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Stochastic reaction networks in dynamic compartment populations

Lorenzo Duso and Christoph Zechner

S.1 Modeling chemical reactions as transition classes

This section elaborates on the modeling of single-compartment chemical events as transition
classes. Namely, we consider a stoichiometric equation of the form

ul,1X1 + . . .+ ul,DXD
h̃l(x)−−−⇀ vl,1X1 + . . .+ vl,DXD, (S.1.1)

which can act on the content of each compartment in the population. We assume that the
propensity function h̃l obeys mass-action kinetics

h̃l(x) = kl

D∏
i=1

(
xi
ul,i

)
= klgl(x) (S.1.2)

with kl > 0 being the rate constant for the reaction S.1.1, which is indexed by l. Whenever
the reaction l occurs in a compartment of the population, the associated content x is updated
by the change vector ∆xl = vl − ul, with ul = (ul,1, . . . , ul,D) and vl = (vl,1, . . . , vl,D). From
the compartment population perspective, the occurrence of one chemical reaction l in a single
compartment of content x can be understood as an update of the population state n where n(x)
is decreased by 1 and n(x + ∆xl) is increased by 1. The propensity function of such transition
is given by the reaction propensity h̃l(x) times the factor w(n) = n(x), which is the number of
compartments with content x in which the reaction could occur. Therefore, the stoichiometric
equation S.1.1 corresponds to the transition class

[x]
hl(n;x)−−−−−⇀ [y], hl(n;x,y) = klgl(x)n(x)δy,x+∆xl , (S.1.3)

where the product-compartment distribution is a Kronecker delta that accounts for a change
in x by the state-change vector ∆xl. This transition class can be equivalently expressed in the
more compact form

[x]
hl(n;x)−−−−−⇀ [x + ∆xl], hl(n;x) = klgl(x)n(x). (S.1.4)

We remark that the rate constant kl and the content dependent function gl(x) of the transi-
tion class S.1.3 simply correspond to the single-compartment mass-action propensity defined
in eq. S.1.2. Furthermore, it is worth to emphasize that S.1.3 conserves the number of com-
partments in the population, consistently with our definition of chemical events. In summary,
this shows how conventional stoichiometric equations of the form S.1.1 can be included in a
compartment population model in terms of transition classes S.1.3.

S.2 Implementation of stochastic simulations

Across the case studies we have evaluated the accuracy of our moment-based approach by
comparison with Monte Carlo averages obtained from exact stochastic simulations. In this
section, we provide details about the efficient implementation of stochastic simulations for
compartment population models.

We recall that the next-event waiting time distribution and next-event class distribution are
determined by the value of the total class propensities Hc(n), which are associated with the
current state n. For all classes c admitting self-contained moment dynamics, the total class
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propensities Hc(n) are functions of some population moments. We denote by M the set of
population moments that enter in the total class propensities Hc(n), c ∈ C, with C being the
set of transition classes defining the population dynamics.

A stochastic simulation with initial condition n0 until time tmax proceeds as follows:

1. Set t← 0 and n← n0

2. Compute the moments M(n)

3. Compute Hc ← Hc(M), ∀c ∈ C, and HTOT ←
∑
cHc

4. Draw the next-event time as t← t+
(
− 1
HTOT

log(1− U)
)

, with U ∼ Uniform[0, 1)

5. If t < tmax,
draw the next-event class c∗ from the discrete distribution P (c∗ = c) = Hc

HTOT

else,
end the simulation.

6. Draw the reactant compartments so that their contents Xc∗ are sampled according to the
distribution hc∗(n;Xc∗)/Hc∗(n)

7. When needed, draw the product compartments Yc∗ from πc∗(Yc∗ | Xc∗)

8. Update n and M according to the drawn transition, and go to 3

Note that the state of the system can be conveniently represented by storing theD-dimensional
contents xn of each compartment n = 1, . . . , N in a D ×N integer matrix.

S.3 Derivation of the expected moment dynamics

Our goal is to derive the expected trajectory of the SDE

dMγ =
∑
c∈C

∑
j∈Jc

∆Mγ
c,jdRc,j , (S.3.5)

which describes the time evolution of an arbitrary population moment Mγ subject to a set C
of transition classes. Using the Doob-Meyer decomposition theorem [1], we can decompose the
differential reaction counter dRc,j into a predictable part, related to its propensity function
hc,j(n), and a martingale Qc,j

dRc,j = hc,j(n)dt+ dQc,j . (S.3.6)

We can substitute the decomposition S.3.6 into S.3.5 and take the expectation on both sides

d〈Mγ〉 =
〈∑
c∈C

∑
j∈Jc

∆Mγ
c,j(hc,j(n)dt+ dQc,j)

〉
=
∑
c∈C

∑
j∈Jc

∆Mγ
c,j〈hc,j(n)dt+ dQc,j〉

=
∑
c∈C

∑
j∈Jc

∆Mγ
c,j〈hc,j(n)〉dt, (S.3.7)

where the second term vanishes because of the martingale property of Qc,j . Finally, since the
moment update ∆Mγ

c,j is a constant for any fixed c and j, we can switch the order of summation
and expectation in the last line of S.3.7 to obtain

d〈Mγ〉
dt

=
∑
c∈C

∑
j∈Jc

∆Mγ
c,j〈hc,j(n)〉

=
∑
c∈C

〈 ∑
j∈Jc

∆Mγ
c,jhc,j(n)

〉
. (S.3.8)
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S.4 Conditions for self-contained moment dynamics

In this section we provide sufficient conditions for a transition class to yield moment dynamics
whose r.h.s. depends exclusively on population moments. From eq. S.3.8 we observe that the
contribution of class c to the expected dynamics of an arbitrary population moment Mγ is
given by

d〈Mγ〉
dt

=
〈 ∑
j∈Jc

∆Mγ
c,jhc,j(n)

〉
=
〈∑

Xc

∑
Yc

∆Mγ
c (Xc,Yc)hc(n;Xc,Yc)

〉
, (S.4.9)

where we have made explicit the reactant- and product- compartment contents Xc and Yc

involved in each specific instance j = ϕc(Xc,Yc) and accordingly parametrized the moment
update and the propensity function. The sums over Xc and Yc are thus intended to enumerate
all distinguishable transitions of class c. If now we substitute the full expression of hc into S.4.9
we obtain

d〈Mγ〉
dt

= kc
〈∑

Xc

w(n;Xc)gc(Xc)
∑
Yc

∆Mγ
c (Xc,Yc)πc(Yc | Xc)

〉
= kc

〈∑
Xc

w(n;Xc)gc(Xc)〈∆Mγ
c (Xc,Yc) | Xc〉

〉
, (S.4.10)

with 〈· |Xc〉 as the conditional expectation with respect to πc. We recall that ∆Mγ
c (Xc,Yc)

is a polynomial in Xc and Yc by construction, because it is defined as a difference of discrete
compartment contents raised to non-negative, integer exponents γ. Thus, the expectation
〈∆Mγ

c (Xc,Yc) | Xc〉 will in general contain terms of the form 〈Yξ
c | Xc〉 for some ξi ≤ γi,

i = 1, . . . , D, that is, the moments of the conditional distribution πc up to order γ. Besides
that, the combinatorial weight w(n;Xc) has been defined as a product of binomials, which
implies that it is a polynomial in n(x), for x ∈ Xc.

At this point we can see under which condition the sum over Xc will produce a function of
some population moments on the right-hand side of S.4.10. What we need to require is that the
product gc(Xc)〈∆Mγ

c (Xc,Yc) | Xc〉 is a polynomial in Xc: in that case, the sum over Xc next
to the terms n(x) will result in a function of population moments. Thus, gc(Xc)〈∆Mγ

c (Xc,Yc) |
Xc〉 being a polynomial is a sufficient condition for the propensity of class c to admit a self-
contained form. For instance, this condition is satisfied if

• gc(Xc) has polynomial dependency on Xc, and

• the moments of πc(Yc | Xc) are polynomials in Xc ,

since a product of polynomials is in turn a polynomial. This corresponds to the sufficient
condition reported in the main text.

S.5 Ito’s rule for counting processes

Starting from eq. S.3.5, a stochastic differential equation can be obtained also for functions of
one or more population moments by means of Ito’s rule for counting processes [2]. Considering
a function f(Mγ), its SDE is obtained as

df(Mγ) =
∑
c∈C

∑
j∈Jc

[
f
(
Mγ + ∆Mγ

c,j

)
− f(Mγ)

]
dRc,j . (S.5.11)

For instance, eq. S.5.11 can be used to evaluate the stochastic dynamics of the square (Mγ)2

of a population moment. The SDE of a function of multiple population moments, such as
the cross-product f(Mγ′ ,Mγ′′) = Mγ′Mγ′′ , is obtained in a similar manner by evaluating the
overall change before and after the transition. Importantly, the simultaneous update of both
moments has to be taken into account when computing the change of f(Mγ′ ,Mγ′′).
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S.6 Multivariate Gamma moment closure for compartment-population
models

Similarly to all moment-based approaches, also our moment equation method for compartment-
population dynamics usually requires the use of some moment closure approximation in order
to obtain a finite set of ODEs. Moment closure is a technique that approximates all occurrences
of moments higher than a certain order with functions of lower order moments within a set of
moment equations. The accuracy of moment closure depends on the particular model under
consideration as well as its parameters and initial condition [3].

For the purposes of our work, we require a multivariate closure scheme. We compared
three established multivariate closures across our case studies, i.e., the normal, lognormal and
Gamma closure. We found the Gamma closure proposed by [4] to consistently outperform the
other two closures, which is why we adopted this choice for all our case studies. We generally
consider second-order closures (i.e., replacing moments of order higher than two), unless stated
differently. In particular, we applied the following Gamma closure schemes:

• Closing a third-order cross product between a moment Mγ and a moment Mξ, with Mγ

appearing to the second power

〈(Mγ)2Mξ〉 = 2
〈(Mγ)2〉〈MγMξ〉

〈Mγ〉 − 〈(Mγ)2〉〈Mξ〉. (S.6.12)

• Closing a single moment appearing at order 3, e.g. 〈M3〉 =
∑∞
x=0 x

3〈n(x)〉

〈M3〉 = 2
〈M2〉2

〈M1〉 −
〈M1〉〈M2〉
〈N〉 . (S.6.13)

which is also a Gamma closure, but corrected with the fact that the expected content
distribution 〈n(x)〉 has normalization equal to 〈N〉.

S.7 CASE STUDY: Nested birth-death process

The transition classes that define the first case study are given by

∅ hI (n;y)−−−−−⇀ [y] hI(n; y) = kIπPoiss(y;λ)

[x]
hE(n;x)−−−−−⇀ ∅ hE(n;x) = kEn(x)

[x]
hb(n;x)−−−−−⇀ [x+ 1] hb(n;x) = kbn(x)

[x]
hd(n;x)−−−−−⇀ [x− 1] hd(n;x) = kdxn(x).

(S.7.14)

We proceed below with a step-by-step derivation of both SDE and moment equations for this
model.

S.7.1 Moment equations

The expected trajectory for 〈N〉 is already reported in the main text. To characterize the
dynamics of N2, we consider again the SDE for N , which reads

dN = dR̄I − dR̄E , (S.7.15)

and we calculate the SDE for N2 using Ito’s rule for counting processes (eq. S.5.11)

dN2 =
[
(N + 1)2 −N2]dR̄I +

[
(N − 1)2 −N2]dR̄E

= (1 + 2N)dR̄I + (1− 2N)dR̄E . (S.7.16)

The expectation of S.7.16 is

d〈N2〉
dt

= kI(1 + 2〈N〉) + kE
(
〈N〉 − 2〈N2〉

)
. (S.7.17)
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We note that the evolution of 〈N2〉 is already in closed form. The SDE for the total mass M1

includes also the contribution of the birth-death reactions taking place in each compartment,
thus

dM1 =

∞∑
y=0

(+y)dRI,y +

∞∑
x=0

(−x)dRE,x +

∞∑
x=0

(+1)dRb,x +

∞∑
x=0

(−1)dRd,x. (S.7.18)

Recalling that the content of newly created compartments is chosen to be Poisson distributed
with parameter λ, the expected trajectory for the total mass is

d〈M1〉
dt

= kI
〈 ∞∑
y=0

yπI(y;λ)
〉
− kE

〈 ∞∑
x=0

xn(x)
〉

+ kb
〈 ∞∑
x=0

n(x)
〉
− kd

〈 ∞∑
x=0

xn(x)
〉

= kIλ− kE〈M1〉+ kb〈N〉 − kd〈M1〉, (S.7.19)

as shown in the main paper. Similarly to N2, we derive now the SDE for (M1)2 by Ito’s rule

d(M1)2 =

∞∑
y=0

[
(M1 + y)2 − (M1)2]dRI,y +

∞∑
x=0

[
(M1 − x)2 − (M1)2]dRE,x

+

∞∑
x=0

[
(M1 + 1)2 − (M1)2]dRb,x +

∞∑
x=0

[
(M1 − 1)2 − (M1)2]dRd,x

=

∞∑
y=0

[
y2 + 2yM1]dRI,y +

∞∑
x=0

[
x2 − 2xM1]dRE,x

+

∞∑
x=0

[
1 + 2M1]dRb,x +

∞∑
x=0

[
1− 2M1]dRd,x. (S.7.20)

The expected trajectory for 〈(M1)2〉 equals

d〈(M1)2〉
dt

= kI
〈 ∞∑
y=0

(y2 + 2yM1)πI(y;λ)
〉

+ kE
〈 ∞∑
x=0

(x2 − 2xM1)n(x)
〉

+ kb
〈 ∞∑
x=0

(1 + 2M1)n(x)
〉

+ kd
〈 ∞∑
x=0

(1− 2M1)xn(x)
〉

= kIλ(1 + λ+ 2〈M1〉) + kE(〈M2〉 − 2〈(M1)2〉)

+ kb(〈N〉+ 2〈NM1〉) + kd(〈M1〉 − 2〈(M1)2〉). (S.7.21)

This result introduces a dependency on two higher order moments, 〈M2〉 and 〈NM1〉. By
observing that the expectation of eq. S.5.11 can be written as

d〈f(Mγ)〉
dt

=
∑
c∈C

〈 ∑
j∈Jc

[
f
(
Mγ + ∆Mγ

c,j

)
− f(Mγ)

]
hc,j(n)

〉
, (S.7.22)

we find respectively

d〈M2〉
dt

= kI
〈 ∞∑
y=0

(y2)πI(y;λ)
〉

+ kE
〈 ∞∑
x=0

(−x2)n(x)
〉

+ kb
〈 ∞∑
x=0

[
(x+ 1)2 − x2]n(x)

〉
+ kd

〈 ∞∑
x=0

[
(x− 1)2 − x2]xn(x)

〉
= kIλ(1 + λ)− kE〈M2〉+ kb(〈N〉+ 2〈M1〉) + kd(〈M1〉 − 2〈M2〉) (S.7.23)

5



and

d〈NM1〉
dt

= kI
〈 ∞∑
y=0

[
(N + 1)(M1 + y)−NM1]πI(y;λ)

〉
+ kE

〈 ∞∑
x=0

[
(N − 1)(M1 − x)−NM1]n(x)

〉
+ kb

〈 ∞∑
x=0

[
(N(M1 + 1)−NM1]n(x)

〉
+ kd

〈 ∞∑
x=0

[
(N(M1 − 1)−NM1]xn(x)

〉
= kI

(
λ(1 + 〈N〉) + 〈M1〉

)
+ kE(〈M1〉 − 2〈NM1〉) + kb〈N2〉 − kd〈NM1〉. (S.7.24)

Both eqs. S.7.23 and S.7.24 do not involve any higher-order moments. In summary, we obtained
a closed system of 6 differential equations

d〈N〉
dt

= kI − kE〈N〉

d〈N2〉
dt

= kI(1 + 2〈N〉) + kE
(
〈N〉 − 2〈N2〉

)
d〈M1〉

dt
= kIλ− kE〈M1〉+ kb〈N〉 − kd〈M1〉

d〈(M1)2〉
dt

= kIλ(1 + λ+ 2〈M1〉) + kE(〈M2〉 − 2〈(M1)2〉)

+ kb(〈N〉+ 2〈NM1〉) + kd(〈M1〉 − 2〈(M1)2〉)
d〈M2〉

dt
= kIλ(1 + λ)− kE〈M2〉+ kb(〈N〉+ 2〈M1〉) + kd(〈M1〉 − 2〈M2〉)

d〈NM1〉
dt

= kI
(
λ(1 + 〈N〉) + 〈M1〉

)
+ kE(〈M1〉 − 2〈NM1〉) + kb〈N2〉 − kd〈NM1〉.

(S.7.25)

After numerical integration, the time evolution of the standard deviations for N and M1 can
be calculated by

√
〈N2〉 − 〈N〉2 and

√
〈(M1)2〉 − 〈M1〉2, respectively.

S.7.2 Simulation parameters

Figures 2B-C in the main paper have been generated using the following choice of parameters

kI = 1 λ = 10 kE = 0.01 kb = 1 kd = 0.1

and with initial condition
n0 : n0(1) = 1, n0(x) = 0 ∀x 6= 1

which represents a population comprising one compartment with content x = 1. Monte Carlo
estimates have been obtained by averaging the outputs of 103 stochastic simulations.

S.7.3 Steady-state moments

As already explained in the main paper, in this model the dynamics of the total number of
compartments N is independent of the other moments of the system. This can be observed from
the SDE S.7.15, which corresponds to the dynamics of a birth-death process with propensities
HI(n) = kI and HE(n) = kEN . This shall not be confused with the chemical birth-death
process with propensities h̃b(x) = kb and h̃d(x) = kdx, affecting the content x inside each
compartment. Eq. S.7.15 implies that the steady state number of compartments N∞ is Poisson
distributed with mean kI/kE . This is resembled also by the steady-state solution of the moment
equations, for which we find that 〈N∞〉 = kI/kE and 〈N2

∞〉 = kI/kE(1 + kI/kE), so that

Var(N∞) = 〈N2
∞〉 − 〈N∞〉2 = kI/kE = 〈N∞〉, (S.7.26)
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consistent with Poissonian noise. From the steady-state solution of the moment equations we
can further derive the steady-state total mass

〈M1
∞〉 =

kbkI/kE + kIλ

kd + kE
=
kI
kE

[
kb
kd

1 + αβ

1 + α

]
= 〈N∞〉

[
kb
kd

1 + αβ

1 + α

]
, (S.7.27)

where we introduced the dimensionless parameters α = kE/kd and β = λ/(kb/kd) . We notice
that the term in square brackets in eq. S.7.27 represents the average steady-state content per
compartment, which we denote by 〈m∞〉 = 〈M1

∞〉/〈N∞〉. In particular, 〈m∞〉 can be also
interpreted as the mean value of the steady-state normalized expected distribution P∞(x) =
〈n∞(x)〉/〈N∞〉, since

〈m∞〉 =
〈M1
∞〉

〈N∞〉
=

limt→∞〈
∑∞
x=0 xn(x)〉

〈N∞〉
=

∞∑
x=0

x
〈n∞(x)〉
〈N∞〉

=

∞∑
x=0

xP∞(x). (S.7.28)

Similarly, it is possible to calculate 〈M2
∞〉 from the steady-state solution of the moment equa-

tions, and consequently identify the second order moment of P∞(x) as

〈s∞〉 =
〈M2
∞〉

〈N∞〉
=

∞∑
x=0

x2P∞(x). (S.7.29)

After some algebraic manipulations, we can obtain the variance-to-mean ratio of P∞(x) as

σ2
∞

〈m∞〉
=
〈s∞〉 − 〈m∞〉2

〈m∞〉
=

∑
x x

2P∞(x)−
(∑

x xP∞(x)
)2

〈m∞〉

= 1 +
kb
kd

α

(1 + α)(2 + α)

(β − 1)2

1 + αβ

= 1 + 〈m∞〉
α

2 + α

(β − 1)2

(1 + αβ)2
. (S.7.30)

An interesting insight from this result is that the variance-to-mean ratio achieves the minimum
value 1 for β = 1. This indicates that the steady-state compartment content follows Poissonian
statistics if λ = kb/kd, meaning that the content of compartments entering the system matches
in distribution the chemical birth-death process occurring inside each compartment. Instead,
whenever λ 6= kb/kd, the compartment content will have a limiting distribution with super-
Poissonian noise.

S.7.4 Steady-state distribution

As mentioned in the main text, the expected number distribution 〈n(x)〉 is analytically in-
tractable in most practical situations and our moment-based approach was conceived to address
this problem. However, in the special case of the nested birth-death process, a treatment in
terms of 〈n(x)〉 is straightforward since its transition classes have propensities which are linear
in the compartment distribution n. In the following, we show how a master equation for 〈n(x)〉
can be obtained directly from our counting process model, which is useful to demonstrate how
our approach relates to the expected number distribution. Moreover, we provide analytical
steady-state solutions for this master equation for two special parameter regimes.

The stochastic dynamics of n(x) is given by

dn(x) = dRI,x − dRE,x + dRb,x−1 − dRb,x + dRd,x+1 − dRd,x. (S.7.31)

Note that the term dRb,x−1 is absent when x = 0. Similarly to the derivations in section S.3,
we can make use of the Doob-Meyer decomposition and apply the expectation operator on both
sides of S.7.31 to obtain an ordinary differential equation for the expected distribution 〈n(x)〉,
which reads

d〈n(x)〉
dt

= kIπI(x;λ)− kE〈n(x)〉︸ ︷︷ ︸
compartment events

+ kb
(
〈n(x− 1)〉 − 〈n(x)〉

)
+ kd

[
(x+ 1)〈n(x+ 1)〉 − x〈n(x)〉

]︸ ︷︷ ︸
chemical events

.
(S.7.32)
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The terms in the second line are reminiscent of those obtained in a standard chemical master
equation for a pure birth-death process, while those appearing in the first line account for
compartmental dynamics. Note that 〈n(x)〉 obeys the special normalization

∑∞
x=0〈n(x)〉 = 〈N〉,

with 〈N〉 as the expected number of compartments. At steady state, the left-hand side of
eq. S.7.32 is zero, which yields the linear system of equations

kIπI(x;λ) + kb〈n∞(x− 1)〉+ kd(x+ 1)〈n∞(x+ 1)〉 − (kE + kb + xkd)〈n∞(x)〉 = 0 (S.7.33)

for x ∈ N, and
kIπI(0;λ) + kd〈n∞(1)〉 − (kE + kb)〈n∞(0)〉 = 0 (S.7.34)

for x = 0. Numerical solutions of this equation can be calculated in a straightforward manner
by truncating the domain of x to a sufficiently large region and solving the resulting (finite)
system of equations via matrix inversion. Moreover, simple closed-form expressions can be
obtained for two special parameter configurations as described in the following.

We first introduce the generating function of the steady-state expected number distribu-
tion G(z) =

∑∞
x=0 z

x〈n∞(x)〉. An ordinary differential equation for G(z) can be obtained by
multiplying S.7.33 with zx and summing over all x [5], which gives

kd(1− z)G′(z) + [kb(z − 1)− kE ]G(z) + kIe
λ(z−1) = 0, (S.7.35)

with the special boundary condition G(1) = 〈N∞〉. The latter stems from the fact that the
expected number distribution at steady state sums up to 〈N∞〉 (as opposed to one).

If we now set λ = kb/kd (i.e. β = 1), the solution of S.7.35 is given by

G(z) =
kI
kE

e
kb
kd

(z−1)
, (S.7.36)

which upon back-transformation yields

〈n∞(x)〉 = 〈N∞〉
λxe−λ

x!
(S.7.37)

with 〈N∞〉 = kI/kE . Dividing S.7.37 by 〈N∞〉 reveals P∞(x), in this case a Poisson distribution
with mean λ = kb/kd.

Another interesting case where a simple closed-form solution of eq. S.7.35 can be found is
when the degradation of molecules inside compartments is negligibly slow (kd = 0). In this
situation, new compartments are generated by the intake process and the birth reaction keeps
producing new molecules in each compartment, until removed by the random exit process. By
setting kd = 0 in S.7.35 we find

G(z) =
kI
kE

eλ(z−1) 1

1− kb(z − 1)/kE
. (S.7.38)

Back-transformation of G(z) yields for the stationary expected number distribution

〈n∞(x)〉 = 〈N∞〉(1− ξ)
x∑
y=0

ξx−yπPoiss(y;λ)

= 〈N∞〉(1− ξ)ξxeλ(1/ξ−1) Γ(1 + x, λ/ξ)

x!
, (S.7.39)

with ξ = kb/(kb + kE), Γ being the upper incomplete Gamma function and 〈N∞〉 = kI/kE
as before. The solution S.7.39 can be also obtained by directly solving eq. S.7.33 recursively.
The resulting distribution becomes more and more skewed as ξ increases (i.e. kb � kE),
reflecting the fact that the birth process operates on average for a longer time span before
the exit event occurs. In the case where newly arriving compartments are initially empty (i.e.
λ=0), the distribution from S.7.39 simplifies to 〈n∞(x)〉 = 〈N∞〉(1− ξ)ξx, which is a geometric
distribution multiplied by the expected total number of compartments 〈N∞〉. As a consequence
of the geometric distribution, P∞(x) = (1 − ξ)ξx can be interpreted as the probability for a
single compartment to produce x molecules before exiting the system. Thus, the parameter ξ
represents the ”success probability” for the next event of a specific compartment to be a birth
reaction. Conversely, the factor (1 − ξ) represents the probability that the next event is the
compartment exit, which therefore ends the lifetime of the compartment in the population.
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S.7.5 Analysis of total mass fluctuations and comparison with a static population

In this section we aim to study the fluctuations of the total population mass. It is important
to realize that this is different from the analysis provided in section S.7.3, which focused on the
statistics of the steady-state expected number distribution 〈n∞(x)〉. We remark that 〈n(x)〉
is an expected quantity that neglects fluctuations across realizations of the compartment pop-
ulation. Correspondingly, its variance only represents the variability of the expected content
across individual compartments. Instead, the total mass M1 =

∑∞
x=0 xn(x) is a random vari-

able dependent on the full stochastic state n. Thus, its fluctuations are adequately described
by the variance Var(M1), i.e.

Var(M1) = 〈(M1)2〉 − 〈M1〉2 =
〈( ∞∑

x=0

xn(x)
)2〉
−
〈 ∞∑
x=0

xn(x)
〉2

. (S.7.40)

In order to better highlight the different contributions of Var(M1), it is useful to compare the
considered model with a static population of compartments, where both the intake rate kI
and the exit rate kE are set to zero. In the latter case, the number of compartments stays
constant at the initial value N(0) = N0, but the chemical birth-death events keep occurring
independently in each compartment with rates kb and kd. For compactness, we will refer to
this situation as ”fixed population”, whereas ”dynamic population” refers to the full model
with non-zero intake- and exit rates.

In Fig. S.1, we compare the expected total mass dynamics of a fixed population comprising
N0 = 100 empty compartments with that of a dynamic population for different choices of
intake parameter. The dynamic case corresponds to compartment rates kI = 1 and kE = 0.01
and is initialized with one empty compartment. To allow for a meaningful comparison, the
average steady-state number of compartments in the dynamic population was chosen to match
the number of compartments in the fixed population, i.e., 〈N∞〉 = kI/kE = 100 = N0. The
convergence towards steady state of the expected total mass 〈M1〉 is slower in the dynamic
scenario because it is limited by the rate at which compartments populate the system. More
precisely, the slowest time scale is set by 1/kE = 100 in the dynamic case, while in the fixed
case it is governed by the inverse of the degradation rate 1/kd = 10.

For all considered values of β, Fig. S.1 shows that the compartment fluctuations of the
dynamic case produce a significantly larger variance Var(M1

∞) with respect to the fixed case,
where only molecular noise is present. Next, we analyse the noise contributions to Var(M1

∞) for
the Poissonian case β = 1, illustrated in the central panel of Fig. S.1. This is especially suitable
because the expected total mass of dynamic- and fixed scenario coincide by construction. The
mass variance of the fixed population is readily obtained by

σ2
fix = Var

(
N0∑
i=1

X∞

)
= N0Var(X∞) = N0

kd
kb
, (S.7.41)

where the steady-state compartment content X∞ is Poisson distributed with mean kb/kd. From
the steady-state solution of the moment equations, it is possible to obtain a compact expression
for Var(M1

∞) also in the dynamic scenario for the choice β = 1. We recall that, in these settings,
the intake distribution πPoiss(x;λ = kb/kd) matches the steady-state realized by the chemical
reactions, thereby leaving the Poisson distribution of X∞ unaffected. Given that the number
dynamics is independent of the compartment contents in this model, it follows that Var(M1

∞)
can be identified as the variance of a compound Poisson process

σ2
dyn = Var

(
N∞∑
i=1

X∞

)
= 〈N∞〉Var(X∞) + Var(N∞)〈X∞〉2

= 〈N∞〉
kb
kd

+ 〈N∞〉
(
kb
kd

)2

= 〈N∞〉〈X2
∞〉, (S.7.42)

where we used the law of total variance and result S.7.26. Comparing the first line of eq. S.7.42
with the fixed case S.7.41, we observe the presence of the additional term Var(N∞)〈X∞〉2, which
stems from the fluctuations of the compartment number at steady state. As a consequence of
Poissonian statistics, we recognize that σ2

dyn/σ
2
fix = 1 + kb/kd = 1 + 10 = 11. This analysis
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shows that compartment events account for the majority of the mass variance, with a ratio
of 10 to 1 in comparison to chemical events for the chosen parameter settings. This value is
confirmed by analysing the standard deviations observed in the central panel of Fig. S.1, which
exhibit a ratio equal to

√
11 ≈ 3.31.

time time time

Figure S.1: Comparison of the expected total mass dynamics of the nested birth-death model
between a fixed compartment population and a dynamic compartment population,
the latter for rescaled intake mean β = λ/(kb/kd) varied as indicated in the three
panels. The fixed scenario corresponds to compartment intake and exit rates set to
zero (kI = kE = 0), while the dynamic scenario corresponds to the choice kI = 1
and kE = 0.01. In all panels and for both scenarios, the birth-death parameters are
set to kb = 1 and kd = 0.1. The fixed-population is initialized with N0 = 100 empty
compartments and the dynamic one with N(0) = 1 empty compartment. Solid lines
and shaded areas represent the average dynamics surrounded above and below by
one standard deviation. The results were obtained with moment equations.

S.8 CASE STUDY: Stochastic model of a coagulation-fragmentation
process

This case study is defined by the transition classes

∅ hI (n;y)−−−−−⇀ [y] hI(n; y) = kIπPoiss(y;λ)

[x]
hE(n;x)−−−−−⇀ ∅ hE(n;x) = kEn(x)

[x] + [x′]
hC(n;x,x′)−−−−−−−⇀ [x+ x′] hC(n;x, x′) = kC

n(x)(n(x′)− δx,x′)
1 + δx,x′

[x]
hF (n;x,y)−−−−−−⇀ [y] + [x− y] hF (n;x, y) = kFxn(x)πF (y|x).

(S.8.43)

Since the first two classes are equivalent to the previous case study, we will focus explicitly on
the treatment of the coagulation and fragmentation transitions.

S.8.1 Moment equations

The total propensity of the random-coagulation class is found to be

HC(n) =
∞∑
x=0

∞∑
x′=0

kC
n(x)(n(x′)− δx,x′)

2
= kC

N(N − 1)

2
, (S.8.44)

where the factor 1/2 accounts for double counting in the case x 6= x′ and arises from the
binomial

(
n(x)

2

)
for x = x′. We find that the total propensity is equal to the coagulation rate

kC multiplied by the number of distinct compartment pairs
(
N
2

)
, which is consistent with a

random coagulation mechanism.
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We recall that the fragmentation transition class is in general defined as

[x]
hF (n;x,y)−−−−−−⇀ [y] + [x− y], (S.8.45)

where we have already substituted the mass-conservation constraint in the right-hand side. The
corresponding propensity function is

hF (n;x,y) = kF gF (x)n(x)πF (y|x). (S.8.46)

Note that gF (x) controls the probability of the ”mother” compartment to undergo a fragmen-
tation event. The probability distribution πF (y|x) expresses the probability that one of the two
fragments has a content equal to y. The distribution πF (y|x) must be symmetric with respect
to y and x− y. In this example, the compartment content is one-dimensional (i.e. x = x), we
choose gF (x) = x and for πF (y|x) a uniform fragment distribution

πF (y|x) =
1

x+ 1
with 0 ≤ y ≤ x, (S.8.47)

which permits the creation of empty daughter compartments too. The corresponding total
fragmentation propensity is equal to

HF (n) =
∞∑
x=0

x∑
y=0

kF gF (x)n(x)πF (y|x)

= kF

∞∑
x=0

xn(x)

x∑
y=0

πF (y|x) = kFM
1. (S.8.48)

The moment equations for this model read

d〈N〉
dt

= kI − kE〈N〉 −
kC
2

(
〈N2〉 − 〈N〉

)
+ kF 〈M1〉

d〈N2〉
dt

= kI(1 + 2〈N〉) + kE
(
〈N〉 − 2〈N2〉

)
+
kC
2

(
〈N2〉 − 〈N〉

)
− kC

(
〈N3〉 − 〈N2〉

)
+ kF

(
〈M1〉+ 2〈NM1〉

)
d〈M1〉

dt
= kIλ− kE〈M1〉

d〈(M1)2〉
dt

= kIλ(1 + λ+ 2〈M1〉) + kE(〈M2〉 − 2〈(M1)2〉)

d〈M2〉
dt

= kIλ(1 + λ)− kE〈M2〉+ kC
(
〈(M1)2〉 − 〈M2〉

)
+
kF
3

(
〈M2〉 − 〈M3〉

)
d〈NM1〉

dt
= kI

(
λ(1 + 〈N〉) + 〈M1〉

)
+ kE(〈M1〉 − 2〈NM1〉)

+
kC
2

(
〈NM1〉 − 〈N2M1〉

)
+ kF 〈(M1)2〉

(S.8.49)
and we employ the Gamma closure scheme on the following third-order moments

〈N3〉 = 2
〈N2〉2

〈N〉 − 〈N
2〉〈N〉

〈N2M1〉 = 2
〈N2〉〈NM1〉
〈N〉 − 〈N2〉〈M1〉

〈M3〉 = 2
〈(M2〉)2

〈M1〉 −
〈M2〉〈M1〉
〈N〉 .

(S.8.50)

Since the total mass M1 is not affected by coagulation or fragmentation events, we find the
equations for 〈M1〉 and 〈(M1)2〉 to be identical to the previous case study in terms of intake
and exit contributions. The derivation of the equations for 〈N〉 and 〈N2〉 is also straightforward
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and resembles closely the treatment of eqs. S.7.16 and S.7.17. Here we explicitly show only the
derivation of the coagulation-fragmentation contributions of d〈M2〉/dt :

d〈M2〉
dt

∣∣∣∣
C,F

=
〈 ∞∑
x=0

∞∑
x′=0

[
(x+ x′)2 − (x)2 − (x′)2]kC n(x)(n(x′)− δx,x′)

2

〉
+
〈 ∞∑
x=0

x∑
y=0

[
y2 + (x− y)2 − x2]kFxn(x)πF (y|x)

〉
= kC

〈 ∞∑
x=0

∞∑
x′=0

[
2xx′

]n(x)(n(x′)− δx,x′)
2

〉
+ kF

〈 ∞∑
x=0

xn(x)

x∑
y=0

2
[
y2 − xy

]
πF (y|x)

〉
= kC

〈 ∞∑
x=0

xn(x)

∞∑
x′=0

x′n
(
x′
)〉
− kC

〈 ∞∑
x=0

x2n(x)
〉

+ 2kF
〈 ∞∑
x=0

xn(x)

[
2x2 + x

6
− xx

2

]〉
= kC

(
〈(M1)2〉 − 〈M2〉

)
+
kF
3

(
〈M2〉 − 〈M3〉

)
. (S.8.51)

Figure S.2: Agreement of the expected dynamics of the second order moment M2 =∑∞
x=0 x

2n(x) between the Gamma-closed moment equations (ODEs) and the es-
timate obtained from stochastic simulations (SSA). Dots and error bars represent
the mean value and one standard deviation above and below the mean. The vari-
ability of 〈M2〉 cannot be reported from the solution of the moment equations
because the equation for 〈(M2)2〉 was not included.

S.8.2 Simulation parameters

In Figures 2E-F in the main paper we used the following choice of parameters

kI = 10 λ = 50 kE = 0.1 kF = 5 · 10−3

and kC takes the values [0.1kF , kF , 10kF ] in the three cases. The initial condition was set to

n0 : n0(10) = 100, n0(x) = 0 ∀x 6= 10

which represents a population comprising 100 compartments with content x = 10. Monte Carlo
estimates have been obtained by averaging the outputs of 104 stochastic simulations, for each
parameter combination. In Fig. S.2 we show the accuracy of the solution for 〈M2〉 obtained in
these settings, next to the estimate from exact stochastic simulations.
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S.9 CASE STUDY: Protein expression dynamics in a cell community

The state space of the compartment content (xG, xP ) is X = [0, 1]×N0, where xG = 1 represents
the binary gene variable in the active state. The protein expression network in each cell is
modelled as

[xG, xP ]
hG
b (n;x)
−−−−−⇀ [1, xP ] hGb (n;x) = kGb (1− xG)n(x)

[xG, xP ]
hG
d (n;x)
−−−−−⇀ [0, xP ] hGd (n;x) = kGd xGn(x)

[xG, xP ]
hP (n;x)−−−−−⇀ [xG, xP + 1] hP (n;x) = kPxGn(x)

[xG, xP ]
hP
d (n;x)
−−−−−⇀ [xG, xP − 1] hPd (n;x) = kPd xPn(x).

(S.9.52)

The communication class for which active cells can induce activation in inactive cells is defined
by

[x] + [x′]
hcom(n;x,x′)−−−−−−−−⇀ [1, xP ] + [1, x′P ] (S.9.53)

where

hcom(n;x,x′) = kcomgcom(x,x′)
n(x)(n(x′)− δx,x′)

1 + δx,x′

with gcom(x,x′) = xG(1− x′G) + x′G(1− xG). (S.9.54)

The content-dependent function gcom ensures the transition to happen only between an active
and inactive cell. This expression for gcom also implies that the cell-cell activation happens
with equal probability among any active or inactive cell, irrespectively of their protein content,
since there is no explicit dependency on xP and x′P .

S.9.1 Moment equations

The total propensity of the cell communication class is found to be

Hcom(n) =
∑
x

∑
x′

kcom

(
xG(1− x′G) + x′G(1− xG)

)n(x)(n(x′)− δx,x′)
2

=
kcom

2

∑
x

∑
x′

(
xG + x′G − 2xGx

′
G)
)
n(x)n

(
x′
)
− kcom

2

∑
x

(
2xG − 2x2

G

)
n(x)

=
kcom

2

(∑
x

xGn(x)
∑
x′

n
(
x′
)

+
∑
x

n(x)
∑
x′

x′Gn
(
x′
))

− kcom

∑
x

xGn(x)
∑
x′

x′Gn
(
x′
)

= kcom

(
NM1,0 − (M1,0)2)

= kcomM
1,0(N0 −M1,0), (S.9.55)

where from the second to third line we have made use of the fact that xG = x2
G, since xG ∈ [0, 1].

The factor 1/2 in the propensity function originates in the same way as in the calculation
of S.8.44. As expected, the total communication propensity equals the rate kcom times the
product of the number of active and inactive cells.

13



The system of moment equations describing the evolution of this model is

d〈M1,0〉
dt

= kcom

(
N0〈M1,0〉 − 〈(M1,0)2〉

)
+ kGb

(
N0 − 〈M1,0〉

)
− kGd 〈M1,0〉

d〈(M1,0)2〉
dt

= kcom

(
N0〈M1,0〉 − 〈(M1,0)2〉

)
+ 2kcom

(
N0〈(M1,0)2〉 − 〈(M1,0)3〉

)
+ kGb

[
N0 − 〈M1,0〉+ 2

(
N0〈M1,0〉 − 〈(M1,0)2〉

)]
+ kGd

(
〈M1,0〉 − 2〈(M1,0)2〉

)
d〈M0,1〉

dt
= kP 〈M1,0〉 − kPd 〈M0,1〉

d〈(M0,1)2〉
dt

= kP
(
〈M1,0〉+ 2〈M1,0M0,1〉

)
+ kPd

(
〈M0,1〉 − 2〈(M0,1)2〉

)
d〈M1,0M0,1〉

dt
= kcom

(
N0〈M1,0M0,1〉 − 〈(M1,0)2M0,1〉

)
+ kP 〈(M1,0)2〉

+ kGb
(
N0〈M0,1〉 − 〈M1,0M0,1〉

)
−
(
kGd + kPd

)
〈M1,0M0,1〉

(S.9.56)

and we employ the Gamma closure scheme on the following third-order moments:

〈(M1,0)3〉 = 2
〈(M1,0)2〉2

〈M1,0〉 − 〈(M1,0)2〉〈M1,0〉

〈(M1,0)2M0,1〉 = 2
〈(M1,0)2〉〈M1,0M0,1〉

〈M1,0〉 − 〈(M1,0)2〉〈M0,1〉.
(S.9.57)

variance-to-m
ean ratio

Expected steady-state number of active cells

time

Expected cell activation dynamics

Figure S.3: On the left, the expected dynamics of the number of active cells M1,0 and its vari-
ability for different values of the communication rate. Results from moment equa-
tions are shown in solid lines and shaded areas, and estimates from stochastic simu-
lation in dots and error bars. The mean value is surrounded above and below by one
standard deviation. On the right, the expected steady-state number of active cells is
plotted as a function of the rescaled communication rate kcomN0/k

G
d . The dashed-

dotted black line shows the variance-to-mean ratio, computed as Var(M1,0
∞ )/〈M1,0

∞ 〉
from moment equations.

S.9.2 Simulation parameters

In Figures 3B-C in the main paper we used for the following choice of parameters

kGb = 0.01 kGd = 0.1 kP = 1 kPd = 0.05

and kcom takes the values [0, 10−3, 2 · 10−3, 5 · 10−3, 10−2, 5 · 10−2]. The initial condition was
set to

n0 : n0([1, 1]) = 1, n0(0) = 99,
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which represents a population comprising 100 cells, one of which is in active state and contains
one protein molecule and the remaining 99 are in inactive state and with empty content. Monte
Carlo estimates have been obtained by averaging the outputs of 103 stochastic simulations, for
each parameter combination. In Fig. S.3 we report the expected cell activation dynamics across
the cell population, which complements Figs. 3B,C of the main paper.

S.10 CASE STUDY: Stem cell population dynamics

Also in this case study, the state space of the compartment content x = (xG, xS) is X =
[0, 1]×N0, where xG = 1 indicates a stem cell and xG = 0 a differentiated cell. The considered
transition classes are

[x]
h+
F

(n;x)
−−−−−⇀ [xG, 0] + [xG, 0] h+

F (n;x) = k+
F xGxSn(x)

[x]
h−
F

(n;x)
−−−−−⇀ [xG, 0] + [1− xG, 0] h−F (n;x) = k−F xGxSn(x)

[x]
hS(n;x)−−−−−⇀ [xG, xS + 1] hS(n;x) = kSxGn(x)

[x]
hE(n;x)−−−−−⇀ ∅ hE(n;x) = kE(1− xG)n(x)

[x] + [x′]
hnf (n;x,x′,y,y′)−−−−−−−−−−⇀ [y] + [y′]

(S.10.58)

with

hnf(n;x,x′,y,y′) = knfxGx
′
G

n(x)(n(x′)− δx,x′)
1 + δx,x′

πnf(y,y
′ | x,x′) (S.10.59)

and outcome distribution is given by

πnf(y,y
′ | x,x′) =


1
2

if y = x, y′G = 1− x′G, y′S = x′S
1
2

if y′ = x′, yG = 1− xG, yS = xS

0 else.

(S.10.60)

The negative-feedback mechanism encoded by the propensity of eq. S.10.59 can be understood
as follows: first, two stem cells are randomly selected from the current state n, as enforced
by the choice gnf(x,x

′) = xGx
′
G. Then, one of the two stem cells is randomly differentiated

by switching xG to zero, as encoded by πnf . Note that the xG-dependence of the propensity
functions determines the selectivity for either stem cells or differentiated cells also for the
remaining transition classes. For instance, the division events can occur only to stem cells,
since their propensities h+

F and h−F would be zero when the reactant cell is a differentiated cell
(i.e. xG = 0). The same is true for hS . Conversely, the death event applies only to differentiated
cells, since hE(n;x) = 0 for stem cells.

Next, we show the computation of the total class propensity for the feedback transition class.
The latter is given by

Hnf(n) =
∑
x,x′

knfxGx
′
G

n(x)(n(x′)− δx,x′)
2

=
knf

2

(∑
x

xGn(x)
∑
x′

x′Gn
(
x′
)
−
∑
x

xGn(x)

)

= knf
M1,0(M1,0 − 1)

2
= knf

(
M1,0

2

)
, (S.10.61)

where the binomial factor reflects that the negative feedback acts between randomly chosen
pairs of stem cells. In particular, the factor 1/2 appearing in the first line of eq. S.10.61
originates from πnf whenever x 6= x′ and from the binomial factor of eq. S.10.59 when x = x′,
in which case πnf gives only one distinguishable outcome and thus contributes with value 1.
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The total propensities for the remaining transition classes of the model are readily computed:

H+
F (n) = k+

FM
1,1

H−F (n) = k−FM
1,1

HS(n) = kSM
1,0

HE(n) = kE
(
N −M1,0)

(S.10.62)

S.10.1 Moment equations

Due to the combined presence of the moment M1,1 and the structure of the feedback class,
the derivation of a closed set of moment equations is more challenging than for the previous
models. This is why we focus on deriving equations for moments directly entering in the total
class propensities, and at the same time to avoid further equations for less relevant popula-
tion statistics which would introduce additional higher order dependencies. From eq. S.10.61
and S.10.62 we see that, together with M1,1, the overall dynamics is also governed by the total
number of cells N and the number of stem cells M1,0. The SDEs for these moments are given
by

dN =
∑
x

(
dR+

F,x + dR−F,x − dRE,x
)

= dR̄+
F + dR̄−F − dR̄E

dM1,0 =
∑
x

dR+
F,x −

∑
x

∑
x′

dRnf,x,x′ = dR̄+
F − dR̄nf

dM1,1 =
∑
x

dRS,x −
∑
x

xS
(
dR+

F,x + dR−F,x
)
−
∑
x

∑
x′

xSdRnf,x,x′ ,

(S.10.63)

where the enumeration of single transitions spans X for all transition classes with exception of
the feedback, where all distinguishable transitions can be written as the iteration over x,x′ ∈ X2

and where x denotes the content of the cell which differentiates. The first two equations have
been rewritten also in terms of the class reaction counters, which better highlight their meaning.
We see how the total number of cells increases by 1 whenever a division event occurs and
decreases by 1 in occurrence of the death of any differentiated cell. On the other hand, the
number of stem cells M1,0 is increased by 1 only when a symmetric division occurs, and is
decreased by 1 as a result of a feedback conversion. On the opposite, M1,0 is left unaffected by
asymmetric divisions.

After taking expectations of S.10.63 and including further equations for some direct moment
dependencies, we obtain the following set of moment equations

d〈N〉
dt

=
(
k+
F + k−F

)
〈M1,1〉 − kE

(
〈N〉 − 〈M1,0〉

)
d〈N2〉

dt
=
(
k+
F + k−F

)(
〈M1,1〉+ 2〈NM1,1〉

)
+ kE

[
〈N〉 − 〈M1,0〉 − 2

(
〈N2〉 − 〈NM1,0〉

)]
d〈M1,0〉

dt
= k+

F 〈M
1,1〉 − knf

〈(M1,0)2〉 − 〈M1,0〉
2

d〈(M1,0)2〉
dt

= k+
F

(
〈M1,1〉+ 2〈M1,0M1,1〉

)
+ knf

〈(M1,0)2〉 − 〈M1,0〉
2

− knf

(
〈(M1,0)3〉 − 〈(M1,0)2〉

)
d〈M1,1〉

dt
= kS〈M1,0〉 −

(
k+
F + k−F

)
〈M1,2〉 − knf

〈M1,0M1,1〉 − 〈M1,1〉
2

d〈M1,2〉
dt

= kS
(
〈M1,0〉+ 2〈M1,1〉

)
−
(
k+
F + k−F

)
〈M1,3〉 − knf

〈M1,0M1,2〉 − 〈M1,2〉
2

(S.10.64)
and we employ the Gamma closure scheme

〈(M1,0)3〉 = 2
〈(M1,0)2〉2

〈M1,0〉 − 〈(M1,0)2〉〈M1,0〉

〈M1,3〉 = 2
〈(M1,2)2〉2

〈M1,1〉 − 〈M
1,2〉〈M1,1〉
〈M1,0〉 .

(S.10.65)

16



For the remaining cross-moments, we use a mean-field approximation. This is understood as
the following substitution

〈MγMξ〉 = 〈Mγ〉〈Mξ〉, (S.10.66)

which means to neglect the correlation between the two moments Mγ and Mξ. We applied
the mean-field approximation on 〈NM1,0〉, 〈NM1,1〉, 〈M1,0M1,1〉 and 〈M1,0M1,2〉. In this
example, one of the effects of such simplification seems to be noticeable from the expected
fluctuations of N and M1,0 in Fig. 3F: the variability predicted by moment equations is smaller
than the error bars obtained by exact stochastic simulations.

S.10.2 Simulation parameters

Figures 3E-F and the parameter reference for figures 3G-H in the main paper correspond to
the following choice of parameters

k+
F = k−F = 5 · 10−3 kS = 10 kE = 0.05 knf = 0.01

The two initial conditions of Fig. 3F are

n0 : n0([1, 1]) = 1, n0(x) = 0 ∀x 6= [1, 1]

and
n0 : n0([1, 1]) = 100, n0(x) = 0 ∀x 6= [1, 1],

which represent a population made either of one or 100 stem cells, each having xS = 1. Monte
Carlo estimates have been obtained by averaging the outputs of 103 stochastic simulations.
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Figure S.4: Empirical distribution of the waiting-time τ until cell division, computed with
stochastic simulations. This corresponds to a model where the cell-cycle factor
xS follows a birth process of rate kS and cell division occurs with rate kFxS . The
parameters have been set to kS = 10 and kF = k+

F + k−F = 0.01, in line with the
choice reported in section S.10.2.
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Multiplying factor

Steady-state number of stem cells

Figure S.5: Steady-state number of stem cells upon variations of different parameters, obtained
from moment equations. The mean value is surrounded above and below by one
standard deviation. The reference parameter values correspond to the choice pro-
vided in section S.10.2.

References

[1] P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding, Statistical models based on counting processes.
Springer Science & Business Media, 2012.

[2] B. Øksendal and A. Sulem, Applied stochastic control of jump diffusions. Springer Science & Business
Media, 2007.

[3] D. Schnoerr, G. Sanguinetti, and R. Grima, “Validity conditions for moment closure approximations in
stochastic chemical kinetics,” The Journal of Chemical Physics, vol. 141, no. 8, p. 084103, 2014.

[4] E. Lakatos, A. Ale, P. D. W. Kirk, and M. P. H. Stumpf, “Multivariate moment closure techniques for
stochastic kinetic models,” The Journal of Chemical Physics, vol. 143, no. 9, p. 094107, 2015.

[5] C. W. Gardiner et al., Handbook of stochastic methods, vol. 3. Springer Berlin, 1985.

18


	Modeling chemical reactions as transition classes
	Implementation of stochastic simulations
	Derivation of the expected moment dynamics
	Conditions for self-contained moment dynamics
	Ito's rule for counting processes
	Multivariate Gamma moment closure for compartment-population models
	CASE STUDY: Nested birth-death process
	Moment equations
	Simulation parameters
	Steady-state moments
	Steady-state distribution
	Analysis of total mass fluctuations and comparison with a static population

	CASE STUDY: Stochastic model of a coagulation-fragmentation process
	Moment equations
	Simulation parameters

	CASE STUDY: Protein expression dynamics in a cell community
	Moment equations
	Simulation parameters

	CASE STUDY: Stem cell population dynamics
	Moment equations
	Simulation parameters


