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Quantitative determination of the degree of
charging. Considering a CdS band gap of ca. 2.4 eV
and a Fermi level centred near the middle of the gap, we
estimate that we need to raise the bias to 1.2 V before
we start to inject electrons in the conduction band, in
line with the observed threshold of 1.4 V. In addition, we
can estimate the bias needed to inject N electrons, by
considering that the large CdS shell allows us to approx-
imate the band structure by bulk CdS (

√
E dependence).

The calculation yields following bias Vfin (referenced to
V = 0 eV at the CdS conduction band edge) to fill the
first N states with electrons:

Vfin = (π ·N)2/3 · 2 · ~2/(me · d2) · 1/e. (1)

Here, me is the reduced CdS electron mass for (0.16 m0,
m0 is the free electron mass), d is the quantum dot di-
ameter, and the final term 1/e is inserted to obtain Vfin
on an eV scale.

Taking N = 20, and d = 10 − 15 nm, we find
Vfin = 80− 150 meV, well in line with what we observe
experimentally.

Blinking dynamics. We demonstrate electric con-
trol over the photodynamics of individual quantum dots,
and focus our investigation to high-quality quantum dots,
which are both the most common dots used at present,
see for example [44], and which are truly single photon
source. Moreover, the blinking dynamics strongly de-
pend on the excitation power, or pump fluency and our
quantum dots exhibited almost non-blinking behaviour
at a low pump fluency (〈η〉 = 0.01), however exhibited
blinking when the pump fluency was increased as it is
demonstrated in Fig.S2. The results presented in the
main text was obtained at the high pump fluency corre-
sponding to 20 nW of excitation power to demonstrate
the control on blinking dynamics.

FLID modelling: the statistical scaling model.
Statistical scaling of the radiative rate of a charged state
with N electrons and 1 hole is:

γrN−1 = Nγ0, (2)

where γ0 is a radiative rate of the neutral exciton, while
the nonradiative Auger rate for electrons scales as

γAN−1 = N(N − 1)γA (3)

(see [15]).
We assume here that the Auger recombination rate of

holes is much larger than that of electrons.
The total recombination rate:

γN−1 ≡ γrN−1 + γAN−1. (4)

Thus, the normalised lifetime of a charged state with N
electrons to that of neutral exciton:

τN−1
τ0

=
γ0

γN−1
=

1

N
· 1

1 + τ0(N − 1)γA
, (5)

where τ0 = 1/γ0 is the lifetime of neutral exciton.
Measured intensities on the experiment are propor-

tional to the quantum yield, therefore the normalised in-
tensity of a charged state with N electrons (assuming the
neutral exciton QY0 is 1):

IN−1
I0

=
QYN−1
QY0

=
γrN−1
γN−1

= N
τN−1
τ0

. (6)

Ohmic drop. The Ohmic drop was determined
by analysing the Bode plot obtained by impedance
spectroscopy. Electrochemical impedance spectra were
recorded at 0V with an amplitude of 5 mV, in the fre-
quency range between 105 to 0.1 Hz. The average resis-
tance for our home-built cell was determined to be R =
89± 4 Ω giving a negligible Ohmic drop of ca. 9 mV.
Conversion of the electrochemical potential

scale into the normal Hydrogen electrode poten-
tial (NHE) one. Open circuit potential measurements
of the Pt quasi reference electrode (PtQRE) against the
Ag/AgCl(sat) electrode were performed in the same con-
ditions as the quantum dot electro-charging experiments.
We found that under those experimental conditions the
potential of PtQRE was 57 ± 2 mV vs. Ag/AgCl(sat).
Hence, since the potential of the Ag/AgCl(sat) vs. NHE
is 199 mV (see Section 5.2 in [45]), the potential of the
PtQRE vs NHE is 256 mV and the interconversion of
scales can be accomplished accordingly to E(vs NHE) =
E(vs PtQRE) - 0.256 V.
Electrochemical stability of quantum

dots. Fig. S8 a,b shows that the photoluminescence
response is reversible along cycles independently on how
the potential is applied between 0 V and -2 V (i.e. linear
or stepwise). The intensity is decreased/recovered at
about the same potential, without significant changes in
the average intensity for each state.
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FIG. S1. Size distribution of CdSe/CdS quantum dots in batch 1 and 2. TEM images and quantum dot size
distribution histograms of a batch 1, and b batch 2. A 4 nm CdSe core was used in the synthesis of both batches.
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FIG. S2. Pump fluency 〈η〉 affects blinking dynamics of an individual quantum dot. A giant shell quantum dot
from batch 1 exhibits almost non-blanking photoluminescence dynamics at low pump fluency 〈η〉 = 0.01 as shown in panel a,
however the increase of pump fluency to 〈η〉 = 0.21 results in a complex blinking dynamics as shown in panel b. The time bin
of intensity time traces is 10 ms. The panels to the right of intensity time traces demonstrate intensity occurrence histograms,
which present the distribution of photoluminescence intensity measured during the experiment.
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FIG. S3. The scaling model does not follow the experimental charging route. The statistical scaling model describes
the intensity-lifetime correlation of the lowest negatively charged excitons as indicated in the FLID from Fig.4b by red curve
obtained for γA/γ0 = 0.5. The statistical scaling model with the only one free parameter γA cannot fit the charging route in
the FLID as shown for the relative Auger rates in range γA/γ0 = 0÷ 5.
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FIG. S4. Antibunching vs applied bias for qd1 from batch 1 presented in the main text.
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FIG. S5. Characterisation of the low emissivity states in intensity time trace at 0 V. a Intensity time trace of a
quantum dot qd1 from batch 1 was measured applying 0 V bias, and it reveals blinking between high and low emissivity states.
b The decay histograms were acquired from the highlighted bins in a, and are characterised by different short lifetimes. c FLID
summarises extracted excitonic states. The high emissivity state has a lifetime of 125 ± 6 ns and it is assigned to the neutral
exciton, while the low emissivity state in the orange time window has a shorter lifetime 5± 0.3 ns and assigned to the positive
trion. This state assignment was confirmed by the excellent agreement between the experimentally measured biexciton lifetime
τexpXX = 2.6 ± 0.3 ns (pink time window) and the one predicted by the statistical scaling model τ calcXX = 2.4 ns (for details see
[22]). The grey dashed line goes through both negatively and positively charged excitons, which also confirms that they both
are trions. The Auger rate for positive trion is about 21 times faster then the one for negative trion.
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FIG. S6. Positive voltage bias does not control emission dynamics of a single quantum dot. Cyclic voltammetry
scan in range ±1.2 V is shown for the quantum dot qd2 from batch 2, which is reported in Fig.5b. The positive bias was
applied between 50 s and 100 s of the intensity time trace.
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FIG. S7. Statistics of response of quantum dots in batch 1 to negative voltage. Photoluminescence intensity profiles
in b-h of 7 individual quantum dots within the same electrochemical cell were measured during cycling voltammetry scans
from 0 to -2 V as shown in panel a. Photodynamics of quantum dots in panels c,g,h was not affected by the voltage bias of
-2 V. The quantum dots in panels b,d,e,f exhibited the intensity-lifetime dip at negative bias in range from -1.05 V to -1.4 V
as indicated by green shaded area.
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FIG. S8. Reproducibility of quantum dot response at negative potentials. a Intensity time trace of the quantum
dot qd1 from batch 1 was measured when applying stepwise potential as shown with green voltage trace. The photolumi-
nescence intensity trace demonstrates almost immediate response of the quantum dot to -2 V as well as 0 V potentials. b
Photoluminescence intensity profile was measured during cycling voltammetry scan as in Fig.5d in the main text.

Lowest applied
voltage bias (V)

τ0
(ns)

τN
at the lowest potential (ns)

decay rate enhancement

qd1 batch 1 -2 125± 6 0.9± 0.2 139± 32
qd2 batch 1 -2 72± 5 0.8± 0.2 90± 23
qd3 batch 1 -2 112± 6 1.2± 0.2 93± 16
qd4 batch 1 -2 78± 5 0.9± 0.2 87± 20
qd5− 7 batch 1 -2 na na (*)

qd1 batch 2 -2 415± 36 4.2± 0.3 99± 11
qd2 batch 2 -1.5 320± 25 1.5± 0.2 213± 33
qd3 batch 2 -2 256± 19 2.4± 0.2 107± 12
qd4− 30 batch 2 -2 na na (*)

TABLE S1. Statistics of quantum dot charging in an electrochemical cell. (*) These quantum dots exhibited charging
up to doubly or triply negatively charged excitons, and their intensity time traces did not have pronounced intensity dips (see
for example intensity traces in Fig.S7c,h). The effect could be observed at lower applied bias, however it was causing the cell
to degrade quickly and no data could be acquired. The quantum dots in bold correspond to ones presented in Figure 5 of the
main text.
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FIG. S9. Photoluminescence of a quantum dot in a dim parasitic state can be restored by applying a negative
potential. a Intensity time trace of a quantum dot from batch 2 was measured during cyclic voltammetry scan (green trace
in the top panel). The photoluminescence intensity rapidly increases at negative potential of -1.3 V, and decreases back to the
low emissivity level when the voltage scan is reversed. b Decay histograms acquired during the colour windows highlighted
in a demonstrate that the emission lifetime at negative potential of -1.3 V (pink) is longer than that at 0 V (orange). This
is attributed to the trap filling at negative potential and blocking of a competing non-radiative decay channel. See another
examples for quantum dots from batch 1 in Fig.S7e,f.

FIG. S10. Photoluminescence confocal scan of quantum dots from batch 2 in the electrochemical cell filled with
an electrolyte at 0 V bias. 150x150 µm 2D scan of spincoated quantum dots from µM solution in toluene on an ITO
substrate. The dimmest spots relate to individual quantum dots, as confirmed by the antibunching measurements.



FIG. S11. FLID of qd2 from batch 2 at 0V bias. The intensity of negatively charged exciton is similar to the one of the
neutral exciton.

FIG. S12. Estimation of error bounds for the relative Auger recombination. The shaded red area represents the error
for a qd1 batch 1, and b qd2 batch 2 (see inset).
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