Supporting Information for

Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers

David Heckmann^{1*}, Anaamika Campeau², Colton J. Lloyd¹, Patrick V. Phaneuf¹, Ying Hefner¹, Marvic Carrillo-Terrazas², Adam M. Feist^{1,3}, David J. Gonzalez², Bernhard O. Palsson^{1,3*}

¹Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA

²Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA

³The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark

* Correspondence should be addressed to David Heckmann or Bernhard O. Palsson.

Email: david.heckmann@hhu.de, palsson@ucsd.edu

Table S1: Correlation between biological replicates and coverage of proteomics samples. The R^2 of protein abundance on log scale between two biological replicates is shown along with the number of unique proteins that were detected in at least one of the two replicates.

strain	R ² between biological replicates	number of proteins detected
WT 1	0.92275	2105
WT 2	0.818324	2066
pgi 1	0.862347	2076
pgi 2	0.928284	2158
pgi 3	0.85155	2161
pgi 4	0.904126	2117
pgi 5	0.912196	2164
pgi 6	0.919021	2017
pgi 7	0.883619	2033
pgi 8	0.884893	2045
ptsHlcrr 1	0.920072	2132
ptsHlcrr 2	0.908835	2138
ptsHlcrr 3	0.92805	2129
ptsHlcrr 4	0.897441	2159
sdhCB 1	0.923292	1934
sdhCB 2	0.920167	2033
sdhCB 3	0.849117	1981
tpiA 1	0.921315	2147

tpiA 2	0.923444	2003
tpiA 3	0.913019	1818
tpiA 4	0.927285	1991

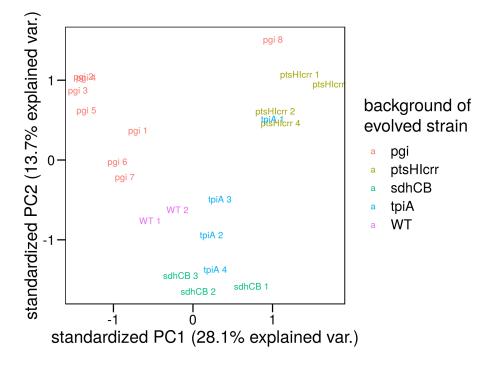


Figure S1: PCA biplot of protein abundances. Protein abundances were log-transformed, centered, and scaled. Only proteins that were detected in all samples were used for this analysis (n = 829).

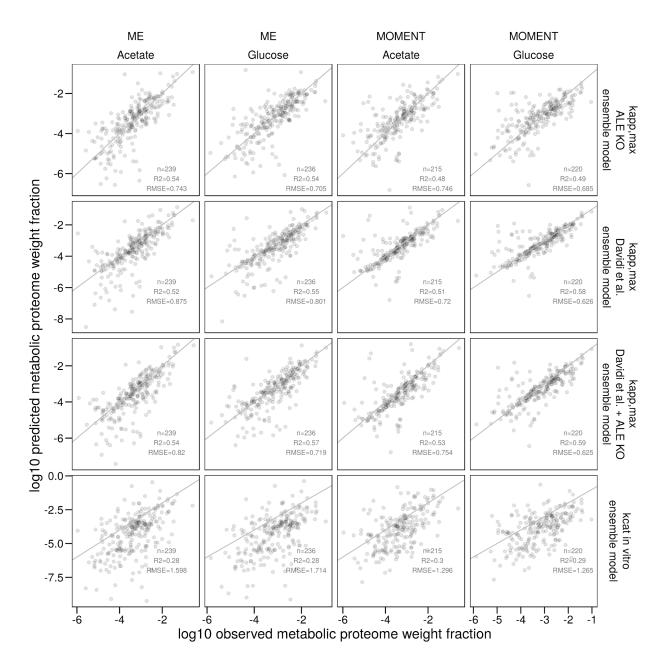


Figure S2: Direct comparison of protein abundance predictions with measured data for different k_{cat} parameterizations. Proteomics data for growth on glucoses and acetate from Schmidt et al.¹ is shown as examples.

Other Supporting Information Files

Dataset S1 (separate file). Protein abundances, MFA fluxes, and $k_{app}s$ (S1A). Table of $k_{app,max}s$ (S1B). Table of k_{cat} in vitro and $k_{app,max}$ extrapolated with machine learning models or the median (S1C). These were used to parameterize mechanistic genome-scale models. Mutation table of the strains used in this study (S1D). Details on all data sets are given in Dataset S1.

SI References

1. Schmidt, A. *et al.* The quantitative and condition-dependent Escherichia coli proteome.

Nat. Biotechnol. 34, 104–110 (2016).