Supplementary information

Temperature-dependent optical constants of monolayer MoS₂, MoSe₂, WS₂, and WSe₂: Spectroscopic ellipsometry and first-principles calculations

Hsiang-Lin Liu^{1,*}, Teng Yang^{2,3,*}, Jyun-Han Chen¹, Hsiao-Wen Chen¹, Huaihong Guo^{3,4}, Riichiro Saito³, Ming-Yang Li^{5,6}, and Lain-Jong Li⁶

¹Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan ²Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China

³Department of Physics, Tohoku University, Sendai 980-8578, Japan

⁴College of Sciences, Liaoning Shihua University, Fushun, 113001, China

⁵Research Center for Applied Science, Academia Sinica, Taipei 10617, Taiwan

⁶Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

*Corresponding author: hliu@ntnu.edu.tw, yangteng@imr.ac.cn

Supplementary Fig. 1 Room temperature experimental at 70° incidence angle and fitting model of ellipsometric parameters of (a) psi (Ψ) and (b) delta (Δ) of monolayer WS₂.

Supplementary Fig. 2 Room temperature (a) refractive index n and (b) extinction coefficient k of monolayer WS₂ by rotating the sample's azimuthal orientation by 45 degree and 90 degree.

$$\alpha(\omega) = \operatorname{Im}\left[\sum_{j=1}^{N} \frac{\omega_{pj}^{2}}{(\omega_{j}^{2} - \omega^{2}) - i\omega\gamma_{j}}\right]$$

where ω_j , γ_j , and ω_{pj} are the frequency, damping, and oscillator strength of the *j*th Lorentzian contributions.

Supplementary Table 1 Parameters of a Lorenzian fit for the measured optical absorption data of monolayer MoS_2 at 4.5 K.

$\omega_1 (eV)$	1.96
$\gamma_1 (eV)$	0.02
ω_{p1} (cm ⁻¹)	770
$\omega_2 (eV)$	2.12
$\gamma_2(eV)$	0.08
ω_{p2} (cm ⁻¹)	1300
$\omega_3 (eV)$	2.94
γ3(eV)	0.19
ω_{p3} (cm ⁻¹)	2800
ω ₄ (eV)	3.20
$\gamma_4 (\mathrm{eV})$	0.63
ω_{p4} (cm ⁻¹)	6400
$\omega_5(eV)$	3.76
$\gamma_5 (eV)$	0.15
ω_{p5} (cm ⁻¹)	936
$\omega_6(eV)$	4.11
$\gamma_6(eV)$	0.24
ω_{p6} (cm ⁻¹)	2400
ω ₇ (eV)	4.30
γ ₇ (eV)	0.49
$\omega_{p7} (cm^{-1})$	4100
$\omega_8(eV)$	4.83
$\gamma_8 (eV)$	0.88
ω_{p8} (cm ⁻¹)	6300
ω ₉ (eV)	5.33
γ ₉ (eV)	0.92

$\omega_{10} (eV)$	5.89
$\gamma_{10} (eV)$	0.98
$\omega_{p10} (cm^{-1})$	6600

Supplementary Table 2 Parameters of a Lorenzian fit for the measured optical absorption data of monolayer $MoSe_2$ at 4.5 K.

$\omega_1 (eV)$	1.62
$\gamma_1(eV)$	0.03
ω_{p1} (cm ⁻¹)	500
$\omega_2(eV)$	1.86
$\gamma_2(eV)$	0.10
$\omega_{p2} (cm^{-1})$	870
ω ₃ (eV)	2.65
γ ₃ (eV)	0.76
ω_{p3} (cm ⁻¹)	4000
ω4 (eV)	3.10
$\gamma_4 (\mathrm{eV})$	0.83
$\omega_{p4} (cm^{-1})$	4200
ω ₅ (eV)	4.14
$\gamma_5 (eV)$	1.47
ω_{p5} (cm ⁻¹)	7500
$\omega_6(eV)$	5.25
$\gamma_6(eV)$	1.84
$\omega_{p6} (cm^{-1})$	8800

$\omega_1 (eV)$	2.12
$\gamma_1(eV)$	0.04
ω_{p1} (cm ⁻¹)	1130
$\omega_2(eV)$	2.51
$\gamma_2(eV)$	0.10
ω_{p2} (cm ⁻¹)	1350
ω ₃ (eV)	2.91
$\gamma_3(eV)$	0.20
ω_{p3} (cm ⁻¹)	2520
ω ₄ (eV)	3.12
$\gamma_4 (\mathrm{eV})$	0.24
ω_{p4} (cm ⁻¹)	3200
ω ₅ (eV)	3.41
$\gamma_5 (eV)$	0.37
ω_{p5} (cm ⁻¹)	3740
$\omega_6 (eV)$	3.64
$\gamma_6(eV)$	0.36
$\omega_{p6} (cm^{-1})$	3125
ω ₇ (eV)	3.88
γ ₇ (eV)	0.40
$\omega_{p7} (cm^{-1})$	2820
$\omega_8 (eV)$	4.17
$\gamma_8(eV)$	0.45
$\omega_{p8} (cm^{-1})$	3250
ω ₉ (eV)	4.69
γ ₉ (eV)	0.37
$\omega_{p9} (cm^{-1})$	3360
ω ₁₀ (eV)	5.05
$\gamma_{10}(eV)$	0.56
$\omega_{p10} (cm^{-1})$	4920
ω ₁₁ (eV)	5.59
$\gamma_{11} (eV)$	1.04
$\omega_{p11} (cm^{-1})$	7825

Supplementary Table 3 Parameters of a Lorenzian fit for the measured optical absorption data of monolayer WS_2 at 4.5 K.

$\omega_1 (eV)$	1.71
$\gamma_1 (eV)$	0.05
$\omega_{p1} (cm^{-1})$	966
$\omega_2 (eV)$	2.16
$\gamma_2(eV)$	0.13
ω_{p2} (cm ⁻¹)	2450
$\omega_3 (eV)$	2.56
$\gamma_3(eV)$	0.26
ω_{p3} (cm ⁻¹)	102
ω ₄ (eV)	2.96
$\gamma_4 (eV)$	0.28
ω_{p4} (cm ⁻¹)	3300
ω ₅ (eV)	3.12
$\gamma_5(eV)$	0.36
ω_{p5} (cm ⁻¹)	2600
$\omega_6 (eV)$	3.51
$\gamma_6(eV)$	0.69
$\omega_{p6} (cm^{-1})$	5230
ω ₇ (eV)	4.19
γ ₇ (eV)	0.63
$\omega_{p7} (cm^{-1})$	4675
$\omega_8 (eV)$	4.43
$\gamma_8(eV)$	0.44
$\omega_{p8} (cm^{-1})$	2650
ω ₉ (eV)	4.70
γ ₉ (eV)	0.47
$\omega_{p9} (cm^{-1})$	3600
$\omega_{10} (eV)$	5.00
$\gamma_{10} (eV)$	0.59
$\omega_{p10} (cm^{-1})$	4260
ω_{11} (eV)	5.36
$\gamma_{11} (eV)$	0.78
$\omega_{p11} (cm^{-1})$	5440

Supplementary Table 4 Parameters of a Lorenzian fit for the measured optical absorption data of monolayer WSe_2 at 4.5 K.

Supplementary Fig. 3 Electro-negativity difference vs. optical band gap of monolayer MoS₂, MoSe₂, WS₂, and WSe₂.

Supplementary Fig. 4 Temperature dependence of peak position of B exciton of monolayer (a) MoS_2 , (b) $MoSe_2$, (c) WS_2 , and (d) WSe_2 . The thin solid lines are the results of the fitting using the Bose-Einstein model.

Supplementary Fig. 5 Experimental refractive index n and extinction coefficient k of monolayer MoS₂ at 4.5 K and theoretical calculation curves. For better comparison, the theoretical n spectrum is multiplied by a factor of 1.68.

Supplementary Fig. 6 Experimental refractive index n and extinction coefficient k of monolayer MoSe₂ at 4.5 K and theoretical calculation curves. For better comparison, the theoretical n spectrum is multiplied by a factor of 1.30.

Supplementary Fig. 7 Experimental refractive index n and extinction coefficient k of monolayer WS₂ at 4.5 K and theoretical calculation curves. For better comparison, the theoretical n spectrum is multiplied by a factor of 1.45.

Supplementary Fig. 8 Experimental refractive index n and extinction coefficient k of monolayer WSe₂ at 4.5 K and theoretical calculation curves. For better comparison, the theoretical n spectrum is multiplied by a factor of 1.68.

Supplementary Fig. 9 Room temperature Raman scattering spectra of monolayer MoS₂, MoSe₂, WS₂, and WSe₂ excited by a 532 nm laser line. These spectra indicated a single-layer signature [52,53].

Supplementary Fig. 10 Room temperature experimental at 70° and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of monolayer MoS₂.

Supplementary Fig. 11 Room temperature experimental at 70° and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of monolayer MoSe₂.

Supplementary Fig. 12 Room temperature experimental at 70° and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of monolayer WS₂.

Supplementary Fig. 13 Room temperature experimental at 70° and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of monolayer WSe₂.

Supplementary Fig. 14 Room temperature experimental at 60°, 65°, 70°, and 75° incidence angles and fitting model of ellipsometric parameters of psi (Ψ) and delta (Δ) of monolayer WS₂.