation and reduce the cost for complication and 

reoperation. 

 

1.2. Background 

The utilization of surgical therapy of disorders of the spine and brain has been increasing 

dramatically in the past decades (Matz et al., 2016). New York State on average conducts about 

200 spinal and brain surgeries per 100,000 people per year. Despite this trend, a paucity of 

information examining the issues surrounding the safety of these procedures remains. Existing 

data are limited by inclusion of small sample sizes, single institution experiences, and selected 

patient populations (Machado et al., 2016; Moisi, Page, Gahramanov, & Oskouian, 2015). 

Further, few studies exist comparing the various surgical approaches and the outcomes 

associated with them (Piper et al., 2017).  

 

This data is important to identify patients at risk, allocate healthcare resources, and adequately 

inform health care providers and patients of such risks and direct future research to improve 

perioperative outcomes. Additionally, Spinal instrumentation and fusion is one of the important 

surgical options for spine diseases, so a great many patients with spine surgery may require spine 

fusion. Based on the 220% increase in spinal\brain surgery over the last decade, increased rates of 

reoperations due to surgeries is hypothesized. Based on the literature, it is hypothesized, that 

patient age, payor, surgeon, length of stay and the region where spine and brain care is acquired 

greatly influences the patient's chances for clinical outcome and complication(Emblem et al., 

2015; Obermeyer & Emanuel, 2016; Senders et al., 2018). 

 

Making difficult decisions about whether to have a potentially risky surgery will get easier for 

doctors and patients. Our online system will allow anyone with a computer and an internet 

connection to punch specific information into a web page to find out potential outcomes before 

ever going under the knife. 

 

2. STUDY DESIGN 

 

2.1. Overview 

To assess the complications and outcomes of patients undergoing spine and brain surgery, from 

simple decompression to spine revision and complex craniotomy, we will extract pre-operative 
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factors from the National Surgical Quality Improvement Program (ACS NSQIP) national 

database and use advanced machine learning algorithms to construct a predictive model, which 

will identify the risk of complications and cost for complication, readmission, reoperation 

mortality and long term outcomes. The results will be further validated using de-identified 

medical record. Many of these outcomes and complication can be predicted before surgery. 

 

2.2. Rationale for Study Design 

New York State on average conducts about 200 spinal and brain surgeries per 100,000 people per 

year. It is important to identify patients at risk, allocate healthcare resources, adequately inform 

health care providers and patients of such risks and direct future research to improve 

perioperative outcomes.  

 

 

3. CHARACTERISTICS OF THE RESEARCH POPULATION 

 

3.1. Subject Characteristics 

 

This study will be a longitudinal retrospective study. The patients undergoing spine and brain 

surgery (i.e. cervical, thoracic, and lumbar surgeries) from the National Surgical Quality 

Improvement Program (ACS NSQIP) database between the years of 2000-2015 will be identified 

for constructing predicted model. NSQIP database is publicly available. We have got the 

de-identified data set from NSQIP database. Then the results will be further validated using 

clinical data from URMC dataset during 2000 to 2017. 

 

NSQIP database compiles data from randomly selected surgical patients at more than 517 

institutions in the US, will be used for this study. This database includes more than 150 

prospectively collected perioperative variables about included patients. Trained nurses abstract 

these data from medical records, operative reports, and patient interviews. Postoperative data are 

collected for 30 days after surgery for all patients, including discharged patients (Khuri et al., 

1998). We have got the de-identified NSQIP dataset from 2000 to 2015. There are about 300,000 

spine and brain records and the various include patient preoperative, postoperative factors and 

outcomes.  

 

We will use a de-identified dataset of the spine and brain patients from URMC. We will apply the 

de-identified dataset from department of Clinical & Translational Research. The de-identified 

dataset will not include the patients’ names, medical record numbers, or dates (except for the 

year) and will include only preoperative, postoperative factors and outcomes. There are about 

50,000 spine and brain records. 

 

3.2. Inclusion and Exclusion Criteria 

 

Inclusion Criteria:  Our research population will be derived from the patients included in these databases 

that are classified under Current Procedural Terminology (CPT).  The patients used these codes will be 

decided into our predict model. The criteria are designed for patients underwent spine and brain surgery. 

The following Current Procedural Terminology (CPT) codes were utilized to place a patient: from 61000 to 

64999 and 22010 to 22899. 

 

 

4. METHODS AND STUDY PROCEDURES 

 

We will extract patient and surgical factors associated with outcomes, stratified by primary 
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diagnosis and primary procedure from multi-modality advanced national databases (Memarian, 

Kim, Dewar, Engel, & Staba, 2015). We will use univariate chi-square analysis and multivariate 

logistic regression models to fuse the deep anisotropic features into a dense and isotropic form 

using SAS and R. They are meaningful features in the prediction model. We will also determine 

the total number of patients that have had more procedure. Then, we will use machine learning 

algorithms such as the margin-based classifiers or decision tree to contract robust, unique 

predictive model. 

       

4.1. Efficacy Assessments 

The novel model will be further validated using de-identified clinical data from URMC database 

during 2000 to 2017. We considered a quantitative synthesis to be inappropriate due to the 

heterogeneity in neurosurgical applications. A qualitative synthesis of results and assessment of 

risk of bias on outcome, study, and review level is provided by means of a narrative approach. 

However, to summarize the findings in some quantitative form, the median accuracy and area 

under the receiver operating curve (AUC) of the prediction performance were calculated for all 

studies, and the median absolute improvement in performance was calculated for all studies 

comparing machine learning models versus traditional logistic regression. Accuracy refers to the 

proportion of correct predictions among the total number of predictions, and the AUC 

corresponds to the probability that a binary classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative one. 

 

5. RISK/BENEFIT ASSESSMENT 

 

5.1. Potential Risks 

There is minimal to no potential risk for privacy and confidentiality of patient records to be 

violated. We are requesting de-identifiable dataset from NSQIP database and de-identifiable 

clinical dataset from URMC database. We would like to predict the potential outcomes before 

ever going under the knife and diagnosis to which variables influence the rate of reoperations and 

mortality. We will not get any identified information. This study will protect and secure patient 

health information and will not influence the care of these patients in anyway. 

 

5.2. Protection Against Risks 

Multiple levels of protection with both the personnel involved and within the computer software 

have been established to protected potential breaches of confidentiality. Only Dr. Yan. Michael 

Li, and Dr. Y Icy Li will be involved in analyzing the de-identified information. Also as 

researchers, we are blinded to the vulnerable populations and thus cannot bias our studies. The 

patients will not be directly contacted. Only statistical data such as p-values, odds ratios, and 

frequencies will be released. All data presented, will be presented in a HIPPA identified fashion, 

where no patients can be easily identified. Levels of security are accomplished with password 

protections of the database filed, saved on an encrypted server. 

 

6. CONFIDENTIALIATY OF DATA AND INFORMATION STORAGE  

The de-identified data will be maintained without an expiration date. All study information 

will remain locked in either PI’s office or the Department of Neurosurgery. Only the study 

personnel will have access to the data.  Patient confidentiality will be maintained throughout 

the study.  None of the information collected will be revealed to anyone outside the study. 

When results of this study are reported the patients will not be identifiable. The database of 

de-identified information will be stored on the University of Rochester Center’s servers. The 

server is protected by a CheckPoint Firewall that limits the source and type of traffic coming 

into the institution.  The University imposes restrictions on network protocols to reduce the 
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risk of various common vulnerabilities. Other security measures including data only saved on 

an encrypted network server, modifying the screen saver timeout to 10 minutes. 
 

 

7. DATA ANALYSIS AND MONITORING 

 

7.1. Sample Size Determination 

We will identify patients based on Current Procedural Terminology (CPT) and International 

Classification of Diseases-Ninth Revision-Clinical Modification (ICD-9 and 10) codes to 

analyze the spine and brain surgery (i.e. cervical, thoracic, lumbar surgeries and craniomoty) 

When data is presented, it will be de-identified and patients will not be able to be identified 

directly or indirectly for the data presented. We would like to look at factors such as age, gender, 

and diagnosis to determine whether or not those variables influence the outcome and  

 

7.2. Planned Statistical Analysis 

We will establish a predictive model through advanced machine learning algorithms to identify 

potential risk of developing complications based on the associated significant pre-operative 

factors of patients undergoing spinal surgery. A medical application of a model could be outcome 

prediction in patients with spine surgery. Supervised learning algorithms are trained on historical 

patients for whom the length of survival is known. The model is too complex, because containing 

too many features relative to the number of cases, the model could overfit the data characterized 

by predicting noise. Overfitting can mean including significant features that are identified using 

univariate and multivariate logistic regression models. This reduces the prediction error in the 

training set but at the cost of a reduced generalizability to previously unseen data.  

 

To overcome this problem, a model should include a validation procedure. A basic technique is to 

use part of the data for training and judging the model’s performance on the remainder, or test set. 

There are 2 competing concerns with this approach. Using a very high proportion of data for 

training results in more stable parameter estimates and typically increases the performance of the 

chosen measure of accuracy yet increases the chance that the model is tested on a 

nonrepresentative selection of cases. In contrast, allocating too much data for testing can leave 

the model poorly trained. A common allocation tradeoff used in practice is a proportion of 2:1 for 

training and testing. Another technique, used especially in situations in which data are limited, is 

cross-validation. Cross-validation divides data into multiple partitions (or folds), where each fold 

in turn is held out treated as the test set and the rest are used for training, and performance results 

are averaged across each test fold. Common used partitions are 5-fold, 10-fold, and leave-one-out 

cross-validation. Testing and cross-validation are not mutually exclusive, and both may be used 

to increase model robustness. These algorithms can be powerful tools for detecting previously 

unknown patterns in multidimensional data that may not be prima facie detectable by humans 

and also can be used to generate labels to subsequently train a supervised model. When different 

results are obtained from multiple approaches, we will take the overlap of results from different 

methods to reduce the probability of false positives. We will construct the predictive model using 

integrated advanced factors. Linear kernel in all algorithms will be used for our binary 

classification. 
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