
Supplementary Information for
Electron Hydrodynamics in Anisotropic Materials

Georgios Varnavides,1, 2, 3, ∗ Adam S. Jermyn,4, ∗ Polina Anikeeva,2, 3 Claudia Felser,5 and Prineha Narang1, †
1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA,USA

2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
3Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA

4Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
5Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany

Supplementary Methods
Stress Tensor Symmetries. The viscosity tensors used in the
manuscript are all invariant under permutation of the first
two indices, i.e. �8 9:; = � 98:; . This is a direct consequence
of the stress tensor being symmetric under the assumptions
and conditions used, which we elaborate on in this section.
The anti-symmetric part of the stress tensor, is constrained
by Cauchy’s laws of motion [1]

d ¤D8 = m 9g98 + d 58 (1)
d ¤f8 = m 9< 98 + d;8 + n8 9:g9: , (2)

where the symbols have the same meaning as in the
manuscript.
In the absence of internal spin degrees of freedom σ, body

couples l, and stress couples m, eq. (2) necessitates that the
anti-symmetric part of the stress tensor, given by the pseudo-
vector )A

8
= n8 9:g9: = 0, must vanish.

If we allow for nonzero internal spin, then eq. (2) instead
specifies:

)A
8 = n8 9:g9: = d ¤f8 . (3)

Recall that the superscript dot denotes the material deriva-
tive, ¤f8 = mCf8 + D 9m 9f8 , which for low Reynolds number
flows can be approximated as simply the partial time deriva-
tive, ¤f8 ≈ mCf8 , which by definition must vanish at steady-
state. Therefore, at the experimentally accessible conditions
we consider in the paper, the anti-symmetric part of the stress
tensor again must vanish at steady-state.

In the most general case where we consider stress couples
(and/or body couples), the anti-symmetric part of the stress
tensor does not vanish. To account for it, we need to augment
our constitutive relations to read [1, 2]:

g8 9 = �8 9:;m;D: + b [8 9 ]:f: (4)
<8 9 = �8 9:;m;D: + ^ [8 9 ]:f: , (5)

where B is a rank-4 tensor, and ξ and κ are rank-3 tensors
anti-symmetric with respect to their first two indices.

∗ These authors contributed equally to this work
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Breaking stress symmetry, therefore allows one to express
the viscosity tensor in an expanded basis set [2]:

�8 9:; = U( (8 9) (:;)) + V [ (8 9) (:;) ] + W(8 9) [:;]
+X [8 9 ] (:;) + Y ( [8 9 ] [:;]) + Z [ [8 9 ] [:; ] ] . (6)

Finally, we note the interesting observation that the stress
tensor always appears in a divergence in eq. (1). This suggests
that there is an ambiguity in the choice of stress tensor, and
in-fact one can always write a physically indistinguishable
symmetrized tensor [3–5]:

g̃(8 9) = g8 9 + m: j8 [ 9: ] , (7)

where χ is a rank-3 tensor anti-symmetric in 9 and : , i.e.
j8 9: = −j8: 9 . While it’s straight-forward to show the diver-
gence of the additional term in eq. (7) vanishes, we need to
establish this symmetrizes 3̃. Consider the following choice:

j8 9: = m8q [ 9: ] + m 9q [8: ] − m:q [8 9 ] , (8)

where φ is anti-symmetric, and chosen as the solution to
Poisson’s equation with the anti-symmetric part of the stress
tensor as a source:

∇2q [8 9 ] =
1
2
(
g8 9 − g98

)
. (9)

Substituting eqs. (8) and (9) in eq. (7), we obtain [5]:

g̃(8 9) = g8 9 + m:
(
m8q [ 9: ] + m 9q [8: ]

)
− ∇2q [8 9 ] (10)

= 1
2
(
g8 9 + g98

)
+ m:

(
m8q [ 9: ] + m 9q [8: ]

)
, (11)

which is symmetric as desired.

Irreversible Thermodynamics.Viscosity is a non-equilibrium
transport tensor which we analyze using irreversible ther-
modynamics. The entropy production for a system evolving
irreversibly from a non-equilibrium state is given by [6–8]:

3(

3C
=

∑
8

m(

mb8

mb8

mC
=

∑
8

-8�8 , (12)

where -8 = m(/mb8 are generalized (intensive) forces, and
�8 = mb8/mC are the thermodynamic fluxes of the conju-
gate generalized (extensive) displacements b8 . The thermo-
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dynamic fluxes can be expressed as linear combinations of
the generalized forces via Onsager’s phenomenological equa-
tions: J = RX, whereL is a matrix of kinetic coefficients. The
Onsager reciprocal relations postulate L is a symmetric ma-
trix, concluding that entropy production is given by:

3(

3C
=

∑
8 9

!8 9-8- 9 , (13)

We note that Onsager derived that the kinetic coefficients
matrix is symmetric, due to the microscopic reversibilty of
equilibrium states, but that the symmetry is not necessitated
by eq. (13) [9, 10]. Consider a general kinetic coefficients
matrix given by the sum of a symmetric and antisymmet-
ric component L = LS + LA. The antisymmetric component
does not contripute to dissipation, i.e. it describes isentropic
processes[10]:

3(

3C
=

∑
8 9

!A
8 9-8- 9 = 0, (14)

We identify the generalized force as the fluid stress τ and
the generalized displacement as the velocity gradient m 9D8 .
We split the viscosity tensor as in the manuscript in the three
tensors: �(8 9):; = U( (8 9) (:;)) + V [ (8 9) (:;) ] + W(8 9) [:;] . Equa-
tion (13) then imposes additional ‘major’ symmetries on α,
and β, i.e. under permutation of 8 9 ↔ :;, U8 9:; = U:;8 9 and
V8 9:; = −V:;8 9 . The ‘odd’ Hall viscosity tensor, identified as
β, which breaks time-reversal symmetry, is dissipationless.
Tensor γ which breaks stress objectivity is not symmetric
under the permutation of 8 9 ↔ :;, but rather spans a two-
dimensional subspace with both ‘even’ and ‘odd’ compo-
nents [2].
Onsager’s regression hypothesis can be put on firmer foot-

ing by deriving Green-Kubo relations using time correlation
functions of the generalized flux variables [2, 11]. The pro-
cedure is analogous, with the resulting transport equations
derived in Epstein and Mandadapu

d ¤v =_1∇ (∇ · v) + _2�v + (_5 − _6) ε · ∇ (∇ · v)
+ (_4 + _5 + _6) ε · �v + ε · ∇ (W2< − _3∇ × v)
+ ∇ [W1< − (_5 − _6) ∇ × v] . (15)

These reduce to the ones used in the manuscript, e.g. the 2D
case with no internal spins < = _3 = _5 = 0:

_1 →
1
2
(U1111 + U1122) , _2 →

1
2
(U1111 − U1122) ,

_4 → V1112, _6 →
1
2
W1112. (16)

Momentum Relaxing Body Force. Strictly speaking,
Cauchy’s laws of motion, given by eqs. (1) and (2), arise
as a consequence of momentum conservation. Electrons in
condensed matter however, especially at elevated tempera-
tures, can undergo multiple momentum-relaxing scattering
events, e.g. against impurities or phonons. We incorporate
such momentum-relaxation in the manuscript by adding a
body force term of the form:

dD 9m 9D8 = −m8 ? + m 9g98 − '8 9D 9 , (17)

where R is a rank-two, positive-semidefinite tensor which is
inversely proportional to a microscopic momentum-relaxing
lifetime. In order to highlight the viscous effects of crystal
anisotropy, the steady-state solutions shown in themanuscript
(with the exception of Fig.1(e) justifying this choice) assumed
R→ 0. In this section, we investigate the effects of this term.

First, we establish a baseline effect for the isotropic (SO(2))
case in our annulus geometry, where the momentum relax-
ing term is given by '8 9 = X8 9 . Since both the viscous and
momentum-relaxing terms are isotropic, the velocity profile
is angularly symmetric (Supplementary Fig. 1(a)). As the rel-
ative magnitude of the momentum relaxing term increases,
the flow dissipates quicker, resulting in a significant part of
the annulus exhibiting stationary flow for |R|/|A| > 1. Next,
we investigate the case where the viscous and momentum-
relaxing terms have different symmetries. According to Neu-
mann’s principle, this is allowed by the difference in rank
in the two material property tensors. For example, in the
square (�4) point group, while the viscous tensor exhibits
anisotropy, the momentum relaxing term is still given by
'8 9 = X8 9 . As such, the underlying four-fold symmetry of
the steady-state vortices remains the same (Supplementary
Fig.1(b-e)), with the momentum-relaxing term smearing out
these vortices for |' |/|�| > 1 (Supplementary Fig.1(f)). The
magnitude of the vortices however, is largely unchanged at
∼ 12.5%, indicating the effect to be as observable.

Finally, we investigate the effects of momentum-relaxation
on a purely hydrodynamic phenomenonwe proposed, namely
the pressure gauge. Supplementary Figure 2 shows that the
effect of momentum-relaxation on the pressure drop used to
quantify objectivity-breaking terms in the manuscript. While
for values of |' |/|�| < 0.1 the momentum-relaxing term
doesn’t alter the results significantly, the pressure drop is no
longer directly proportional to the objectivity-breaking terms
for |' |/|�| > 0.1.
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Fig. 1.Magnitude Effects of Momentum Relaxing Terms on Steady State Vortices a Steady state angular fluid velocity for various normal-
ized values of the momentum relaxing term in an isotropic annulus. The flow becomes nearly-stationary in much of the annulus for |' |/|�| > 1.
(b-f) Steady state streamplots difference between isotropic flows and flows in square (�4) systems for various normalized values of the mo-
mentum relaxing term. The effects are hardly noticable for values of |' |/|�| < 1, with the steady-state vortices getting smeared out, albeit still
observable, for |' |/|�| = 1. Color-scales indicate magnitude of the velocity vector field.

Neumann’s Principle. In this section, we demonstrate the application of Neumann’s principle on the rank-4 viscosity tensor.
For convenience, we restrict ourselves in a two-dimensional projection (GH-plane) of the most general symbolic viscosity tensor
in three dimensions, with 8 9-symmetry, given by:

�(001) =
©­­­«

(
U1111 U1112 + V1112 + W1112

U1112 + V1112 − W1112 U1122 + V1122

) (
U1112 − V1112 U1212 + W1212
U1212 − W1212 U1222 + V1222

)
(
U1112 − V1112 U1212 + W1212
U1212 − W1212 U1222 + V1222

) (
U1122 − V1122 U1222 − V1222 + W2212

U1222 − V1222 − W2212 U2222

) ª®®®¬ , (18)

and take into account the effects of four-fold (�4) and square (�4) symmetry elements given below:

�4 �4

� �4 �2 �
3
4 � �4 �2 �

3
4 �

G
2 �

H

2 �
G+H
2 �

G−H
2

In general, we only need to consider the minimal set of symmetry generators, underlined for each point group above.
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Fig. 2.Magnitude Effects of MomentumRelaxing Terms on Pressure Gauge Steady state pressure difference between the viscosity tensor
and the same with additional stress objectivity breaking terms for various normalized values of the momentum relaxing term. The effects are
noticable for values of |' |/|�| > 0.1. Color-scales indicate magnitude of the pressure field.

Applying the �4 operation to eq. (18) according to the transformation law, we obtain:

�′(001) =
©­­­«

(
U2222 −U1222 + V1222 + W2212

−U1222 + V1222 − W2212 U1122 − V1122

) (
−U1222 − V1222 U1212 − W1212
U1212 + W1212 V1112 − U1112

)
(
−U1222 − V1222 U1212 − W1212
U1212 + W1212 V1112 − U1112

) (
U1122 + V1122 −U1112 − V1112 + W1112

−U1112 − V1112 − W1112 U1111

) ª®®®¬ . (19)

Setting eqs. (18) and (19) equal to each other, reduces the number of independent coefficients from 12 to 6

��
(001)
4 =

©­­­«
(

U1111 U1112 + V1112 + W1112
U1112 + V1112 − W1112 U1122

) (
U1112 − V1112 U1212

U1212 V1112 − U1112

)
(
U1112 − V1112 U1212

U1212 V1112 − U1112

) (
U1122 −U1112 − V1112 + W1112

−U1112 − V1112 − W1112 U1111

) ª®®®¬ . (20)

Similarly, acting on eq. (18) with both the �4 and �G2 symmetry operators, further reduces the number of coefficients to 3

��
(001)
4 =

©­­­«
(
U1111 0

0 U1122

) (
0 U1212

U1212 0

)
(

0 U1212
U1212 0

) (
U1122 0

0 U1111

) ª®®®¬ . (21)

The remaining three coefficients can be recovered using the following parametrization:

�
�
(001)
4

8 9:;
= �

�
(001)
4

8 9:;
+ A

(
fG8 9f

I
:;
+ fI

8 9
fG:;

)
+ B

(
X8:n 9; + X 9;n8:

)
+ ΓX8 9n:; . (22)

Numerical Details. All steady-state solutions of the Navier-Stokes equation were obtained using the nonlinear finite element
solver of the computational package Wolfram Mathematica 12.0 [12]. The mesh resolution was 10978, 46290, and 25052
triangle elements for the annulus, pressure-gauge, and expanding channel geometries respectively. The viscosity tensors used
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were as follows:

�SO(2) =
©­«

(
0.0745043 0.587221
−0.0483742 0.0118486

) (
−0.269423 0.0313279
0.0313279 0.269423

)
(
−0.269423 0.0313279
0.0313279 0.269423

) (
0.0118486 0.0483742
−0.587221 0.0745043

) ª®®¬ ,

��6 =
©­«

(
0.289547 0.398427
0.189569 0.213894

) (
−0.293998 0.0378261
0.0378261 0.293998

)
(
−0.293998 0.0378261
0.0378261 0.293998

) (
0.213894 −0.189569
−0.398427 0.289547

) ª®®¬ ,

��4 =
©­«

(
0.160842 0.369235
−0.106286 0.0885322

) (
−0.131474 0.376888
0.376888 0.131474

)
(
−0.131474 0.376888
0.376888 0.131474

) (
0.0885322 0.106286
−0.369235 0.160842

) ª®®¬ ,

��
(001)
2ℎ =

©­«
(

0.302739 0
0 0.119665

) (
0 0.404212

0.404212 0

)
(

0 0.404212
0.404212 0

) (
0.119665 0

0 0.475563

) ª®®¬ ,

�$
(111)
ℎ =

©­«
(

0.651174 0.
0. 0.000836994

) (
0. 0.325169

0.325169 0.

)
(

0. 0.325169
0.325169 0.

) (
0.000836994 0.

0. 0.651174

) ª®®¬ ,

�$
(101)
ℎ =

©­«
(

0.651174 0.
0. 0.0872965

) (
0. 0.411628

0.411628 0.

)
(

0. 0.411628
0.411628 0.

) (
0.0872965 0.

0. 0.391796

) ª®®¬ ,

�$
(001)
ℎ =

©­«
(

0.391796 0.
0. 0.0872965

) (
0. 0.411628

0.411628 0.

)
(

0. 0.411628
0.411628 0.

) (
0.0872965 0.

0. 0.391796

) ª®®¬ ,
Supplementary Notes
Symbolic 2D Viscosity Tensors. In two dimensions, the 10 point groups reduce to 5 different viscosity tensor classes:

�1 (Oblique) & �2 (Rectangular)

©­­­«
(

U1111 U1112 + V1112 + W1112
U1112 + V1112 − W1112 U1122 + V1122

) (
U1112 − V1112 U1212 + W1212
U1212 − W1212 U1222 + V1222

)
(
U1112 − V1112 U1212 + W1212
U1212 − W1212 U1222 + V1222

) (
U1122 − V1122 U1222 − V1222 + W2212

U1222 − V1222 − W2212 U2222

) ª®®®¬
�1(Oblique) & �2 (Rectangular)

©­­­«
(

U1111 V1112 + W1112
V1112 − W1112 U1122

) (
−V1112 U1212
U1212 V1222

)
(
−V1112 U1212
U1212 V1222

) (
U1122 W2212 − V1222

−V1222 − W2212 U2222

) ª®®®¬
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�4 (Square)

©­­­«
(

U1111 U1112 + V1112 + W1112
U1112 + V1112 − W1112 U1122

) (
U1112 − V1112 U1212

U1212 V1112 − U1112

)
(
U1112 − V1112 U1212

U1212 V1112 − U1112

) (
U1122 −U1112 − V1112 + W1112

−U1112 − V1112 − W1112 U1111

) ª®®®¬
�4 (Square)

©­­­«
(

U1111 V1112 + W1112
V1112 − W1112 U1122

) (
−V1112 U1212
U1212 V1112

)
(
−V1112 U1212
U1212 V1112

) (
U1122 W1112 − V1112

−V1112 − W1112 U1111

) ª®®®¬
�3,�6,�3,�6 (Hexagonal) & ($ (2) (Isotropic)

©­­­«
(

U1111 V1112 + W1112
V1112 − W1112 U1122

) (
−V1112

1
2 (U1111 − U1122)

1
2 (U1111 − U1122) V1112

)
(

−V1112
1
2 (U1111 − U1122)

1
2 (U1111 − U1122) V1112

) (
U1122 W1112 − V1112

−V1112 − W1112 U1111

) ª®®®¬
Symbolic 3D Viscosity Tensors. In three dimensions, the 32 point groups reduce to 28 different viscosity tensor classes, with
�6h = �6h, ) = )d and )h = $ = $h having identical tensors. We present only the hexagonal, cubic, and isotropic classes here.

�6 (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 V1112 + W1112 0

V1112 − W1112 U1122 0
0 0 U1133 + V1133

ª®¬ ©­«
−V1112

1
2 (U1111 − U1122) 0

1
2 (U1111 − U1122) V1112 0

0 0 0

ª®¬ ©­«
0 0 U1313 + W1313
0 0 V1323 + W1323

U1313 − W1313 V1323 − W1323 0

ª®¬©­«
−V1112

1
2 (U1111 − U1122) 0

1
2 (U1111 − U1122) V1112 0

0 0 0

ª®¬ ©­«
U1122 W1112 − V1112 0

−V1112 − W1112 U1111 0
0 0 U1133 + V1133

ª®¬ ©­«
0 0 −V1323 − W1323
0 0 U1313 + W1313

W1323 − V1323 U1313 − W1313 0

ª®¬©­«
0 0 U1313 + W1313
0 0 V1323 + W1323

U1313 − W1313 V1323 − W1323 0

ª®¬ ©­«
0 0 −V1323 − W1323
0 0 U1313 + W1313

W1323 − V1323 U1313 − W1313 0

ª®¬ ©­«
U1133 − V1133 W3312 0
−W3312 U1133 − V1133 0

0 0 U3333

ª®¬

ª®®®®®®®®®®¬
�6E (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 V1112 + W1112 0

V1112 − W1112 U1122 0
0 0 U1133

ª®¬ ©­«
−V1112

1
2 (U1111 − U1122) 0

1
2 (U1111 − U1122) V1112 0

0 0 0

ª®¬ ©­«
0 0 U1313
0 0 V1323 + W1323

U1313 V1323 − W1323 0

ª®¬©­«
−V1112

1
2 (U1111 − U1122) 0

1
2 (U1111 − U1122) V1112 0

0 0 0

ª®¬ ©­«
U1122 W1112 − V1112 0

−V1112 − W1112 U1111 0
0 0 U1133

ª®¬ ©­«
0 0 −V1323 − W1323
0 0 U1313

W1323 − V1323 U1313 0

ª®¬©­«
0 0 U1313
0 0 V1323 + W1323

U1313 V1323 − W1323 0

ª®¬ ©­«
0 0 −V1323 − W1323
0 0 U1313

W1323 − V1323 U1313 0

ª®¬ ©­«
U1133 W3312 0
−W3312 U1133 0

0 0 U3333

ª®¬

ª®®®®®®®®®®¬
�3ℎ (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 0 U1113

0 U1122 U1123
U1113 U1123 U1133

ª®¬ ©­«
0 1

2 (U1111 − U1122) U1123
1
2 (U1111 − U1122) 0 −U1113

U1123 −U1113 0

ª®¬ ©­«
U1113 U1123 U1313
U1123 −U1113 0
U1313 0 0

ª®¬©­«
0 1

2 (U1111 − U1122) U1123
1
2 (U1111 − U1122) 0 −U1113

U1123 −U1113 0

ª®¬ ©­«
U1122 0 −U1113

0 U1111 −U1123
−U1113 −U1123 U1133

ª®¬ ©­«
U1123 −U1113 0
−U1113 −U1123 U1313

0 U1313 0

ª®¬©­«
U1113 U1123 U1313
U1123 −U1113 0
U1313 0 0

ª®¬ ©­«
U1123 −U1113 0
−U1113 −U1123 U1313

0 U1313 0

ª®¬ ©­«
U1133 0 0

0 U1133 0
0 0 U3333

ª®¬

ª®®®®®®®®®®¬
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�3ℎ (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 0 U1213

0 U1122 U1213
U1213 U1213 U1133

ª®¬ ©­«
0 1

2 (U1111 − U1122) U1213
1
2 (U1111 − U1122) 0 −U1213

U1213 −U1213 0

ª®¬ ©­«
U1213 U1213 U1313
U1213 −U1213 0
U1313 0 0

ª®¬©­«
0 1

2 (U1111 − U1122) U1213
1
2 (U1111 − U1122) 0 −U1213

U1213 −U1213 0

ª®¬ ©­«
U1122 0 −U1213

0 U1111 −U1213
−U1213 −U1213 U1133

ª®¬ ©­«
U1213 −U1213 0
−U1213 −U1213 U1313

0 U1313 0

ª®¬©­«
U1213 U1213 U1313
U1213 −U1213 0
U1313 0 0

ª®¬ ©­«
U1213 −U1213 0
−U1213 −U1213 U1313

0 U1313 0

ª®¬ ©­«
U1133 0 0

0 U1133 0
0 0 U3333

ª®¬

ª®®®®®®®®®®¬
�6 (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 0 0

0 U1122 0
0 0 U1133 + V1133

ª®¬ ©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
0 0 U1313 + W1313
0 0 0

U1313 − W1313 0 0

ª®¬©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
U1122 0 0

0 U1111 0
0 0 U1133 + V1133

ª®¬ ©­«
0 0 0
0 0 U1313 + W1313
0 U1313 − W1313 0

ª®¬©­«
0 0 U1313 + W1313
0 0 0

U1313 − W1313 0 0

ª®¬ ©­«
0 0 0
0 0 U1313 + W1313
0 U1313 − W1313 0

ª®¬ ©­«
U1133 − V1133 0 0

0 U1133 − V1133 0
0 0 U3333

ª®¬

ª®®®®®®®®®®¬
�6ℎ & �6ℎ (Hexagonal)

©­­­­­­­­­­«

©­«
U1111 0 0

0 U1122 0
0 0 U1133

ª®¬ ©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
0 0 U1313
0 0 0

U1313 0 0

ª®¬©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
U1122 0 0

0 U1111 0
0 0 U1133

ª®¬ ©­«
0 0 0
0 0 U1313
0 U1313 0

ª®¬©­«
0 0 U1313
0 0 0

U1313 0 0

ª®¬ ©­«
0 0 0
0 0 U1313
0 U1313 0

ª®¬ ©­«
U1133 0 0

0 U1133 0
0 0 U3333

ª®¬

ª®®®®®®®®®®¬
) &)3 (Cubic)

©­­­­­­­­­«

©­«
U1111 0 0

0 U1122 + V1122 0
0 0 U1122 − V1122

ª®¬ ©­«
0 U1212 + W1212 0

U1212 − W1212 0 0
0 0 0

ª®¬ ©­«
0 0 U1212 − W1212
0 0 0

U1212 + W1212 0 0

ª®¬©­«
0 U1212 + W1212 0

U1212 − W1212 0 0
0 0 0

ª®¬ ©­«
U1122 − V1122 0 0

0 U1111 0
0 0 U1122 + V1122

ª®¬ ©­«
0 0 0
0 0 U1212 + W1212
0 U1212 − W1212 0

ª®¬©­«
0 0 U1212 − W1212
0 0 0

U1212 + W1212 0 0

ª®¬ ©­«
0 0 0
0 0 U1212 + W1212
0 U1212 − W1212 0

ª®¬ ©­«
U1122 + V1122 0 0

0 U1122 − V1122 0
0 0 U1111

ª®¬

ª®®®®®®®®®¬
)ℎ , $ & $ℎ (Cubic)

©­­­­­­­­­«

©­«
U1111 0 0

0 U1122 0
0 0 U1122

ª®¬ ©­«
0 U1212 0

U1212 0 0
0 0 0

ª®¬ ©­«
0 0 U1212
0 0 0

U1212 0 0

ª®¬©­«
0 U1212 0

U1212 0 0
0 0 0

ª®¬ ©­«
U1122 0 0

0 U1111 0
0 0 U1122

ª®¬ ©­«
0 0 0
0 0 U1212
0 U1212 0

ª®¬©­«
0 0 U1212
0 0 0

U1212 0 0

ª®¬ ©­«
0 0 0
0 0 U1212
0 U1212 0

ª®¬ ©­«
U1122 0 0

0 U1122 0
0 0 U1111

ª®¬

ª®®®®®®®®®¬
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($ (3) (Isotropic)

©­­­­­­­­­­«

©­«
U1111 0 0

0 U1122 0
0 0 U1122

ª®¬ ©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
0 0 1

2 (U1111 − U1122)
0 0 0

1
2 (U1111 − U1122) 0 0

ª®¬©­«
0 1

2 (U1111 − U1122) 0
1
2 (U1111 − U1122) 0 0

0 0 0

ª®¬ ©­«
U1122 0 0

0 U1111 0
0 0 U1122

ª®¬ ©­«
0 0 0
0 0 1

2 (U1111 − U1122)
0 1

2 (U1111 − U1122) 0

ª®¬©­«
0 0 1

2 (U1111 − U1122)
0 0 0

1
2 (U1111 − U1122) 0 0

ª®¬ ©­«
0 0 0
0 0 1

2 (U1111 − U1122)
0 1

2 (U1111 − U1122) 0

ª®¬ ©­«
U1122 0 0

0 U1122 0
0 0 U1111

ª®¬

ª®®®®®®®®®®¬
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