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1 Theoretical Details

1.1 Center of Mass (COM) Separation

In order to tackle the coupled light-matter problem defined by the Pauli-Fierz Hamiltoninan,

given in Eq. (1) of the letter, in dipole approximation, it is useful to switch to a centre-of-

mass (COM) coordinate system. This means that we define ri = Rc + rci, with the COM

explicitly given as Rc :=
∑
imiri∑
imi

. The Hamiltonian can then be re-written in the COM frame

as,

Ĥ =
P̂2
c

2M
+

N∑
i=1

p̂2
ci

2mi

+
N∑
i<j

ZiZj
|r̂ci − r̂cj|

+
M∑
α=1

1

2

[
p̂2α + ω2

α

(
q̂α −

λα
ωα
· R̂
)2]

. (S1)

Note that a priori the dipole operator still contains a COM dependence at this stage. In a

next step, we apply the unitary Power-Zienau-Woolley (PZW) transformation shifting the

COM,

ÛPZW := ei
Qtotλα·R̂c

ωα
p̂α , (S2)

with Qtot :=
∑N

i=1 eZi. By using the Baker-Campbell-Hausdorf formula, one can show that

our PZW transformation obeys the following properties,

ÛPZW p̂αÛ
†
PZW = p̂α (S3)

ÛPZW q̂αÛ
†
PZW = q̂α + i

Qtotλα · R̂c[p̂α, q̂α]

ωα
(S4)

ÛPZW R̂cÛ
†
PZW = R̂c (S5)

ÛPZW P̂cÛ
†
PZW = P̂c + i

Qtotλα · [R̂c, P̂c]

ωα
p̂α, (S6)

S2



which allow to write the shifted Hamiltonian as,

Ĥ ′ =
1

2M

(
P̂c −

M∑
α=1

λαQtot

ωα
p̂α

)2

+
N∑
i=1

p̂2
ci

2mi

+
N∑
i<j

ZiZj
|r̂ci − r̂cj|

(S7)

+
M∑
α=1

1

2

[
p̂2α + ω2

α

(
q̂α −

λα
ωα
·
N∑
i=1

Zir̂ci

)2]
, (S8)

by applying the PZW transformation for each mode α. Afterwards, the original eigenvalue

problem Hψ = Eψ can be simplified to Eq. (2) given in the letter by using a wave function

Ansatz of the form ψ′(Rc, rc, qα) = eikRcΦ′(rc, qα). For one mode α and three bodies, one

obtains the following expression,

[
1

2M

{
k2 +

2Qtotk · λ
ω′

p̂′
}

+
3∑
i=1

p̂2
ci

2mi

+
3∑
i<j

ZiZj
|r̂ci − r̂cj|

+
1

2

[
p̂′2 + ω′2

(
q̂′ − λ

ω′
·

3∑
i=1

Zir̂ci

)2] ]
eikRcΦ′ = EeikRcΦ′. (S9)

In case of neutral systems (i.e. Qtot = 0), the additional interaction of the COM motion with

the quantized field vanishes. Note that in Eq. (S9) it was used that for one mode (i.e. M = 1)

the PZW-shifted eigenvalue problem can be additionally simplified by absorbing 1
M

(
λQtot

ω

)2
in a dressed resonance frequency, ω′ = ω

√
1 + 1

M

(
λQtot

ω

)2
with the corresponding momenta

p̂′ = i
√

ω′

2
(â† − â) and position operators q̂′ =

√
1

2ω′
(â† + â). They obey the usual canonical

commutation relations [q̂′, p̂′] = i. This shift will only be relevant for relatively light charged

particles at low resonance frequencies ω (e.g. fundamental L0-L1 transition of HD+).

1.2 Observables

When calculating observables of the coupled system (λ 6= 0), a priori one cannot neglect

any involved coordinate. However, in practise not always all integrals have to be solved

explicitly. For example, the dipole oscillatory strengths can be calculated from COM relative
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coordinates rci as follows:

Oscjk =
2

1
m1

+ 1
m2

+ 1
m3

(Ej − Ek)| 〈ψj| R̂⊗ 1pt |ψk〉

=
2

1
m1

+ 1
m2

+ 1
m3

(Ej − Ek)| 〈ψ′j|
3∑
i=1

Zier̂ci ⊗ 1pt |ψ′k〉 , (S10)

where in the last step it was used that 〈ψ| R̂ ⊗ 1pt |ψ〉 = 〈ψ′| ÛPZW (R̂ ⊗ 1pt)Û
†
PZW |ψ′〉 =

〈ψ′| R̂⊗ 1pt |ψ′〉 with Eq. (S5).

In contrast, photonic observables have to be transformed back to the length gauge to

be consistent. Hence, an integration over the COM position has to be performed explicitly.

However, due to the cylindrically symmetric setup with respect to the z-axis of the lab frame,

i.e.

〈ψ|1matter ⊗ Ôpt |ψ〉 = 〈ψ′|1matter ⊗ Û(Zc)ÔptÛ
†
PZW (Zc) |ψ′〉 , (S11)

the COM integration is reduced to one dimension only.

The general expectation-value integral in our chosen spherical-cylindrical coordinate sys-

tem (see Sec. 1.3 below) is given as,

〈ψ| Ô |ψ〉 = 〈ψ′| ÛPZW Ô(pci, rci, p̂, q̂)Û
†
PZW |ψ′〉

=
∞∑
n=0

∫ ∞
−∞

dRcx

∫ ∞
−∞

dRcy

∫ ∞
−∞

dRcz

∫ ∞
−∞

dζ

∫ ∞
0

dR

∫ ∞
0

dρ

∫ 2π

0

dφ

∫ π

0

dθ

∫ π

0

dψ

R2ρ sin θe−ikzRczΦ′∗ei
QtotλRczp̂

ω Ôe−i
QtotλRczp̂

ω eikzRczΦ′ (S12)

=
∞∑
n=0

∫ ∞
−∞

dRcz

∫ ∞
−∞

dζ

∫ ∞
0

dR

∫ ∞
0

dρ

∫ 2π

0

dφ

∫ π

0

dθ

∫ π

0

dψ (S13)

R2ρ sin θΦ′∗ei
QtotλRczp̂

ω Ôe−i
QtotλRczp̂

ω Φ′, (S14)

where in the last step it was assumed that Ô does not explicitly depend on the COM

coordinate and positions. Note, if λ = 0 or if Qtot = 0 or if Ô does not depend on q̂ and Pcz,
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the Rcz integral is unity as it was the case for a matter only system.

1.3 Numerical Implementation

1.3.1 Spatial Coordinate Representation

In order to make an exact solution of a quantized three-body system coupled to one cavity

mode feasible, a smart choice of the spatial representation of the matter is pivotal. For this

purpose we follow the approach in Refs. 1,2, which is known to reach excellent numerical

accuracy for matter only calculations of three bodies, with only moderate computational

costs. This means, we represent the COM relative coordinates rci of our three bodies in a

6-dimensional combined spherical and cylindrical coordinate system. Its angular coordinates

{θ, φ, ψ} will eventually be treated analytically, whereas the radial coordinates {R, ρ, ζ} will

be treated numerically after an additional transformation into perimetric coordinates.

To obtain the combined spherical and cylindrical coordinates, one expresses the COM

relative coordinates rci in terms of two vectors X, Y, which are chosen such that rc2−rc1 = X,

rc1 − rc3 = X + Y
2

and rc2 − rc3 = X− Y
2

. Moving the origin of X, Y to the COM, results

in,

rc1 =
m2 + m3

2

M
X +

m3

M
Y (S15)

rc2 = −m1 + m3

2

M
X +

m3

M
Y (S16)

rc3 =
m2 −m1

2M
X− m1 +m2

M
Y. (S17)

In a next step, one expresses X in spherical coordinates and Y in cylindrical coordinates
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with respect to X. The resulting expressions are,2

X =


R sin θ cosφ

R sin θ sinφ

R cos θ

 (S18)

Y =


(ρ cos θ cosψ + ζ sin θ) cosφ− ρ sinψ sinφ

(ρ cos θ cosψ + ζ sin θ) sinφ+ ρ sinψ cosφ

−ρ sin θ cosψ + ζ cos θ.

 (S19)

Using Eqs. (S15)-(S17), the COM relative coordinates rci(R, θ, φ, ρ, ψ, ζ) with ζ ∈ [−∞,∞[,{R, ρ} ∈

[0,∞[, {φ, ψ} ∈ [0, 2π[ and θ ∈ [0, π[ can be expressed in the combined coordinate system,

which are explicitly given as2,3

rc1 =


xc1

yc1

zc1

 =


m2+m3/2

M
R sin θ cosφ+ m3

M

(
(ρ cos θ cosψ + ζ sin θ) cosφ− ρ sinψ sinφ

)
m2+m3/2

M
R sin θ sinφ+ m3

M

(
(ρ cos θ cosψ + ζ sin θ) sinφ− ρ sinψ cosφ

)
m2+m3/2

M
R cos θ + m3

M

(
− ρ sin θ cosψ + ζ cos

)
(S20)

rc2 =


xc2

yc2

zc2

 =


−m1+m3/2

M
R sin θ cosφ+ m3

M

(
(ρ cos θ cosψ + ζ sin θ) cosφ− ρ sinψ sinφ

)
−m1+m3/2

M
R sin θ sinφ+ m3

M

(
(ρ cos θ cosψ + ζ sin θ) sinφ− ρ sinψ cosφ

)
−m1+m3/2

M
R cos θ + m3

M

(
− ρ sin θ cosψ + ζ cos

)
(S21)

rc3 =


xc3

yc3

zc3

 =


m2−m1

2M
R sin θ cosφ− m1+m2

M

(
(ρ cos θ cosψ + ζ sin θ) cosφ− ρ sinψ sinφ

)
m2−m1

2M
R sin θ sinφ− m1+m2

M

(
(ρ cos θ cosψ + ζ sin θ) sinφ− ρ sinψ cosφ

)
m2−m1

2M
R cos θ − m1+m2

M

(
− ρ sin θ cosψ + ζ cos

)
 ,(S22)

and the corresponding transformed volume element becomes

dV = R2ρ sin(θ)dRcxdRcydRczdζdRdρdφdθdψ. (S23)

A sketch of the combined coordinate system is given in Fig. S1.
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Pauli-Fierz Hamiltonian in Dipole Approximation
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Figure S1: Schematics of the coordinate system. We assume the relevant (green) cavity
mode polarized along the z-direction, i.e. λα ‖ z. The spherical coordinates of vector X are
shown in red, whereas the cylindrical coordinates of vector Y are displayed in blue.
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1.3.2 Basis Set Expansion

First of all, λ-coupling is assumed along the z-axis only, i.e.

λα =


0

0

λα

 . (S24)

In a next step, we employ the Ansatz wave function defined in Eq. (3) of the main text,

which gives access to the formally exact solution for Nl, Nm, Npt → ∞. For uncoupled

setups (i.e. λ = 0), l refers to the to the angular quantum number and m to the magnetic

quantum number, which describe the total angular momentum relation L2 = l(l + 1) and

its z-projection Lz = m. Suppose we want to restrict the magnetic quantum number m to

zero, which is a priori a reasonable choice for a matter only or uncoupled systems by setting

Nm = 0.

Due to the choice of λ ‖ z, i.e. by preserving the cylindrical symmetry with respect

to the z-axis of the lab frame, and by using the definition of Wigner D-Matrices Dj
m,k =

e−imφdjm,k(θ)e
−ikψ with Wigner’s (small) d-matrix defined according to standard literature,

one can show that 〈Φl′,m′|H ′pt |Φl,m〉 = δm′,m 〈Φl′,m′|H ′pt |Φl,m〉, since H ′pt does not depend on

φ. In other words, restricting m = 0 is a valid choice even for coupled systems. However,

the coupling of the photons to the matter starts to mix angular states. Hence, one cannot

diagonalize the coupled Hamiltonian anymore for each angular momentum quantum number

l separately, which increases the dimensionality of the coupled problem considerably apart

from the extra photonic degree of freedom. For practical reasons (implementation amount

and computational load), we restrict the basis size to S and P states only, i.e. l < 2, for

all subsequent calculations. Therefore, the Wigner-D matrix wave function Ansatz, given in

Eq. (3) of the main text, can be rewritten in terms of superpositions of even (e) and odd
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(o) wave-functions of the P-states leading to the following orthonormal basis3

Φ′S :=
1√
8π
ϕS(R, ρ, ζ)⊗ |n〉 (S25)

Φ′P
e

:=

√
3√

8π
sin(θ) cos(ψ)ϕe

P (R, ρ, ζ)⊗ |n〉 (S26)

Φ′P0
o

:=

√
3√

8π
cos(θ)ϕo

P0(R, ρ, ζ)⊗ |n〉 (S27)

Φ′P1
o

:= −
√

3√
8π

sin(θ) cos(ψ)ϕo
P1(R, ρ, ζ)⊗ |n〉 . (S28)

The resulting representation of the Pauli-Fierz Hamiltonian takes the following block-diagonal

form:

H ′ = H ′
m + H ′

pt =



HSS(p̂ci, r̂ci) 0 0 0

0 HPP (p̂ci, r̂ci) 0 0

0 0 HP0P0(p̂ci, r̂ci) HP0P1(p̂ci, r̂ci)

0 0 HP1P0(p̂ci, r̂ci) HP1P1(p̂ci, r̂ci)



+



HSS(r̂ci, p̂
′, q̂′) 0 HSP0(r̂ci, q̂

′) HSP1(r̂ci, q̂
′)

0 HPP (r̂ci, p̂
′, q̂′) 0 0

HP0S(r̂ci, q̂
′) 0 HP0P0(r̂ci, p̂

′, q̂′) HP0P1(r̂ci, q̂
′)

HP1S(r̂ci, q̂
′) 0 HP1P0(r̂ci, q̂

′) HP1P1(r̂ci, p̂
′, q̂′)


(S29)

where the first term corresponds to the matter-only problem promoted to the coupled matter-

photon space, e.g. Hij = Hm
ij ⊗ 1pt with matrix elements Hm

ij given in the literature.2 Note

that vanishing matrix entries in the first term are due to parity symmetry of the uncoupled

problem. Vanishing matrix entries in the second term are obtained by analytical angular

integration in combination with the chosen basis set truncation at l = 1. The matrix elements

are explicitly given as
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HSP0,ij = HP0S,ji = −
√

3

3
ωλ

〈{
Z1

[m1 +m3/2

M
R +

m3

M
ζ
]

(S30)

+Z2

[
− m1 +m3/2

M
R +

m3

M
ζ
]

+ Z3

[m2 −m1

2M
R− m1 +m2

M
ζ
]}
q̂′

〉
ij

HSP1,ij = HP1S,ji =

√
3

3
ωλ

〈{
− Z1

m3

M
− Z2

m3

M
+ Z3

m1 +m2

M

}
ρq̂′

〉
ij

(S31)

HSS,ij =

〈
1

2

{
k2z
M

+ p̂′2 + ω′2q̂′2 +
2Qtotkzλ

Mω′
p̂′
}〉

ij

+ (S32)

λ2

2

〈
Z2

1z
2
1c + Z2z

2
2c + Z3z

2
3c + 2(Z1Z2z1cz2c + Z1Z3z1cz3c + Z2Z3z2cz3c)

〉
ij

HPP,ij =

〈
1

2

{
k2z
M

+ p̂′2 + ω′2q̂′2 +
2Qtotkzλ

Mω′
p̂′
}〉

ij

+ (S33)

λ2

2

〈
Z2

1z
2
1c + Z2z

2
2c + Z3z

2
3c + 2(Z1Z2z1cz2c + Z1Z3z1cz3c + Z2Z3z2cz3c)

〉
ij

HP0P0,ij =

〈
1

2

{
k2z
M

+ p̂′2 + ω′2q̂′2 +
2Qtotkzλ

Mω′
p̂′
}〉

ij

+ (S34)

λ2

2

〈
Z2

1z
2
1c + Z2z

2
2c + Z3z

2
3c + 2(Z1Z2z1cz2c + Z1Z3z1cz3c + Z2Z3z2cz3c)

〉
ij

HP1P1,ij =

〈
1

2

{
k2z
M

+ p̂′2 + ω′2q̂′2 +
2Qtotkzλ

Mω′
p̂′
}〉

ij

+ (S35)

λ2

2

〈
Z2

1z
2
1c + Z2z

2
2c + Z3z

2
3c + 2(Z1Z2z1cz2c + Z1Z3z1cz3c + Z2Z3z2cz3c)

〉
ij

HP1P0,ij = HP0P1,ji =
λ2

2

〈
Z2

1z
2
1c + Z2z

2
2c + Z3z

2
3c + (S36)

2(Z1Z2z1cz2c + Z1Z3z1cz3c + Z2Z3z2cz3c)
〉
ij

S10



with

z21c =

(
m2 +m3/2

M

)2

β +
m3(m2 +m3/2)

M2
γ +

(
m3

M

)2

ε (S37)

z22c =

(
m1 +m3/2

M

)2

β − m3(m1 +m3/2)

M2
γ +

(
m3

M

)2

ε2 (S38)

z23c =

(
m2 −m1

2M

)2

β − (m2 −m1)(m1 +m2)

2M2
γ +

(
m1 +m2

M

)2

ε (S39)

z1cz2c = −m2 +m3/2

M

m1 +m3/2

M
β +

(
m2 +m3/2

M
− m1 +m3/2

M

)
m3

M
γ

+

(
m3

M

)2

ε (S40)

z1cz3c =
m2 +m3/2

M

m2 −m1

2M
β +

(
− m2 +m3/2

M

m1 +m2

M
+
m3(m2 −m1)

2M2

)
γ

−m3(m1 +m2)

M2
ε (S41)

z2cz3c = −m1 +m3/2

M

m2 −m1

2M
β +

(
m1 +m3/2

M

m1 +m2

M
+
m3(m2 −m1)

2M2

)
γ

−m3(m1 +m2)

M2
ε, (S42)

where β, γ, ε are defined in spherical-cylindrical coordinates as,

β = b1R
2 (S43)

γ = c1Rζ − c2Rρ (S44)

ε = e1ρ
2 + e2ζ

2 − 2e3ρζ. (S45)

The coefficients contain the analytical evaluation of the angular integrals of the λ2-term,

S11



which amount to the following non-zero values,

b1SS =
1

3
, b1PP = b1P1P1 =

3

15
, b1P0P0 =

3

5
(S46)

c1SS =
1

3
, c1PP = c1P1P1 =

3

15
, c1P0P0 =

3

5
(S47)

cP0P1 = − 3

15
, cP1P0 = − 3

15
(S48)

e1SS =
1

3
, e1PP = e1P0P0 =

3

15
, e1P1P1 =

3

5
(S49)

e2SS =
1

3
, e2PP = e2P1P1 =

3

15
, e2P0P0 =

3

5
(S50)

e3P0P1 = − 3

15
, e3P1P0 = − 3

15
. (S51)

For the λ angular integrals, the resulting ±
√
3
3

was already included in HSP0 and HSP1,

respectively. Analysing the matrix given in Eq. (S29) in terms of S, Peven and Podd, one

notices that the block-diagonal nature of the non-interacting terms remains preserved by

the λ2-term, only broken by mixing of S and Podd states due to the λ-term. Note that one

can show that S-states do not mix via the λ-term for any excited angular momentum states

beyond l = 1. However, this is not necessarily true for λ2 contributions.

1.3.3 Gauss-Laguerre Quadrature for Radial Integrals

So far it was only stated that there is a matrix representation of the coupled Hamiltonian,

but it was not yet specified how to treat the radial coordinates R, ζ, φ numerically. For

this purpose, a coordinate transformation into a hi-scaled perimetric coordinate system of

the following form is performed in a first step, where

ζ =
(x− y)(x+ y + 2z)

4(x+ y)
(S52)

R =
x+ y

2
(S53)

ρ =

√
xyz(x+ y + z)

x+ y
(S54)
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with new volume element2

dV = h1h2h3 sin(θ)(x̃+ ỹ)(x̃+ z̃)(ỹ + z̃)dRcxdRcydRczdx̃dỹdz̃dφdθdψ, (S55)

and x̃ := h1x, ỹ := h2y, z̃ := h3z. The scaling factors hi will later be used to adjust the

radial grid to the spatial extend of simulated syste. In a next step, the orthonormal basis

given in Eqs. (S25)-(S28) is rewritten as,

ϕS(R, ρ, ζ) =
Nmatter∑
i=1

Nmatter∑
j=1

Nmatter∑
k=1

NSijkFijk(x̃, ỹ, z̃) (S56)

ϕe
P (R, ρ, ζ) = R(x̃, ỹ, z̃)

Nmatter∑
i=1

Nmatter∑
j=1

Nmatter∑
k=1

NPijkR
−1(h1xi, h2yj, h3zj)

−1Fijk(x̃, ỹ, z̃)(S57)

ϕo
P0(R, ρ, ζ) =

Nmatter∑
i=1

Nmatter∑
j=1

Nmatter∑
k=1

NP0ijkFijk(x̃, ỹ, z̃) (S58)

ϕo
P1(R, ρ, ζ) = R(x̃, ỹ, z̃)

Nmatter∑
i=1

Nmatter∑
j=1

Nmatter∑
k=1

NP1ijkR
−1(h1xi, h2yj, h3zj)Fijk(x̃, ỹ, z̃),(S59)

where a regularization factor R(x, y, z) = ρR =

√
xyz(x+y+z)

2
was introduced in agreement

with the literature.3 It suppresses singularities of the matter-only Hamiltonian, which may

cause numerical difficulties. However, its only practical relevance is restricted to radial mo-

mentum operators, which do not appear in the coupling Hamiltonian and thus R eventually

cancels. The newly introduced scaled Lagrange function Fijk(x̃, ỹ, z̃) is defined as,

Fijk(x̃, ỹ, z̃) = (Nijkh1h2h3)
−1/2f̃i(x̃/h1)f̃j(ỹ/h2)f̃k(z̃/h2), (S60)

with

Nijk = (h1xi + h2yj)(h1xi + h3zk)(h2yj + h3zk). (S61)
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The Lagrange-Laguerre functions are defined as,

f̃i(u) := (−1)iu
1/2
i

LNmatter(u)

u− ui
e−u/2 (S62)

with LN the Laguerre polynomial of degree N with roots ui and Lagrange property fi(uj) =

(λNi )−1/2δij. The coefficients λNi can be chosen to fulfill the Gauss-Laguerre quadrature

approximation

∫ ∞
0

G(u)du ≈
N∑
i=1

λNi G(ui) =
N∑
i=1

hλNi G(uih). (S63)

Notice that for the formation of singlet or triplet states, the matter-only wave functions

in Eqs. (S56)-(S59) can be (anti)-symmetrized by proper permutation of the perimetric

coordinates (see Ref. 3). Eventually, the matrix elements given in Eqs. (S31)-(S37) assume

a simple form,

HSS = δii′δjj′δkk′HSS(h1xi, h2yj, h3zk) (S64)

HPP = δii′δjj′δkk′HPP (h1xi, h2yj, h3zk) (S65)

HP0P0 = δii′δjj′δkk′HP0P0(h1xi, h2yj, h3zk) (S66)

HP1P0 = HP0P1 = δii′δjj′δkk′HP1P0(h1xi, h2yj, h3zk) (S67)

HP1P1 = HPP = δii′δjj′δkk′HP1P1(h1xi, h2yj, h3zk) (S68)

HSP0 = HP0S = δii′δjj′δkk′HSP0(h1xi, h2yj, h3zk) (S69)

HSP1 = HP1S = δii′δjj′δkk′HSP1(h1xi, h2yj, h3zk), (S70)

by using the orthonormality property of Fijk for the perimetric volume element in Gauss-

approximation3

∫ ∞
0

dx̃

∫ ∞
0

dỹ

∫ ∞
0

dz̃h1h2h3(x̃+ ỹ)(x̃+ z̃)(ỹ + z̃)Fijk(x̃, ỹ, z̃)Fi′j′k′(x̃, ỹ, z̃) = δii′δjj′δkk′ .(S71)
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Nijk = 1 is implied from the normalisation condition. Hence, the original eigenvalue problem

given in Eq. (S9) is now discretized and numerically accessible by solving

H ′c′ = Ec′, (S72)

for E and c.

2 Simulation Details

2.1 Input Parameters

For all He and HD+ simulations, the following basis set size was chosen: Npt = 6, Nl = 1,

Nm = 0, Nmatter = 12. For H+
2 the matter grid was slightly increased and combined with a

reduce photon number: Npt = 5, Nl = 1, Nm = 0, Nmatter = 16. Therefore, for each input

parameter combination a Hamiltonian matrix of size 414722 for distinguishable particles

(HD+), 216002 for He and 422402 for H+
2 had to be diagonalized. The eigenvalue problem

was implemented in the in-house LIBQED python code and the high-performance ELPA

library4 was used for the exact numerical diagonalization.

The particle masses were set according to literature,3,5 i.e. He: m1 = 1, m2 = 1,

m3 = 7294.2618241, HD+: m1 = 1836.142701, m2 = 3670.581, m3 = 1 and H+
2 : m1 =

1836.142701, m2 = 1836.142701, m3 = 1. Corresponding scaling values for the radial

Lagrange-Laguerre grid were set to the following values, which were motivated by matter-

only considerations in the literature:2 He: h1 = 0.8, h2 = 0.8, h3 = 0.4, HD+: h1 = 0.16,

h2 = 0.16, h3 = 1.4 and H+
2 : h1 = 0.33, h2 = 0.33, h3 = 2.0. The different scaling values

account for the difference in the spatial localisation of the constituents and thus allow to

reach high numerical accuracy with a relatively coarse radial grid.
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2.2 Convergence and Numerical Tests

Multiple explicit convergence/ sanity checks were perform to ensure that finite basis set

errors or implementation mistakes do not spoil the results. Matter-only energy eigenvalues

were compared with reference calculations from literature given in Tab. S1. For He, the

λ2-scaling of the ground-state could be compared with QEDFT calculations with photon

OEP accuracy in the Born-Oppenheimer limit, which indicates an agreement on the same

accuracy level as one expects from the previous matter-only considerations (see Fig. S1). All

QEDFT simulations were performed with the OCTOPUS code.6 Note that highly accurate

simulations of ground-state nuclear contributions in QEDFT would be very challenging to

obtain.7

Last but not least, the Thomas-Reiche-Kuhn sum rule was well preserved for He, HD+

and H+
2 , which implies that there is no fundamental implementation error present. Moreover,

all observables were consistent with theory and particularly in agreement with the JC model.

This offers an additional sanity check of the numerical results (see main section of the

manuscript).
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Table S1: Despite having a substantially smaller radial matter grid available
for our coupled simulations compared with matter-only reference data, our grid
allows to reach millihartree accuracies for the absolute energy eigenvalues and
orders of magnitude smaller values for corresponding energy-differences. (*)
Notice that the 2P(odd) state for H+

2 corresponds to the dissociation limit.2 In
other words, there are no dipole allowed bound state transitions for H+

2 and a
continuum of allowed transitions arises beyond this energy value.

Lowest matter-only energy eigenvalues [H]

He Reference1,3 Nmatter = 12

1S(even) -2.9033045555597 -2.90330437154
2S(even) -2.145678586051 -2.14567817793
2P(odd) -2.1235456525895 -2.12320490110

HD+ Reference8 Nmatter = 12

1S(even) -0.59789796860903 -0.59757212
2P(odd) -0.59769812819221 -0.59737196
2S(even) -0.58918182955696 -0.58702708

H+
2 Reference2 Nmatter = 16

1S(even) -0.597139063121 -0.596973
2S(even) -0.58715567914 -0.585948
2P(odd)∗ -0.4990065652928∗ -0.498039∗
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Figure S2: Cutting the basis set expansion for angular momentum quantum numbers l > 1,
may introduce significant numerical errors for stronger couplings. In order to check the
validity by allowing e.g. l = 2, the code complexity of the implementation would be more
than doubled. Therefore, we decided to use an alternative route. The comparison of the
the He ground-state energy shift with results from QEDFT simulations with photon OEP9

indicates that inaccuracies from l < 2, are on the order of milihartree or below, which is in
line with the accuracy reached for the absolute matter-only energies given in Tab. S1. As it
is the case for matter-only values, one expects considerable smaller relative errors in terms
of energy differences.

3 Results: Additional Observables

3.1 He

Figs. S3a - S3b show the parahelium dispersion curves with respect to the mode occupation

〈n̂〉 = 〈â†â〉 and wave-function overlap between the exact solution and the JC model. Notice,

that the ∆E-values in the last figure are obtained from the JC model (i.e. based on matter-

only considerations) and not from the exact diagonalisation of the coupled system. The

mode occupation (a) clearly highlights the one- to five-photon lines (replica) that appear in

our simulations (we have chosen Npt = 6 in these simulations). With each further Fock-basis
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state in our simulation we would get a further photon line. In (b) we see that for the standard

upper and lower polaritons the JC model is highly accurate even on the wave-function level,

while the higher photon-replicas are not well captured at resonance.

(a) (b)

Figure S3: Parahelium polaritonic dispersion curves in a cavity. The vertical line indicates
the 2S-2P resonance where λ = 0.057 was set. Horizontal lines indicate the splitting of the
lowest two polaritons. Notice that

√
ω
λ

was kept fix, i.e. the coupling strength g ∝ ω~. In (a)
the color bar indicates the photonic observable 〈n̂〉, whereas in (b) the wave-function overlap
between our exact calculation and the corresponding JC model is shown.

3.2 HD+

In Fig. S4 a zoom of the dispersion relations given in the main section is shown to visualize

dressing effects, caused by dipole self-interaction, and the shift of the resonance frequency

due to the non-zero net-charge. In Fig. S5a the impact of different finite COM velocities on

the oscillator strength is shown at resonance condition. The break-down of the JC model at

finite COM velocities for charged systems is visualised in Figs. S5b and S5c. They indicate

that the relatively high agreement between exact and JC wave function for bright states at

kz = 0 breaks down at finite velocities. For such systems one expects for any observable,

which is calculated from JC states, to be error-prone at finite COM velocities.
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Polaritonic Dispersion for Rotational Transition of HD+ Ion

non-rel. ref.* λ=0 error

ΔEm 0.00019984… 0.00020016 3.19E-07

�Em (⌫ = 0, l = 0) ! (⌫ = 0, l = 1)

e
pd

!c

� = 0

ω-shift

λ2

� 6= 0, kz = 0

~�

~kz

V. I. Korobov Phys. Rev. A 74 052506 (2006)

Schaefer et al. Phys. Rev. A 98.4 (2018) 043801

Figure S4: Visualization of the dressed polaritonic dispersion relation of HD+ in a cavity
with a frequency centered around the fundamental ro-vibrational transition in atomic units.
The shifts are caused by dipole self-interaction contributions (∆E-shift) and COM influence
for non-zero net-charge ~ω-shift.
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(a)

(b) (c)

Figure S5: In (a) we consider the HD+ resonant case for ∆E at λ = 0.01 with respect to the
kinetic energy Ekin of the COM. While the spectrum is not changed (up to numerical inac-
curacies for higher-lying states) the COM motion (a) redistributes the oscillator strengths.
Notice that the grey area indicates less reliable eigenvalues, which are not converged for the
chosen photon number basis with Npt = 6. In (b) and (c) the HD+ polaritonic dispersion
curves for kz = 0 and kz = 1 are shown with respect to the wave-function overlap between
our exact calculations and the corresponding JC model. The black vertical line indicates
the 2S-2P resonance condition ~ω and the purple vertical line indicates the corresponding
frequency predicted by the JC model that is missing the frequency dressing. Notice that the
energy eigenvalues shown in (b) and (c) are determined by the JC model and not by the
exact diagonalisation of the coupled problem. Horizontal lines indicate the splitting of the
lowest two polaritons.
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3.3 H+
2

Similarly to HD+, we performed simulations for H+
2 at different COM velocities (see Figs. S6a

- S6b). In contrast to HD+, the frequencies are scanned around the 1S-2P transition,

which corresponds to the dissociation limit H+
2 → H + p. This adds additional complexity

to the interpretation of the computed dispersion relations. One needs to consider that a

continuum of dipole-allowed transitions emerges beyond the dissociation limit. However,

this cannot be represented on our finite radial grid, which is scaled to reproduce bound-state

properties optimally. For this reason, one observes a discrete spectrum of dipole allowed (red)

energy levels beyond the dissociation limit. However, there are two ways to identify truly

discrete (i.e. bound) peaks in our discretized continuum. First, one can calculate the proton-

proton distances for each excited state to identify potentially bound states (see main section).

Second, bound excitations are invariant with respect to changes of the radial basis set and

the corresponding scaling parameters, whereas the discrete continuum reacts very sensitively.

Based on these considerations, we could distinguish the bound states, which are shown in

the main section, from continuum states composed of a H-atom and a free proton coupled

to the cavity. With the latter method one can also identify the dissociation energy limits,

i.e. when increasing the scaling factors of the radial grids one observes an accumulation

of eigenvalues at the dissociation energies,2 while the newly discovered bound polaritonic

states remain invariant. Similarly to the main section, in Fig. S7 the proton-proton distance

vs. energy plot is shown for the previously identified bound states. However, for this figure

we assumed an infinite mass for the nuclei. Qualitatively, the system behaves very similar

compared with the results for finite proton masses. Overall, the proton-proton distances

of the bound states are slightly reduced and some of the excitation energy differences are

moderately shifted compared with the finite mass reference. Nevertheless, the appearance of

bound states below and above the dissociation limit remains preserved in the infinite-mass

limit.

Aside from that, one can also investigate the bound 1S-iS transitions below the dissoci-
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ation limit with respect to different COM velocities. Our simulations for H+
2 confirm that

a finite COM motion of a charged molecule indeed leads to an increased dipole-transition

probability, as it was discussed for HD+ in the main section.

(a) (b)

Figure S6: Dispersion relations for the H+
2 molecule with singlet nuclear spin configuration

in a cavity. The frequencies are centered around the dissociation energy of the bare matter

system. It is assumed that
√
~ω
λ

= const, i.e. the coupling strength ∝ ω, and λ = 0.057
at resonance with the dissociation energy. The oscillator strength color bar is chosen to
visualize changes arising from finite COM velocities in a relatively weak regime. The COM
motion was set to Ekin = 0 for (a), whereas for (b) a non-vanishing Ekin = 0.37 [eV] was
chosen, which is still in the non-relativistic limit, i.e. k ≈ 0.072c. The vertical dotted line
indicates the dissociation resonance condition.
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Figure S7: Quantized (i.e. bound) proton-proton distances for H+
2 with respect to ground-

state energy differences ∆E and corresponding oscillator strength in the infinite proton mass
limit. The blue dots correspond to dressed bare matter states whereas red dots indicate the
emerging bright photon replicas, which are absent without a cavity. The cavity frequency is
ω = 2.15 eV (dashed vertical line) with λ = 0.051 and zero COM motion. The green area
indicates energy ranges beyond the p+-dissociation limit according to matter-only simula-
tions.
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