
iScience, Volume 23
Supplemental Information
Enzyme-Constrained Models and Omics Analysis

of Streptomyces coelicolor Reveal Metabolic

Changes that Enhance Heterologous Production

Snorre Sulheim, Tja�sa Kumelj, Dino van Dissel, Ali Salehzadeh-Yazdi, Chao Du, Gilles P.
van Wezel, Kay Nieselt, Eivind Almaas, Alexander Wentzel, and Eduard J. Kerkhoven



Supplemental figures 
 

Figure S1: Reaction subsystems and origin, related to Figure 1A. The number of reactions in 

Sco-GEM in each of the 15 subsystems, and from which model they originate from. The other 

reactions (orange) are added during reconstruction of Sco-GEM.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2: Gene clusters 

associated with metabolic 

switch, related to Figure 2C. 

RNA-seq (left column) and 

proteomics (right column) 

from M145 of the 8 gene 

clusters associated with the 

metabolic switch as previously 

identified (Nieselt et al., 2010).  

The 8 clusters are: A) genes 

related to ribosomal proteins; 

B) genes related to nitrogen 

metabolism; C) Cpk gene 

cluster; D) genes related to 

development; E) genes 

upregulated in response to 

phosphate depletion; F) genes 

involved in synthesis of 

phosphate-free polymers; G) 

Act gene cluster; H) Red gene 

cluster.   

 

 

 

 

 

 

 



 

Figure S3: Log-transformed expression levels of genes associated with nitrogen metabolism, 

related to Figure 2D. The order of the genes is determined by hierarchical clustering to align 

genes with similar expression profiles next to each other. From the log2-transformed RNA-seq 

data we observe that glutamate import (SCO5774-5777), the glutamate sensing system gluR-

gluK (SCO5778 and SCO57779), glnR (SCO4159) and glnA (SCO2198) are downregulated 

subsequent to phosphate depletion. The phosphate depletion occurs between the third and 

fourth time point, i.e. at 35 and 47 hours for M145 and M1152, respectively. We also observe 

that the first time point in M145 is very different from all other samples. 

 



 

Figure S4: Clustered heatmaps of Z-score based on CO2-normalized sum of fluxes of all 

pathways standardized within each pathway and separated into different subsystems / 

parts of the metabolism. Related to Figure 2D. A) Central carbon metabolism. B) Amino acid 

metabolism. C) Metabolism of vitamins and cofactors. D) Pathways of Biosynthetic gene 

clusters. E) Lipid metabolism. F) Oxidative stress. G) Degradation of toxic compounds. H) All 

other pathways. For all panels only pathway with a minimum flux of 1e-8 mmol (g DW)-1 h-1 

were included. 
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Figure S5: RNA-seq, proteome and flux prediction of specific gene clusters and reactions. 

Related to Figure 2, 3 and S7. A) This panel display increasing CO2-normalized flux through 

citrate synthase (CS) and isocitrate dehydrogenase (ICDHyr) at later time points in M145 as 

predicted by EcSco-GEM. These two reactions are both part of the TCA cycle, converting 

acetyl-CoA to citrate (citrate synthase) and isocitrate to alpha-ketogluterate (isocitrate 

dehydrogenase). B) Log2 normalized expression data of genes involved in oxidative 

phosphorylation for M145 (blue) and M1152 (orange). The average expression level is higher 

in M1152 than in M145 but increasing at later time points for both strains. The expression 

profiles are only partially overlapping along the x-axis (hours after inoculation) because of the 

reduced growth and therefore delayed cultivation of M1152. C-H) Comparison of log2 

normalized expression data as calculated with (log2 M145)-log2(M1152), where positive 

values indicate upregulation in M145 relative to M1152, and vice versa for negative values. C) 

Increased expression of genes of the AfsR regulon in M145, while no significant difference in 

expression is observed for (D) ScbR regulon; (E) AdpA regulon; (F) ArgR regulon; (G) genes 

induced by ppGpp; and (H) genes repressed by ppGpp. 

 

 



 

Figure S6: Biomass yield on glucose and glutamic acid, related to Figure 4. M1152 (orange) 

has a higher growth yield on glucose than M145 (blue). The yield on glutamic acid (dashed 

line) is similar between the two strains.  



 

Figure S7: Analysis of transcriptome data of genes, related to Figure 2, 3, S5 and S8, and 

cultivation data of M1146, related to Figure 7. A) The heatmap display the mean standardized 

log2 expression levels for the 7 clusters of differentially expressed genes as determined by 

unsupervised clustering (k-means). Cluster 1-3 are upregulated in M1152, while the last four 

E

RNAseq: SoxR regulon RNAseq: genes encoding ribosomal proteins



(cluster 4-7) are upregulated from the beginning or at later time points in M145. B-D) 

Comparison of log2 normalized expression data as calculated with (log2 M145)-log2(M1152), 

where positive values indicate upregulation in M145 relative to M1152, and vice versa for 

negative values. B) Genes in the SoxR regulon are reducing expression in M1152 at later time 

points. C) Almost all genes in the ATP-synthase cluster are up-regulated in M1152 after the 

first time point. D) The transcription of ribosomal protein genes after the metabolic switch is 

increased in M1152 compared to M145. E) Batch cultivation data of S. coelicolor M1146, 

showing volume corrected respiration (CO2), phosphate (PO4) and cell dry weight (CDW). Error 

bars are standard deviations of three biological replicates.  



 



Figure S8: Gene Ontology enrichment analysis of the 7 clusters identified in the 499 

differentially expressed genes, categorized by function into four clustered heatmaps. 

Related to Figure 4, 6 and S7A. Each heatmap shows the p-value for the enrichment of each 

GO-process. A) Genes related to reactive oxygen species, the ribosome or development 

process and cell wall formation. B) Oxireductase and iron / metal ion homeostasis. C) 

Regulation, biosynthesis and metabolism related to RNA and DNA. D) All other GO-

annotations. E) This color palette is the legend for the column colors on top of each heatmap 

which displays which of the seven clusters each gene belongs to. The red palette covers cluster 

1-3 (upregulated in M1152), while the blue palette covers cluster 4-7 (upregulated in M145). 

Note that no GO-processes were enriched for the genes in cluster 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S9: Comparison of normalization methods of randomly sampled fluxes, related to 

Figure 2D and 3D. Heatmap showing mean flux values normalized by A) total carbon uptake 

from glucose and glutamate, B) CO2 production, C) sum of all fluxes and D) growth rate. 

Because the mean flux values in these reactions are different by several orders of magnitude, 

we display the data as standardized values (for each reaction).  

 

 

 

 

 

 

 



 

Figure S10: Estimation of rates for M145 and M1152 from cultivation data, related to Transparent 

methods, Table S1 and S2. A and B) Exponential fit of the CO2 data to the exponential growth 

phase of M145 and M1152, respectively. C and D) Piecewise linear fit to estimate growth rates 

from the CDW measurements of M145 and M1152, respectively. E and F) Piecewise linear fit 

of glucose concentration in the cultivations of M145 and M1152, respectively.  G and H) 

Piecewise linear fit of glutamic acid concentration in the cultivations of M145 and M1152, 

respectively. I) Estimated production rate of undecylprodigiosin (Red) in M145.  

 

 



Table S1: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 2D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth 

rate [h-1] 

Glucose Glutamic 

acid 

RED Germicidin-A Germicidin-

B 

21 0.517 0.246* -4.528§ -11.462§ 0 0 0 

29 3.007 0.103 -0.779 -1.973 0 0 0 

33 4.251 0.073 -0.551 -1.395 0 0 0 

37 5.301 0.009 -0.338 -1.116 9.60E-05 5.70E-05 8.00E-05 

41 5.487 0.008 -0.327 -1.078 9.20E-05 5.50E-05 7.80E-05 

45 5.672 0.008 -0.316 -1.043 8.90E-05 5.40E-05 7.50E-05 

49 5.845 0.003 -0.223 -0.803 8.70E-05 5.20E-05 7.30E-05 

53 5.918 0.003 -0.220 -0.793 8.60E-05 5.10E-05 7.20E-05 

57 5.991 0.003 -0.217 -0.784 8.50E-05 5.10E-05 7.10E-05 

*This is the maximal growth rate predicted from the exponential fit of the CO2 curve. The estimated 

rate from the linear fit of the CDW was unrealisticly high.  

§The values for the glucose and glutamate uptake rates are probably too high. 

Table S2: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 3D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth rate 

[h-1] 

Glucose 
 

Glutamic 

acid 

RED Germicidin-

A 

Germicidin-

B 

33 1.379 0.140 -0.399 -3.017 0 0 0 

41 2.929 0.066 -0.188 -1.421 0 0 0 

45 3.704 0.052 -0.394 -1.415 0 0 0 

49 4.478 0.043 -0.382 -1.374 0 0 0 

53 4.835 0.007 -0.372 -1.336 0 3.00E-06 1.56E-05 

57 4.767 -0.005 -0.177 -0.772 0 3.10E-06 1.58E-05 

61 4.676 -0.005 -0.180 -0.787 0 3.10E-06 1.61E-05 

65 4.585 -0.005 -0.184 -0.803 0 3.20E-06 1.64E-05 



Transparent methods 
Sco-GEM consensus model reconstruction and development 
Sco-GEM, the community consensus model for Streptomyces coelicolor is developed, 

maintained, hosted and publicly available on GitHub 

(https://github.com/SysBioChalmers/Sco-GEM). When we refer to files in the following 

sections, we use the file names and relative to the main folder in this GitHub repository. By 

hosting the model on GitHub, we make the reconstruction transparent, the data accessible, 

provide a structure framework for further development by the community. To this end we  

also created a channel on Gitter dedicated to Sco-GEM questions and discussions 

(https://gitter.im/SysBioChalmers/Sco-GEM). The model repository was created using 

memote (Lieven et al., 2018) and we use a GitFlow structure with two main branches, the 

devel branch contains the most recent changes while the master branch contains the stable 

releases. All new features or bug fixes are performed in separate branches that are 

incorporated into the devel branch through pull requests. Semantics for branch names and 

commit messages are described in CONTRIBUTING.rst. The main script language for the model 

reconstruction is python (version > 3.6), with the exception being the feat/ecModel branch 

with the development of the enzyme-constrained model (EcSco-GEM) where Matlab (version 

> 7.3) is used.   

In terms of folder structure data files, scripts and model files are stored in 

ComplementaryData, ComplementaryScripts, and ModelFiles, respectively. In the main folder 

we find the following files: 

- .gitignore: File which describes file formats automatically ignored by git 

- .gitconfig: Git config file 

- .gitmodules: List of linked submodules 

- CONTRIBUTING.rst: Guidelines describing how to contribute 

- README.md: General information about the repository 

- HISTORY.rst: History of model version releases 

- LICENSE.md: License information 

- memote.ini: File created by memote (Lieven et al., 2018) 

- requirements.txt: List of python-packages required to run the model reconstruction 

https://github.com/SysBioChalmers/Sco-GEM
https://gitter.im/SysBioChalmers/Sco-GEM
https://nvie.com/posts/a-successful-git-branching-model/


- .travis.yml: Config file for automatization of memote with Travis (https://travis-

ci.org/) 

 

Sco-GEM can be reconstructed at any time using the python script 

ComplementaryScripts/reconstruct_scoGEM.py. Each task of the reconstruction process is 

performed in a separate script and associated with an issue on GitHub (Data Set S1, Tab 1). The 

details of each task are described in the following paragraphs.  

Curate identified issues in iKS1317 
We used iKS1317 (Kumelj et al., 2019) as the starting point for the reconstruction of Sco-GEM. 

Since the publication of iKS1317, several issues had been identified and these were curated as 

the initial step in the reconstruction pipeline. The curations include correcting the mass and 

charge balance of the reactions NOR_syn, OAADC, SEPHCHCS and DIOP5OR, and correcting 

the ec-code, KEGG annotation and gene association for the reactions 3OXCOAT, MMSYNB, 

PGMT, PPM, ME1, GLUDyi, GLUSx, GLUSy and GLUN. 

 

Curate and add reactions from Sco4 
The Sco4 GEM of S. coelicolor (Wang et al., 2018) contained additional reactions that we 

wanted to include in Sco-GEM. However, prior to adding content from Sco4 we curated issues 

that had been identified since publication. Eleven reactions were found to be either duplicated 

or wrong in Sco4, and these were removed: RXN0-5224, METHYLGLUTACONYL-COA-

HYDRATASE-RXN, GLU6PDEHYDROG-RXN, RXN-15856, 1.14.13.84-RXN_NADPH, R03998, 

R03999, R09692_NADPH, RXN-9930, 1.17.1.1-RXN_NADH, R09692_NADH. We additionally 

updated the gene annotations of the following reactions: RMPA, ABTDG, PROD2, THRPDC, 

ADCL, OXPTNDH, GLNTRS, CU2abc, CBIabc, CBL1abc, GSNt2, INSt2 and PDH. 

To enable addition of reactions from Sco4 (Wang et al., 2018) to Sco-GEM we mapped 

reactions added during the Sco4 development to reactions present in iKS1317 (Kumelj et al., 

2019). This mapping was performed semi-automatically: automatic mapping using KEGG and 

BioCyc annotations followed by manual curation. In total, 394 new reactions and 404 new 

metabolites were added from Sco4 to Sco-GEM (Data Set S1, Tab 5 and 6). Most of the 

reactions and metabolites added from Sco4 had IDs from the MetaCyc database (Caspi et al., 

https://travis-ci.org/
https://travis-ci.org/


2014), containing characters such as dash or parentheses not properly handled by the SBML 

parser in COBRApy (Ebrahim et al., 2013). Thus, the ID of all reactions and metabolites added 

from Sco4 were changed to the correct BiGG ID if possible, otherwise a new ID was created 

according to the guidelines given in BiGG (King et al., 2016). KEGG (Kanehisa, 2000) and 

MetaNetX (Moretti et al., 2016) identifiers were included as annotations when possible. Full 

lists of the IDs and annotations given to reactions and metabolites added from Sco4 are found 

in the GitHub repository folder ComplementaryData/curation as added_sco4_reactions.csv 

and added_sco4_metabolites.csv, respectively. 

 

Add gene annotations, reactions and metabolites to Sco-GEM from iAA1259 
Based on supplementary files 4 and 5 from iAA1259 (Amara et al., 2018) which list the 

reactions and metabolites added in iAA1259, we identified 44 reactions and 31 metabolites 

present in neither Sco4 or iKS1317 (Data Set S1, Tab 7 and 8). These 44 reactions were added 

from iAA1259 and were mainly related to coelimycin biosynthesis, xylan and cellulose 

degradation and butyrolactones pathway. We further incorporated the modification of 27 

reactions curated in iAA1259, associated with oxidative phosphorylation, futalosine pathway 

or chitin degradation (Data Set S1, Tab 9). These curations mainly updated gene-reaction rules 

but also updated reaction bounds and deletion of two reactions (CFL and DHFUTALS). Finally, 

we incorporated the biomass-function which was updated in iAA1259.  

Change direction of reactions that were backwards irreversible 
The pipeline for reconstruction of the enzyme-constrained model required all reactions to be 

either reversible or forward irreversible (i.e. reactions with bounds (-1000, 0) are not allowed). 

Therefore, all backward irreversible reactions were rewritten (substrates were changed to 

products and vice versa) so they could be represented as forward irreversible. 

Fix missing / wrongly annotated reactions and metabolites  
We identified several minor issues related to reaction and metabolite IDs or annotations. 

These may come from the current or previous model reconstruction efforts. These issues 

include: 

- Misspelled IDs or annotations 

- Empty annotations in SBML file 

- Wrong BioCyc annotations for metabolites and reactions in the germicidin pathway 



- Update all MetaNetX annotations 

- Exchange reactions given BioCyc annotations 

- Fix chebi annotations so they comply with the MIRIAM identifiers 

- Mixed up IDs for actACPmmy and malACPmmy 

 

Create pseudo-metabolites for NADH/NADPH and NAD+/NADP+ to use in reaction were the 
redox cofactor is not known 
For some redox reactions added from Sco4, it was not sure if NADH/NAD+ or NADPH/NADP+ 

was the participating cofactor pair. In this case, both possibilities were included in Sco4. 

However, to avoid duplicated reactions and make it explicit that the cofactor is unknown we 

changed these reactions to use pseudo-metabolites (acceptor_c and donor_c) as the cofactor 

pair. We then also included pseudo-reactions which converts NADH/NADPH and NAD+/NADP+ 

to donor_c and acceptor_c, respectively [pseudo-reaction IDs: PSEUDO_DONOR_NADH; 

PSEUDO_DONOR_NADPH; PSEUDO_ACCEPTOR_NAD; PSEUDO_ACCEPTOR_NADP). In total 17 

enzymatic reactions use these pseudo-metabolites as cofactor pair: 3OCHOCDH; OXCOADH; 

4DPCDH; 4HYDPRO; 4NITROB; AHLGAL; AHOPS; CADHX; DDALLO; DPCOX; GDP64HRD; 

HDAPMO; PHYFLUDS; HYTDES; SORBDH; ZCARDS; ZCAROTDH2. 

Add SBO terms to genes, reactions and metabolites 
SBO (Systems Biology Ontology) (Courtot et al., 2011) terms were included as annotations of 

reactions, genes and metabolites according to Data Set S1, Tab 10. 

 

 

Update the biomass reaction 
In iAA1259, the biomass reaction was curated in respect to 2-demethylmenaquinol and 

menaquinol, however, this resulted in a biomass reaction that combined described more than 

1 g per gDCW. In addition, the biomass reaction of all S. coelicolor models have described small 

molecule and protein co-factors/prosthetic groups as components, where their abundance 

was arbitrarily set to complement the remaining biomass components to reach 1 g per gDCW. 

This is likely a gross overestimation for many of these molecules, and this proved problematic 

for initial simulations with the enzyme constrained model. In contrast to enzymes of central 

carbon metabolism, enzymes involved in biosynthesis of such co-factors and prosthetic groups 



have typically lower efficiency, such that large fractions of the protein allocation would have 

to be devoted to these pathways if the abundances are overestimated. 

The availability of proteomics data has allowed us to give more reasonable estimates of 

abundance of protein-linked cofactors and prosthetic groups. The new biomass reaction was 

estimated through the following steps: 

1. By querying UniProt, a list of prosthetic groups per protein were collated 

(ComplementaryData/biomass/prosthetic_groups_uniProt.txt) and further processed 

(ComplementaryScripts/ecModel/prostheticGroups.m) as detailed below. 

2. If metal was specified as cofactor, the abundance was split over cobalt2+, cupper2+, 

iron2+, zinc2+, nickel2+, calcium2+, potassium+, magnesium2+ and manganese2+. 

3. Dipyrromethane is generated by the enzyme itself from its substrate and is therefore 

not further considered. 

4. From the M145 and M1152 cultivation data, quantitative proteomics was estimated 

as detailed below. 

5. Cofactor abundances were estimated by combining the estimated protein levels and 

the protein cofactor annotation (available at ComplementaryData/biomass/ 

prosthetic_groups_mets.txt) 

6. To simplify fitting of biomass components, the full biomass reaction was split into the 

pseudometabolites lipid, dna, rna, protein, carbohydrate, cell_wall and misc, with the 

latter containing the cofactors (ComplementaryData/biomass/standard_biomass.txt). 

7. After updating the abundances of the cofactors, the remaining misc metabolites were 

refitted to ensure that the total biomass adds up to 1 g per gDCW. 

The updated composition (ComplementaryData/biomass/biomass_scaled.txt) was 

subsequently used to modify the model stoichiometry (fix_biomass.py). A comparison of the 

updated biomass reaction and the biomass reaction in iAA1259 is presented in Data Set S1, 

Tab 2. 

 

Model reversibility 
By using the python-API (https://gitlab.com/elad.noor/equilibrator-api) of eQuilibrator 

(Flamholz et al., 2012) we calculated the change in Gibbs free energy for 770 reactions (Data 

https://gitlab.com/elad.noor/equilibrator-api


Set S1, Tab 3). eQuilibrator can only calculate the change in Gibbs free energy for intracellular 

reactions (i.e. not transport and exchange reactions) where all metabolites are mapped to 

KEGG (Kanehisa, 2000; Kanehisa et al., 2019). The calculations are based on the component 

contribution method (Noor et al., 2013). The change in Gibbs free energy was calculated at 

standard conditions (25 °C, 1 bar), pH7 and 1mM concentration of reactants, denoted ΔrG'm in 

eQuilibrator. We then applied a threshold of -30 kJ/mol to define a reaction as irreversible 

(Bar-Even et al., 2012; Feist et al., 2007), and compared the calculated reversibility with the 

reversibility of these reactions in the model prior to curation. We found that the reversibility 

was equal for 56.9% (438 / 770) of the reactions (Figure 1E). The majority of differences were 

reactions that were irreversible in the model but classified as reversible using the calculated 

values for the change in Gibbs free energy (35%; 273/770; Figure 1E). 

 Using the set of growth data and knockout data, we evaluated the effect of the suggested 

changes in reaction reversibility: by randomly applying these changes to 10 reactions at the 

time, we identified 13 single, 22 pairs and  13 triplets of reactions (consisting of 55 unique 

reactions) that reduced model accuracy when the reversibility was changed based on the 

change in Gibbs free energy (Data Set S1, Tab 11). Then we used the data set of growth and 

gene knockout phenotypes (Kumelj et al., 2019) to identify another 6 reactions that caused 

erroneous predictions if the reversibility were changed (PROD2, ARGSS, OCT, URIK1, URIK2, 

and UPPRT). These 61 reactions were discarded from having the reversibility 

changed, resulting in a total of 271 reactions with changed reversibility.  

Energetic cofactors, including ATP, NADPH, NADH, FAD and any quinone, were involved in 284 

of the 770 reactions for which the change in Gibbs free energy was calculated. Of the 114 

reactions involving ATP, 82 reactions had an estimated change in Gibbs free energy between 

±30 kJ/mol, indicating that the reactions were reversible. Because one assumes that ATP-

driven reactions in general are irreversible (Thiele and Palsson, 2010), the reversibility of these 

82 reactions were manually curated (Data Set S1, Tab 12). For the 7 quinone-associated 

reactions for which the change in Gibbs free energy was calculated (CYTBD2, NADH17b, 

NADH10b, MBCOA2, G3PD5, PDH3, NADH2r) all were defined as irreversible as previously 

suggested (Thiele and Palsson, 2010). The reversibility of reactions involving any of the other 

energetic cofactors were treated as any other reaction as previously described.  



Analysis and annotation of transport reactions 
Gene annotations, substrate and transport class information were mostly extracted from 

Transport DB 2.0 (Elbourne et al., 2017) and TCDB (Saier et al., 2016). Then, transport proteins 

were extracted from IUBMB-approved Transporter Classification (TC) System and categorized 

into 9 main classes (Figure 1F): 1) ABC transporter; 2) PTS transporter; 3) Proton symporter; 

4) Sodium symporter; 5) Other symporter; 6) Proton antiport; 7) Other antiport; 8) Facilitated 

diffusion; 9) Simple diffusion. For those transport proteins with an ambiguous substrate 

annotation in TCDB, the specific substrate annotation was obtain by extracting annotations 

from KEGG (Kanehisa, 2000; Kanehisa et al., 2019), UniProt (The UniProt Consortium, 2019) or 

through BLAST homology search (NCBI Resource Coordinators, 2017) using a similarity 

threshold of 90% (Data Set S1, Tab 4). 

Subsystem annotations 
We leveraged the KEGG and BioCyc annotations of each individual reaction to extract a draft 

subsystem and pathway annotation for each reaction. For KEGG, this was achieved by using 

the python module BioServices (Cokelaer et al., 2013) while we used PythonCyc 

(https://github.com/latendre/PythonCyc) and PathwayTools (Karp et al., 2016) to extract 

pathway annotations from BioCyc (Karp et al., 2019). 

The draft annotations were then curated, and each reaction was annotated to one out of 15 

subsystems. When no or multiple annotations were extracted from the databases we used 

adjacent reactions in the metabolic network to infer the single, most correct annotation. These 

15 subsystem categories are based on the categories of the KEGG Pathway Maps for 

metabolism (https://www.genome.jp/kegg/pathway.html) but we have included three 

additional categories to cover all aspects of the model: Biomass and maintenance functions, 

Membrane Transport, and Exchange (Figure S1). 

We also annotated 1964 of the 2552 reactions to one out of 128 different pathways. The 

remaining 588 are mostly transport and exchange reactions, or possibly reactions not fitting 

into any of these pathways.  

Export model file with alphabetical ordering 
An import feature with GitHub is the ability to easily see changes in text files after every 

commit. However, COBRApy (Ebrahim et al., 2013) doesn’t sort the list of reactions, 

metabolites and genes before the SBML-file is written and this make it look like there was a 

https://github.com/latendre/PythonCyc
https://www.genome.jp/kegg/pathway.html


lot of changes even when the model is unchanged. Thus, we now sort these lists before writing 

to file. The export function also stores the model-file in the YAML format which is more 

readable than SBML (XML). Finally, the export function creates the requirements.txt file which 

holds information about all non-standard python modules necessary to run the model 

reconstruction. 

 

Development of enzymatically constrained (EcSco-GEM) model 
An enzyme-constrained version of the Sco-GEM model (denoted EcSco-GEM) was generated 

using GECKO (Sánchez et al., 2017). The GECKO method enhances an existing GEM by explicitly 

constraining the maximum flux through each reaction by the maximum capacity of the 

corresponding enzyme, given by the product of the enzyme abundance and catalytic 

coefficient. Both reversible reactions and reactions catalysed by isoenzymes (redundant 

genes) are handled automatically by the GECKO method by splitting each occurrence into 

individual reactions. The Sco-GEM v1.1 model was modified using GECKO version 1.3.4. Kinetic 

data, in the form of kcat values (s-1), were automatically collected from BRENDA (Jeske et al., 

2019). If BRENDA did not report a kcat value for an enzyme, GECKO searched for alternative kcat 

values by reducing specificity, on the level of substrate, enzymatic activity (EC number) and 

organism.  

A total of 4753 kcat values were matched, including separate values for forward and backward 

direction for reversible reactions, of which: 

- 53 were matched with organism (S. coelicolor) and correct substrate 

- 1541 were matched with closest organism and correct substrate 

- 236 were matched with organism (S. coelicolor) and any substrate 

- 15 were matched with organism (S. coelicolor) and any substrate, reported specific 

activities instead of kcat (corrected in the model for molecular weight of the enzyme) 

- 2586 were matched with closest organism and any substrate 

- 322 were matched with any organism and any substrate, reported specific activities 

instead of kcat (corrected in the model for molecular weight of the enzyme) 

 

The algorithm first looped through these criteria above, with the full EC code. If no match 



could be found, wildcards were added (e.g. EC2.3.4.- instead of EC2.3.4.5), followed by going 

through the list of criteria above. The statistics there is: 

- 4178 were matched without any wildcards (full EC code) 

- 544 were matched after adding one wildcard 

- 21 were matched after adding two wildcards (e.g. EC2.3.-.-) 

- 10 were matched after adding three wildcards 

- 0 were matched after adding four wildcards 

 

Using the initial set of BRENDA-suggested kcat values, the model was evaluated to support 

simulation of experimentally measured growth rates. During this testing the NAD(H)/NAD(P)H 

pseudo-reactions were blocked to avoid infeasible loops. 

 The following kcat values were identified as growth limiting resulting in the stated manual 

curations: 

- Chorismate synthase (CHORS; EC4.2.3.5; SCO1496; Q9KXQ4) 

Sco-GEM uses 5-O-(1-Carboxyvinyl)-3-phosphoshikimate as name of the main 

substrate, while BRENDA uses its synonym 5-enolpyruvylshikimate 3-phosphate. This 

prevented automatically finding the substrate. Hence, the kcat was manually changed 

to 0.87 s-1, as measured from N. crassa (Rauch et al., 2008). 

- Phosphoribosylformylglycinamidine synthase (PRFGS; EC6.3.5.3; SCO4077 and 

SCO4078 and SCO4079; Q9RKK5 and Q9RKK6 and Q9RKK7) 

kcat suggested by BRENDA used NH4+ as substrate, instead of glutamine. Specific 

activity using glutamine is provided for E. coli: 2.15 μmol/min/mg protein (Schendel 

et al., 1989). Assuming molecular weight of 141 kDa, this translates to kcat = 5.05 s-1. 

 

- Methylmalonate-semialdehyde dehydrogenase (malonic semialdehyde) (MMSAD3; 

EC1.2.1.27; SCO2726; Q9L1J1) 

kcat suggested by BRENDA is from archaea, instead use kcat value of 2.2 s-1 from B. 

subtilis (Talfournier et al., 2011). 

 



- Phosphoribosyl-ATP pyrophosphatase (PRATPP; EC3.6.1.31; SCO1439; Q9EWK0) 

kcat suggested by BRENDA was calculated from specific activity in Salmonella enterica, 

but the reported value was measured in cell extract, not from purified enzyme. 

Instead, use specific activity from S. cerevisiae: 332 umol/min/mg protein (Keesey et 

al., 1979). Assuming molecular weight of 95 kDa, this translates to a kcat of 526 s-1. 

 

- Glyceraldehyde 3-phosphate dehydrogenase (Q9Z518/EC1.2.1.12) - assigned kcat from 

Corynebacterium glutamicum was highly growth limiting. Instead use specific activity 

measured of pentalenolactone sensitive gapdh in Streptomyces arenae: 112 

umol/min/mg protein (Maurer et al., 1983). 

Then, separate models were created for each strain (the gene clusters for actinorhodin, 

undecylprodigiosin, CDA and coelimycin P1 were removed to create M1152) and for each time 

point by using estimated growth, uptake rates of glutamate and glucose, secretion rates of 

undecylprodigiosin, germicidin A and B and proteome measurements. The estimated growth, 

uptake and secretion rates were estimated from raw measurements across three biological 

replicates (details provided in the last section). These time point specific models (9 time points 

for M145, 8 time points for M1152) were used to analyse the activity in individual metabolic 

pathways through random sampling (Bordel et al., 2010). We also created one EcSco-GEM 

model for each strain with a global constraint on the protein usage instead of specific protein 

usage, which were used for model quality control.  

Continuous integration and quality control with memote 
Validation and quality assessment of Sco-GEM is carried out using the test-suite in memote 

(Lieven et al., 2018). Memote provides by default a large range of tests, which we have used 

to identify issues and possible improvements. The test suite reports descriptive model 

statistics such as the number of genes, reactions and metabolites, and also checks the 

presence of SBO terms and annotations, the charge and mass balance of all reactions, the 

network topology and find energy-generating cycles (Fritzemeier et al., 2017). Additionally, 

we incorporated custom tests into the memote test-suite to automatically compare predicted 

phenotypes with experimental data in different growth media and for different knockout 

mutants. In addition to the classical binary classifiers accuracy, sensitivity and specificity we 

also report the Matthews correlation coefficient which is considered to be more reliable when 



the number of elements in each classification category is skewed (Chicco and Jurman, 2020). 

The Matthews correlation coefficient (MCC) is calculated from the true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN) values as 𝑀𝑀𝑀𝑀𝑀𝑀 =

 𝑇𝑇𝑇𝑇 ⋅𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹⋅𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

. The experimental growth and knockout data are extracted 

from (Kumelj et al., 2019). As a separate evaluation, we applied another method for identifying 

internal and unrealistic energy-generating cycles (Noor, 2018) , and no such cycles were found 

in Sco-GEM. 

The simplest use of memote is generating snapshot reports showing the current state of the 

model. However, by integrating Travis CI [https://travis-ci.com/] into the gitHub repository, 

memote can be used to create a continuous report displaying how each commit affects the 

model quality. Memote version 0.9.12 was used in this work, and the memote snapshot report 

for Sco-GEM is given in the Supplemental Information. 

 

Random sampling, normalization and pathway analysis 
Because of the huge number of reactions in the EcSco-GEM, it is challenging to sample the 

solution space appropriately: we have chosen to use the method provided in the Raven 

Toolbox 2 (Bordel et al., 2010; Wang et al., 2018), which samples the vertices of the solution 

space. The drawback of this method is that it will not result in a uniform sampling of the 

solution space. However, it is more likely to span the entire solution space and also not prone 

to get stuck in extremely narrow parts of the solution space, which may happen with variants 

of the hit-and-run algorithm (Haraldsdóttir et al., 2017; Kaufman and Smith, 1998; 

Megchelenbrink et al., 2014). For each of the time points for each strain (17 different 

conditions in total) we constrained exchange reactions between 99% and 101% of the 

measured rates and generated 5000 random flux distributions with Gurobi as the solver. The 

reactions catalysed by isoenzymes were combined into the set of reactions in Sco-GEM and 

the reactions providing protein for each reaction. The mean of the 5000 flux distributions for 

each metabolic reaction was used in the following analysis.  

Finally, for each of the 17 conditions, the mean fluxes were normalized by the CO2 production 

rate. Then, the normalized mean fluxes were summarized for each metabolic pathway by using 

the curated pathway annotations, and we consider this a measure of the metabolic activity in 



each pathway. To ease visual interpretation of this data we used the function clustermap with 

default parameters in Seaborn version 0.9.0 (Michael Waskom et al., 2018) (which uses Scipy 

v1.3.1 (Virtanen et al., 2020)) to perform hierarchical clustering of pathways based on the 

metabolic activity in M145 (Figure 2D). We then kept this order in Figure 3D to enable strain 

comparison. 

Since glucose and glutamate uptake rates, as well as growth rates were significantly different 

in the two strains and at different time points, normalization of the data was necessary to 

compare flux distributions. We tested various proxies as indicators of overall metabolic activity 

for normalization, namely CO2 production; the total carbon uptake from glucose and 

glutamate; growth rate and mean flux value. As golden standard, we compared the fluxes 

through individual reactions that are well documented to change in M145 in response to the 

phosphate depletion (Figure S9). Normalization based on CO2 production was tested and gave 

similar results than the data normalized on total carbon uptake from glucose and glutamate 

(Figure S9A and S9B. The data normalized by the sum of fluxes showed similar patterns as 

those achieved by glucose/glutamate and CO2-normalized data but was noisier (Figure S9C). 

Considering the huge differences in growth rate, the growth-normalized data masked any 

other flux patterns (Figure S9D). The fact that different normalizations provided similar 

differences in metabolic fluxes proved that the inferred changes in metabolism were not 

artefacts of the normalization method but represent true metabolic activity of each strain.  

Strains, cultivation conditions, sampling procedures, and analyses of media components 
and secondary metabolites 
Experiments were performed using strain M145 of S. coelicolor A3(2) and its derivatives 

M1146 and M1152. The latter two are lacking the 4 major BGCs for actinorhodin (Act), 

undecylprodigiosin (Red), coelimycin P1 (Cpk), and calcium-dependent antibiotic (CDA), while 

M1152 is also carrying the pleiotropic, previously described antibiotic production enhancing 

mutation rpoB [S433L] (Gomez-Escribano and Bibb, 2011; Hu et al., 2002). All strains were 

kindly provided by Mervyn Bibb at John-Innes-Centre, Norwich, UK. 

Triplicate cultivations of the strains were performed based on germinated spore inoculum on 

1.8 L phosphate-limited medium SSBM-P, applying all routines of the optimized submerged 

batch fermentation strategy for S. coelicolor established and described before (Wentzel et al., 

2012). All media were based on ion-free water, and all chemicals used were of analytical grade. 



In brief, spore batches of M145, M1146 and M1152 were generated by cultivation on soy flour-

mannitol (SFM) agar plates (Kieser et al., 2000), harvesting by scraping off spores and 

suspension in 20% (v/v) glycerol, and storage in aliquots at −80 °C. 109 CFU of spores of each 

strain were germinated for 5 hours at 30 °C and 250 rpm in 250 mL baffled shake-flasks with 

2 g of 3 mm glass beads and 50 mL 2x YT medium (Claessen et al., 2003). The germinated 

spores were harvested by centrifugation (3200 x g, 15 °C, 5 min) and re-suspended in 5 mL 

ion-free water. An even dispersion of the germinated spores was achieved by vortex mixing 

(30 s), ensuring comparable inocula among biological replicas. Each bioreactor (1.8 liter 

starting volume culture medium in a 3-liter Applikon stirred tank reactor) was inoculated with 

4.5 mL germinated spore suspension (corresponding to 9x108 CFU). Phosphate-limited 

medium SSBM-P (Nieselt et al., 2010) consisted of Na-glutamate, 55.2 g/L; D-glucose, 40 g/L; 

MgSO4, 2.0 mM; phosphate, 4.6 mM; supplemented minimal medium trace element solution 

SMM-TE (Claessen et al., 2003), 8 mL/L and TMS1, 5.6 mL/L. TMS1 consisted of FeSO4 x 7 H2O, 

5 g/L; CuSO4 x 5 H2O, 390 mg/L; ZnSO4 x 7 H2O, 440 mg/L; MnSO4 x H2O, 150 mg/L; Na2MoO4 

x 2 H2O, 10 mg/L; CoCl2 x 6 H2O, 20 mg/L, and HCl, 50 mL/L. Clerol FBA 622 fermentation 

defoamer (Diamond Shamrock Scandinavia) was added to the growth medium before 

inoculation. Throughout fermentations, pH 7.0 was maintained constant by automatic 

addition of 2 M HCl. Dissolved oxygen levels were maintained at a minimum of 50% by 

automatic adjustment of the stirrer speed (minimal agitation 325 rpm). The aeration rate was 

constant 0.5 L/(L x min) sterile air. Dissolved oxygen, agitation speed and carbon dioxide 

evolution rate were measured and logged on-line, while samples for the determination of cell 

dry weight, levels of growth medium components and secondary metabolites concentrations, 

as well as for transcriptome and proteome analysis were withdrawn throughout the 

fermentation trials as indicated in Figure 2B. For transcriptome analysis, 3 × 4 ml culture 

sample were applied in parallel onto three 0.45 μm nitrocellulose filters (Millipore) connected 

to vacuum. The biomass on each filter was immediately washed twice with 4 ml double-

autoclaved ion-free water pre-heated to 30 °C, before the filters were collected in a 50 ml 

plastic tube, frozen in liquid nitrogen and stored at -80 °C until RNA isolation. For proteome 

analysis, 5 ml samples were taken and centrifuged (3200 x g, 5 min, 4 °C), and the resulting 

cell pellets frozen rapidly at -80 °C until further processing. 



Levels of phosphate were measured spectrophotometrically by using the SpectroQuant 

Phosphate test kit (Merck KGaA, Darmstadt, Germany) following the manufacturer’s 

instructions after downscaling to 96-well plate format. D-glucose and L-glutamate 

concentrations were determined by LC-MS using suitable standards, and measured 

concentrations were used to estimate specific uptake and excretion rates. Undecylprodigiosin 

(Red) levels were determined spectrophotometrically at 530 nm after acidified methanol 

extraction from the mycelium (Bystrykh et al., 1996). To determine relative amounts of 

actinorhodins (determined as total blue pigments, TBP), cell culture samples were treated with 

KOH (final concentration 1 M) and centrifuged, and the absorbance of the supernatants at 640 

nm was determined (Bystrykh et al., 1996). Quantification of germicidin A and B was 

performed using targeted LC-MS analytics. 

Proteomics 
Sample preparation and NanoUPLC-MS analysis 
Quantitative proteomics were performed using pipeline previously described (Gubbens et al., 

2012). Mycelium pellets for proteome analysis were thawed and resuspended in the 

remaining liquid. 50 μL re-suspended mycelium was withdrawn and pelleted by centrifugation. 

100 μL lysis buffer (4% SDS, 100 mM Tris-HCl pH 7.6, 50 mM EDTA) was added, and samples 

were sonicated in a water bath sonicator (Biorupter Plus, Diagenode) for 5 cycles of 30 s high 

power and 30 s off in ice water. Cell debris was pelleted and removed by centrifugation. Total 

protein was precipitated using the chloroform-methanol method described before (Wessel 

and Flügge, 1984). The pellet was dried in a vacuum centrifuge before dissolving in 0.1% 

RapiGest SF surfactant (Waters) at 95 °C. The protein concentration was measured at this 

stage using BCA method. Protein samples were then reduced by adding 5 mM DTT, followed 

by alkylation using 21.6 mM iodoacetamide. Then trypsin (recombinant, proteomics grade, 

Roche) was added at 0.1 μg per 10 μg protein. Samples were digested at 37 °C overnight. After 

digestion, trifluoroacetic acid was added to 0.5% followed by incubation at 37 °C for 30 min 

and centrifugation to remove MS interfering part of RapiGest SF. Peptide solution containing 

8 μg peptide was then cleaned and desalted using STAGE-Tipping technique (Rappsilber et al., 

2007). Final peptide concentration was adjusted to 40 ng/μL using sample solution (3% 

acetonitrile, 0.5% formic acid) for analysis. 



200 ng (5 μL) digested peptide was injected and analysed by reversed-phase liquid 

chromatography on a nanoAcquity UPLC system (Waters) equipped with HSS-T3 C18 1.8 μm, 

75 µm X 250 mm column (Waters). A gradient from 1% to 40% acetonitrile in 110 min (ending 

with a brief regeneration step to 90% for 3 min) was applied. [Glu1]-fibrinopeptide B was used 

as lock mass compound and sampled every 30 s. Online MS/MS analysis was done using Synapt 

G2-Si HDMS mass spectrometer (Waters) with an UDMSE method set up as described in 

(Distler et al., 2014). 

Data processing and label-free quantification 
Raw data from all samples were first analysed using the vender software ProteinLynx Global 

SERVER (PLGS) version 3.0.3. Generally, mass spectrum data were generated using an MSE 

processing parameter with charge 2 lock mass 785.8426, and default energy thresholds. For 

protein identification, default workflow parameters except an additional acetyl in N-terminal 

variable modification were used. Reference protein database was downloaded from GenBank 

with the accession number NC_003888.3. The resulted dataset was imported to ISOQuant 

version 1.8 (Distler et al., 2014) for label-free quantification. Default high identification 

parameters were used in the quantification process. TOP3 result was converted to PPM 

(protein weight) and send to the modelers and others involved in interpreting the data (Data 

Set S3). 

TOP3 quantification was filtered to remove identifications meet these two criteria: 1. 

identified in lower than 70% of samples of each strain and 2. sum of TOP3 value less than 1 × 

105. Cleaned quantification data was further subjected to DESeq2 package version 1.22.2 (Love 

et al., 2014) and PCA was conducted after variance stabilizing transformation (vst) of 

normalized data. 

Transcriptomics 
RNA extraction and quality control 
Bacteria were lysed using RNAprotect Bacteria (Qiagen) and following the manufacturer´s 

instruction. Briefly, filters containing bacteria were incubated with 4 ml of RNAprotect Bacteria 

reagent. After centrifugation, resulting samples were lysed using 500 µl of TE buffer (10 mM 

Tris·Cl, 1 mM EDTA, pH 8.0) containing 15 mg/ml lysozyme using 150-600 µm diameter glass 

beads (Sigma) agitated at 30 Hz for 5 minutes in the TissueLyser II (Qiagen).  



Total RNA was extracted using RNeasy mini kit (Qiagen) and 700 µl of the resulting lysate 

complemented with 470 µl of absolute ethanol. RNAase-free DNase set (Qiagen) and 

centrifugation steps were performed to prevent DNA and ethanol contamination. Elution was 

performed using 30 µl of RNase-free water and by reloading the eluate on the column to 

improve the RNA yield. The RNA concentration was measured using Qubit RNA BR Assay Kit 

(ThermoFisher Scientific), RNA purity was assessed using A260/A280 and A260/A230 ratio 

using the Nano Drop ND-1000 Spectrophotometer (PEQLAB). RNA Integrity Number was 

estimated using RNA 6000 Nano Kit (Agilent) and the Bioanalyzer 2100 (Agilent). 

Library preparation and sequencing 
A total of 1 µg of total RNA was subjected to rRNA depletion using Ribo-Zero rRNA Removal 

Kit Bacteria (Illumina). The cDNA libraries were constructed using the resulting tRNA and the 

NEBNext Ultra II Directional RNA Library Prep Kit (NEB). Libraries were sequenced as single-

reads (75 bp read length) on an Illumina NextSeq500 platform at a depth of 8–10 million reads 

each. 

RNA-seq data assessment and analysis 
Sequencing statistics including the quality per base and adapter content assessment of 

resulting transcriptome sequencing data were conducted with FastQC v0.11.5 (Andrews, 

2016). All reads mappings were performed against the reference strain of Streptomyces 

coelicolor A3(2) (RefSeq ID NC_003888.3). The mappings of all samples were conducted with 

HISAT2 v2.1.0 (Kim et al., 2015). As parameters, spliced alignment of reads was disabled, and 

strand-specific information was set to reverse complemented (HISAT2 parameter --no-spliced-

alignment and --rna-strandness "R"). The resulting mapping files in SAM format were 

converted to BAM format using SAMtools v1.6 (Li et al., 2009). Mapping statistics, including 

strand specificity estimation, percentage of mapped reads and fraction exonic region 

coverage, were conducted with the RNA-seq module of QualiMap2 v2.2.2-dev (Okonechnikov 

et al., 2016). Gene counts for all samples were computed with featureCounts v1.6.0 (Liao et 

al., 2014) based on the annotation of the respective reference genome, where the selected 

feature type was set to transcript records (featureCounts parameter -t transcript). 

Normalization and differential gene expression  
Raw count files were imported into Mayday SeaSight (Battke and Nieselt, 2011) for common, 

time-series-wide normalization. For this, the raw counts of all biological replicates of one strain 



across the time-series were log2-transformed (with pseudocount of +1 for the genes with zero 

counts) and then quantile-normalized. To make the two normalized time-series data of M154 

and M1152 comparable, they were again quantile-normalized against each other. The 

normalized RNA-seq data are provided in Data Set S4. 

Differentially expressed genes were identified by ANOVA using Orange (v3.2) and the 

bioinformatic toolkit (v), with FDR of <0.01 and a minimal fold enrichment >1 for at least one 

aligned time point. Genes with low expression (log2 < 5 for both strains and time points) were 

not considered for further analysis. The differentially expressed genes were subsequently 

scaled to the expression average and clustered by K-means. Visualization of genes and clusters 

were performed in python (v3.7) with matplotlib (v3.1.1). For this, the time-series of M145 

and M1152 were aligned such that in the visual representation, the expression profiles of the 

two strains are aligned relative to the time point of phosphate depletion. Both DAVID (Huang 

et al., 2009a, 2009b) and the string database (Szklarczyk et al., 2019) was used to evaluate the 

function of each cluster, identifying overrepresentation of function groups based on GO 

annotation or text mining. Identified differential clusters or regulons were extracted from 

literature and plotted (Data Set S2; Figure S8). When we display the RNA-seq data as 

heatmaps (Figure 6 and S3) the order of genes is determined by hierarchical clustering using 

methods as previously described for the clustering of pathways based on metabolic activity. 

Estimation of growth, uptake and production rates for Streptomyces coelicolor M145 
and M1152 from batch fermentation data 
The estimated growth, uptake and secretion rates are based on average values of online and 

offline measurements of batch fermentation from three parallel bioreactors for each strain.  

Growth rate estimation 
Both the CDW (cell dry weight) measurements and CO2 measurements can in principle be used 

to estimate growth rates, as there should be a linear relationship between the CO2 

concentration and cell mass. The CO2 concentration is measured online on a high-resolution 

timescale (5 min) while CDW is measured offline with a four-hour resolution starting from 18 

hours after inoculation.  

To estimate growth rates, we separated the growth into 5 different phases:  

1. Lag phase - immediate phase after inoculation with no / low growth 

2. Exponential growth - rapid growth after the initial lag phase 



3. First linear growth rate - until phosphate depletion 

4. Second linear growth rate – immediate phase after phosphate where there is still 

growth 

5. Third linear growth rate – no or very low growth 

From both Figure 2A and 3A we find a clear discrepancy between the CO2 curve and the CDW 

measurements after phosphate depletion. Thus, despite the lower resolution we decided to 

use the CDW measurements for the growth rate estimation except for the exponential growth 

phase. 

Exponential growth rate from CO2 

The exponential growth rate was estimated by fitting an exponential curve on the form  

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0𝑒𝑒𝜇𝜇𝜇𝜇 

 to the selected region of the CO2 measurements (Figure S10A and S10B), leading to an 

estimated growth rate of 0.25 h-1 ± 0.06 h-1 and 0.18 h-1 ± 0.02 h-1 for M145 and M1152, 

respectively. The uncertainty is estimated in a heuristic approach by observing the minimum 

and maximum values observed when changing the boundaries for the fitted function. 

Linear growth rates from CDW 
The growth rate is estimated by fitting linear slopes to the three different linear phases of 

growth (Figure S10C and S10D). The specific growth rate is then calculated using the following 

equation 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇 →   𝜇𝜇 =
1
𝑋𝑋

 ⋅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

where µ is the growth rate, X the CDW and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is the slope of the linear fit. Because the inverse 

of the CDW the rates can become very large when the cell mass is low, but we use the 

estimated growth rate in the exponential phase as an upper bound. Predicted growth rates 

and CDW estimates at the timepoints for the proteome samples are given for M145 and 

M1152 in Table S1 and Table S2, respectively.  

Uptake rates of glucose and glutamic acid 
The uptake rates for glucose and glutamate were also fitted using a piecewise linear function 

(Figure S10E-H). Using the same time intervals as for the CDW estimates gave a very poor fit 



for M1152 and we therefore decided to use different time intervals. From the fitted slopes we 

estimated the uptake rates using the equation given below: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑠𝑠𝑋𝑋 

where S is the substrate, 𝜇𝜇𝑠𝑠 the uptake rate and X the CDW at the given time. The uptake rates 

at 21 hours after inoculation seems to be too low for M145 and is caused by a too low estimate 

of the CDW. The uptake rates for glucose and given for M145 and M1152 in Table S1 and Table 

S2, respectively.  

Undecylprodigiosin (RED) production rate 
We used the same method as for the uptake rates of glucose and glutamic acid to estimate 

the production rate of undecylprodigiosin (RED). The M1152 did not produce any RED (as 

expected). However, for the M145 the amount of undecylprodigiosin was measured both 

using MS (mass spectrometry) and OD (optical density). From the MS data it looks like the 

production of RED stops after approximately 53 hours, but from the OD measurements we 

observe a continuous increase until the end of the experiment. The hypothesis is that RED is 

continuously degraded into derivatives which are still measurable using OD but not using MS 

because of the different masses of the derivatives. Therefore, we have extrapolated the 

production rate of RED using the timepoints between 40 and 53 hours to estimate the 

production rate of RED at 57 hours (Figure S10I) .  

Germicidin A and B production rates 
Production rates of germicidin A and B were fitted using linear regression of the last 6 data 

points across all three biological replicates for M145 (Table S1). For M1152, only the measured 

concentrations at 45 and 65 hours after inoculation were used to estimate the production rate 

of germicidin A and B (Table S2).  

 

memote snapshot report of Sco-GEM 
The following report (next page) was prepared by running memote version 0.9.12 in the command-
line from the directory of the cloned Sco-GEM repository with the command: memote report 
snapshot –custom-tests ComplementaryScripts/tests 
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