Phenotyping ApoE knockout rats on a Western diet: endothelial dysfunction in small arteries as early signs of atherosclerosis

Simin Berenji Ardestani^{1,2}, Ingrid Eftedal^{2,3}, Michael Pedersen¹, Per Bendix Jeppesen¹, Rikke Nørregaard¹, Vladimir V. Matchkov⁴

¹Department of Clinical Medicine, Aarhus University, Denmark

²Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.

³ Faculty of nursing and health sciences, Nord University, Bodø, Norway

⁴Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark

Corresponding author

Simin Berenji Ardestani, Department of Clinical Medicine,

Aarhus University,

Palle Juul Jensens Boulevard 99,

DK8200 Aarhus N, Denmark

Email: Simin.berenji@clin.au.dk

Supplementary Figure S1. A summery chart of study design. 15 male ApoE knockout (KO) rats and 8 Sprague Dawley rats were subjected to either a Western or standard diet for 20-24 weeks

Supplementary Figure S2. Time control in pulmonary arteries. Percentage of concentration, expressed relative to the maximal contraction of KPSS, in response to U46619 in pulmonary arteries

Supplementary Figure S3. Maximal contraction in presence of KPSS. (A) pulmonary (B) mesenteric arteries. KPSS, potassium physiological saline solution ANOVA, n=8, n=7.

Supplementary Figure S4. U46619 concentration-response curves of pulmonary arteries from different experimental groups under different conditions; (A), Control conditions; (B), In the presence L-NAME (100 μ M); (C), After 20 min incubation with L-NAME (100 μ M) and indomethacin (3 μ M), (**), P<0.0001 for ApoE KO- Western diet vs ApoE- control diet, (++), P=0.09, ApoE KO- control diet vs Sprague Dawley, (xx), P<0.0001, Sprague Dawley vs ApoE KO- Western diet; (D), The effect of 20 min incubation with Cocktail: L-NAME, indomethacin, TRAM-34 and apamin, i.e. pharmacological inhibition of all major pathways for endothelium-dependent relaxation, (**), p=0.001, ApoE KO- western diet vs ApoE Ko- control diet, (++), p<0.001, ApoE KO- standard diet vs Sprague Dawley, (xx), P<0.0001, Sprague Dawley vs ApoE KO- Western diet, Sprague Dawley, Sprague Dawley, (xx), P<0.0001, ApoE KO- western diet vs ApoE KO- control diet, (++), p<0.001, ApoE KO- standard diet vs Sprague Dawley, (xx), P<0.0001, Sprague Dawley vs ApoE KO- Western diet, F test, n=8, 7.

Supplementary Figure S5. concentration-response curves of mesenteric arteries from different experimental groups under different conditions; (A), Control conditions; (B), In the presence L-NAME (100 μ M), (++), P<0.001, ApoE KO- control diet vs Sprague Dawley (xx), P=0.003, Sprague Dawley vs ApoE KO Western diet; (C), After 20 min incubation with L-NAME (100 μ M) and indomethacin (3 μ M); (D), The effect of 20 min incubation with Cocktail: L-NAME, indomethacin, TRAM-34 and apamin, i.e. pharmacological inhibition of all major pathways for endothelium-dependent relaxation, (++), p<0.002, ApoE KO standard diet vs Sprague Dawley, (xx), P<0.002, Sprague Dawley vs ApoE KO Western diet, n=8, n=7.

Supplementary Figure S6. Relative expression of COX1 and COX 2. Proteins quantified by Western blot and normalized to β -actin as loading control. ANOVA and t-test, n=8,7.