Figure 1. Effects of hWJ-MSC on innate immunity in sciatic nerve-injured mice. (A, B, C) The absolute number of macrophages, NKs, and DCs in blood, spleen, LNs, and nerve-infiltrating cells. Immune cells in the two groups (N=3) were harvested and analyzed using flow cytometry on POD7, 15, 21, and 35. The cells were stained to identify CD11b $^+$ macrophages, NK1.1 $^+$ NKs, and CD11c $^+$ DCs. The statistical data were represented as the mean \pm SD. *P < 0.05. Figure 2. Effects of hWJ-MSC on adaptive immunity in sciatic nerve-injured mice. (A, B, C) The absolute number of CD4 $^+$ T, CD8 $^+$ T, and B cells in blood, spleen, LNs, and nerve-infiltrating cells. Immune cells in the two groups (N=3) were harvested and analyzed using flow cytometry on POD7, 15, 21, and 35. The cells were stained to identify CD4 $^+$ T, CD8 $^+$ T, and CD19 $^+$ B cells. The statistical data were represented as the mean \pm SD. *P < 0.05. Figure 3. Effects of hWJ-MSC on Treg cells in sciatic nerve-injured mice. The absolute number of regulatory T cells (Tregs) in blood, spleen, LNs, and nerve-infiltrating cells. Tregs in the two groups (N=3) were harvested and analyzed using flow cytometry on POD7, 15, 21, and 35. The cells were stained to identify CD4+CD25+FoxP3+ Tregs. The statistical data were represented as a mean \pm SD. *P < 0.05. **Figure 4. Anti-CD25** antibody administration eliminated the hWJ-MSC-mediated functional recovery in hindlimbs. (A) An anti-CD25 antibody worsened the functional recovery of the five-toe spread reflex. hWJ-MSC ($5x10^5$) in 50 μl were added to the space created in the musculature of each mouse. Progressive chart of the percentage of the pre-transection five-toe spread distance measured over time after the division of the sciatic nerve in the anti-CD25- and isotype-treated groups. The differences between the mean \pm SD of the two groups were significant (P value < 0.05, one-way ANOVA; anti-CD25 vs isotype control, P = 0.01; Tukey's test). The average five-toe spread in the normal mouse group was 9.811 \pm 0.057 mm. (B) The anti-CD25 antibody worsened gait stance and movement. The angles were measured in both groups after transection surgery. The mean \pm SD values were significantly different in the two groups (P value < 0.05, one-way ANOVA; anti-CD25 vs isotype control, P = 0.04; Tukey's test). The average angle of the normal mouse group was 110.0° \pm 0.72°. Figure 5. Treg administration improved the functional recovery of the sciatic nerve. (A) CD4+CD25+ Tregs (Treg) were isolated with a purity of >90% from naïve mice using a mouse CD4+CD25+ regulatory T cell isolation kit and an autoMACS instrument. CD4+CD25- effector T cells (Teff) were isolated with a purity of >90% using an autoMACS instrument. Tregs were co-cultured with VPD-450-labeled effector T cells under anti-CD3 (2 μ g/ml) and anti-CD28 (2 μ g/ml) stimulation for 3 days before analysis using flow cytometry. The difference between the mean \pm SD values of the Treg mixture (0.25~2:1) and Teff (0:1) groups was significant in all cases (P < 0.005, Student's t test). (B) Tregs promoted the functional recovery of the five-toe spread reflex. Isolated Tregs (5x105) with a purity of >90% were added to the space created in the musculature of each mouse. Progressive chart of the percentage of the pre-transection five-toe spread distance measured over time after the division of the sciatic nerve in the buffer and Treg groups. The differences between the mean \pm SD values of the two groups were significant (P value < 0.05, one-way ANOVA; Treg vs buffer control, P = 0.02; Tukey's test). The average five-toe spread in the normal mouse group was 9.950 \pm 0.158 mm. (C) Tregs promoted gait-stance and movement improvement. The angles were measured in both groups after the transection surgery. Comparison of the mean \pm SD values in the two groups revealed the presence of a significant difference (P value < 0.005, one-way ANOVA; Treg vs buffer control, P = 0.01; Tukey's test). The average angle of the normal mouse group was 122.5° \pm 2.89°. Figure 6. Quantification of hWJ-MSC-derived cytokine expression. The expression of mRNAs for Tregassociated cytokines, such as TGF- β , IL-10, IL-4, and IL-35 (which are composed of EBI3 and p35), in hWJ-MSC and fibroblasts was quantified using qPCR. The levels of expression of cytokines were was normalized to that of GAPDH. The difference between the mean \pm SD values of the hWJ-MSC and fibroblast groups was significant (P < 0.005, Student's t test). Supplementary Figure 1. hWJ-MSC promoted the functional recovery of injured and repaired sciatic nerves in the extremities. (A) hWJ-MSC accelerated the functional recovery of the five-toe spread reflex. Progressive chart of the percentage of the pre-transection five-toe spread distance measured over time after the division of the sciatic nerve in the buffer and hWJ-MSC groups. The differences between the mean \pm SD of the buffer and hWJ-MSC groups were significant (P value < 0.0001, one-way ANOVA; buffer vs hWJ-MSC, P = 0.0001; Tukey's test). The average five-toe spread in the normal mouse group was 9.911 \pm 0.04832 mm. (B) hWJ-MSC restored normal gait stance and movement. The angles were measured in the buffer and hWJ-MSC groups for up to 293 days after the transection surgery. Comparison of the mean \pm SD values in the two groups revealed the presence of a significant difference (P = 0.0008, one-way ANOVA; buffer vs hWJ-MSC, P = 0.0030; Tukey's test). The average angle of the normal mouse group was 128.0° \pm 0.8376°. Supplementary Figure 2. Total absolute number of immune cells in blood, spleen, LNs, and nerveinfiltrating cells between the buffer and hWJ-MSC groups over time. Immune cells in the two groups (N=3) were harvested and analyzed using flow cytometry on POD7, 15, 21, and 35. The statistical data were represented as the mean \pm SD. *P < 0.05. Supplementary Figure 3. The absolute number of lymphocytes, monocytes, and granulocytes in blood between the buffer and hWJ-MSC groups over time. Blood cells in the two groups (N=3) were harvested and analysed using flow cytometry on POD7, 15, 21, and 35. The statistical data were represented as the mean \pm SD. *P < 0.05. Supplementary Figure 4. Pro-inflammatory cytokine expression. Blood serum, LNs, and anastomosed sciatic nerves in the buffer and hWJ-MSC groups (N=3) were harvested on POD7 and 15. The cytokine expression of TNF- α , IL1 β , IL-2, IFN- γ , and IL17A was analyzed using ProcartaPlex Immunoassays and Luminex instrument platform. The statistical data were represented as the mean \pm SD. *P < 0.05. Supplementary Figure 5. Anti-inflammatory cytokine expression. Blood serum, LNs, and anastomosed sciatic nerves in the buffer and hWJ-MSC groups (N=3) were harvested on POD7 and 15. The cytokine expression of IL-4 and IL-10 was analyzed using ProcartaPlex Immunoassays and Luminex instrument platform. The statistical data were represented as the mean \pm SD. *P < 0.05. | Blood-
Treg | Buffer | hWJ-MSC | |----------------|------------------|-------------------| | POD 7 | 1224 ± 233.4 | 117061 ± 53390 | | POD 15 | 13330 ± 7642 | 31959 ± 10710 | | POD 21 | 23112 ± 446.7 | 27566 ± 1261 | | POD 35 | 55985 ± 18662 | 147374 ± 26620 | | Spleen-
Treg | Buffer | hWJ-MSC | |-----------------|----------------------|---------------------| | POD 7 | 2151000 ± 37634 | 1844000 ± 175099 | | POD 15 | 1074000 ± 53108 | 1533000 ± 210611 | | POD 21 | 3303000 ± 104629 | 2845000 ± 242526 | | POD 35 | 2580000 ± 26508 | 3020000 ± 17068 | | LNs-
Treg | Buffer | hWJ-MSC | |--------------|-------------------|----------------| | POD 7 | 84991 ± 31172 | 447631 ± 80008 | | POD 15 | 65129 ± 20588 | 134008 ± 45827 | | POD 21 | 53685 ± 6745 | 113051 ± 22955 | | POD 35 | 169513 ± 9513 | 286464 ± 18002 | | Nerve-
Treg | Buffer | hWJ-MSC | |----------------|---------------------|--------------------| | POD 7 | 0.6482 ± 0.5526 | 29.91 ± 9.781 | | POD 15 | 11.56 ± 3.889 | 48.71 ± 17.02 | | POD 21 | 1.333 ± 0.3333 | 13.73 ± 0.4807 | | POD 35 | 8.33 ± 1.33 | 13.03 ± 2.421 | Supplementary Figure 6. The absolute number (mean \pm SD) of Tregs in blood, spleen, LNs, and nerve-infiltrating cells over time between the buffer and hWJ-MSC groups.