Decoding mitochondrial heterogeneity in single muscle fibres by Imaging Mass Cytometry

Charlotte Warren^{1,4}, David McDonald², Roderick Capaldi³, David Deehan⁴, Robert W. Taylor^{1,5}, Andrew

Filby², Doug M. Turnbull^{1,4}, Conor Lawless^{1,*}, Amy E. Vincent^{1,4*}

¹ Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.

² Flow Cytometry Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom

³ Cellstate Biosciences, Tuscon, Arizona 85721, United States

⁴ Translational and clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.

⁵NHS Highly Specialised Rare Mitochondrial Disorders Service, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, United Kingdom.

*Corresponding author

Correspondence:

Dr Amy E. Vincent (email: amy.vincent@ncl.ac.uk)

Dr Conor Lawless (email: conor.lawless@ncl.ac.uk)

Wellcome Centre for Mitochondrial Research

Translational and Clinical Research Institute Newcastle University

Framlington Place,

Newcastle upon Tyne

NE2 4HH, UK

Subjects	Gender	Age (years)	Clinical information	Genetic defect	Previous reports
Pathogeni	c variants ir	nuclear-encoc	ded proteins affecting complex I assembly		
			Exercise intolerance, unable to perform	<i>TMEM126B</i> (NG_053120.1)	Ahmed et al. (2017) Patient 14
P01	М	Adult	sustained aerobic exercise normal resting lactate, normal CK	Homozygous c.635G>T, p.(Gly212Val) variant	
				ACAD9 (NG_017064.1)	Ahmed et al. (2017) Patient 15
P02	М	Adult	Exercise intolerance, muscle cramps, elevated serum lactate	Compound heterozygous c.1150G>A, p.(Val384Met) and c.1168G>A, p.(Ala390Thr) variant	
Single, larg	ge-scale mtl	DNA deletions			
				Deletion size 4372bp	Rocha <i>et al.</i> (2018) Patient 4
P03	F	29	CPEO and bilateral ptosis	Breakpoints: 8929-13301	
				mtDNA deletion level: 53%	
				Deleted genes: part of ATP6, MTCO3, MT-TG, ND3, MT-TR, ND4L, ND4, MT-TH, MT-S2, MT-L2 and part of ND5	
				Deletion size 7498bp	Rocha et al. (2018) Patient 19
P04	F	39	CPEO, diplopia	Breakpoints: 7130-14628	
				mtDNA deletion level: 28%	
				Deleted genes: part of MTCO1, MT-S1, MT-TD, MTCO2, MT-TK, ATP8, ATP6, MTCO3, MT-TG, ND3, MT-TR, ND4L, ND4, MT-TH, MT-S2, MT-LS, ND5, ND6, MT-TE and part of CYTB	

Supplementary Table 1: **Patient information**. Information on patients detailing gender, age at biopsy, clinical information and genetic defect.

Pathogenic variants in mitochondrially-encoded tRNA^{Leu(UUR)} (MT-TL1)

P05	F	25	Exercise intolerance, ptosis	m.3243A>G MT-TL1 variant	Rocha et al. (2015) Patient 12
P06	F	47	Modest exercise intolerance	m.3243A>G MT-TL1 variant	Rocha et al. (2015) Patient 15
P07	М	53	CPEO	m.3243A>G MT-TL1 variant	Rocha et al. (2015) Patient 16
Point muta	ations in oth	er mitochon	drially-encoded tRNAs		
P08	М	33	Mitochondrial myopathy	m.10010T>C MT-TG variant	Rocha et al. (2015) Patient 19
P09	F	35	Mild muscle weakness	m.14709T>C <i>MT-TE</i> variant	Rocha et al. (2015) Patient 20
P10	Μ	63	Exercise intolerance, prominent exertional dyspnea	m.5543T>C <i>MT-TW</i> variant	Rocha <i>et al.</i> (2015) Patient 21
Healthy co	ontrols				
C01	Μ	20	Taken during anterior cruciate ligament surgery	n.a	
C02	Μ	24	Taken during anterior cruciate ligament surgery	n.a	
C03	F	23	Taken during anterior cruciate ligament surgery	n.a	

CK; Creatine kinase, CPEO; Chronic progressive external ophthalmoplegia, n.a., not applicable

Supplementary Table 2: List of primary and secondary antibodies. Table includes details of antibodies such as host species, isotype, dilution used and supplier.

Antibodies	Host and isotype	Dilution	Company
Primary antibodies			
Laminin (membrane marker)	Rabbit	1:50	Sigma-Aldrich (L9393)
Dystrophin (membrane marker)	Mouse	1:50	EMD Millipore (Mab 1645)
NDUFB8 (CI)	Mouse IgG1	1:50 (IMC) 1:100 (IF)	Abcam (110242)
GRIM19 (CI)	Mouse IgG2b	1:50 (IMC) 1:100 (IF)	Abcam (110240)
SDHA (CII)	Mouse lgG1	1:50 (IMC) 1:100 (IF)	Abcam (14715)
UqCRC2 (C III)	Mouse IgG1	1:50 (IMC) 1:100 (IF)	Abcam (14745)
MTCO1 (CIV)	Mouse IgG2a	1:50 (IMC) 1:100 (IF)	Abcam (14705)
COX4+4L2 (CIV)	Mouse IgG2a	1:50 (IMC) 1:100 (IF)	Abcam (110261)
OSCP CV)	Mouse IgG1	1:50 (IMC) 1:100 (IF)	Abcam (110276)
VDAC1 (mass marker)	Mouse IgG2b	1:50 (IMC) 1:100 (IF)	Abcam (14734)
Secondary antibodies			
Anti-rabbit Alexa Fluor 405nm	Goat	1:100	Life Technologies (A31556)
Anti-IgG2a Alexa Fluor 488nm	Goat	1:200	Life Technologies (A21131)
Anti-IgG2b Alexa Fluor 546nm	Goat	1:200	Life Technologies (A21143)
Anti-IgG1 biotin	Goat	1:200	Life Technologies (A10519)
Streptavidin Alexa Fluor 647nm	Goat	1:100	Life Technologies (S32357)
Anti-IgG1 Alexa Fluor 647nm	Goat	1:200	Life Technologies (AA21240)
Anti-mouse IgG Alexa Fluor 488	Goat	1:200	Life Technologies (A11001)

Supplementary Table 3: Antibodies and their respective metal conjugates.

Antibody	Metal conjugate
Dystrophin	176Yb
UqCRC2	174Yb
MTCO1	172Yb
COX4+4L2	168Er
SDHA	153Eu
VDAC1	166Er
GRIM19	164Dy
OSCP	161Dy
NDUFB8	160Gd

Supplementary Table 4: Antibody combinations for comparison of Imaging mass cytometry and immunofluorescences. Combinations of antibodies for quadruple immunofluorescence.

Combination 1	Combination 2	Combination 3	Combination 4	Combination 5
Laminin	Laminin	Laminin	Laminin	Laminin
NDUFB8	NDUFB8	SDHA	OSCP	UqCRC2
MTCO1	COX4+4L2	TOMM22	MTCO1	MTCO1
VDAC1	VDAC1	GRIM19	VDAC1	VDAC1

Ahmed, S. T., Alston, C. L., Hopton, S., He, L., Hargreaves, I. P., Falkous, G., . . . Taylor, R. W. (2017). Using a quantitative quadruple immunofluorescent assay to diagnose isolated mitochondrial Complex I deficiency. *Scientific reports, 7*(1), 15676-15676. doi:10.1038/s41598-017-14623-2

- Rocha, M. C., Grady, J. P., Grünewald, A., Vincent, A., Dobson, P. F., Taylor, R. W., ... Rygiel, K. A. (2015). A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: understanding mechanisms and improving diagnosis. *Scientific reports*, 5(1), 15037. doi:10.1038/srep15037
- Rocha, M. C., Rosa, H. S., Grady, J. P., Blakely, E. L., He, L., Romain, N., . . . Turnbull, D. M. (2018).
 Pathological mechanisms underlying single large-scale mitochondrial DNA deletions. *Ann Neurol*, *83*(1), 115-130. doi:10.1002/ana.25127