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EXPERIMENTAL PROCEDURES 
Heme-agarose affinity purification and mass spectrometry of neuronal lysates. Primary cortical neurons 

were prepared either
 
from male and female 14-day-old foetuses of the BALB/c mouse

 
strain bred in-

house. The isolated neocortex
 
of embryos were gently dissociated to release the neurons, which

 
were 

washed twice in Neurobasal medium (GIBCO, Carlsbad, CA)
 
supplemented with 10% foetal calf serum. 

Cell suspensions were
 
plated on poly-L-lysine-coated 35-mm plates at a density of

 
1 x 10

6
 cells per dish 

as previously (1). After attachment of the cells, the plating medium
 
was changed to serum-free culture 

medium containing 96% (v/v) Neurobasal
 
medium (GIBCO), GlutaMAX (2 mM), 2% B-27 supplement 

(GIBCO/Invitrogen,
 
Paisley, UK), streptomycin (100 µg/ml) and penicillin (100 U/ml).

 
Viability of the 

cells was estimated by the trypan blue exclusion
 
assay and typically was around 85%. After 5 days, 

cytosine arabinoside
 
(10 µM) was added to the culture medium for 3 days to stop proliferation

 
of glial 

cells or fibroblasts. The cells were grown in a humidified
 
incubator at 37° C (95% room air/5% CO2). 

After 12 days in culture, neurons displayed fully developed network of projections.  

Neuronal lysates were screened for possible heme-binding proteins using a modification of a previously 

published heme-agarose affinity (2). Binding of target proteins to heme-agarose was performed as 

previously (3), with modifications, Fig. S1B, that minimise pulling down proteins that bind to the heme-

agarose resin non-specifically. The affinity chromatography method utilizes an agarose matrix with 

immobilized heme (immobilization is accomplished through the propionic acid group of heme (4), Fig. 

S1A) to identify and purify proteins that bind to the beads. However, heme can bind non-specifically to 

proteins. Thus, an additional step was included where a solution of hemin was added as a competitor 

(Fig. S1B). Briefly, 100 μl of heme-agarose (Sigma-Aldrich) was washed three times in 1 ml of 100 

mM Na/K phosphate (pH 6.0) and 200 mM NaCl, and centrifuged at 750 × g for 5 min. Heme-agarose 

was incubated with 200 μl of cell lysate at room temperature for 2 hours with gentle mixing. To remove 

unbound proteins the beads were washed three times with the same buffer used for the binding step, 

pellets containing the beads were harvested by centrifugation (750×g, 5 min) and the supernatant 

discarded. The agarose-heme beads with proteins bound after the first incubation were re-suspended in 

binding buffer and 100 nM hemin (a competitor) was added to the suspension. The second incubation 

was performed for 2 hours at room temperature with gentle mixing. During this stage, proteins were 

displaced from the heme-agarose beads as they bind to hemin in solution. Finally, the beads were 

removed by centrifugation and the supernatant containing candidate heme-bound proteins was analyzed 

by SDS‐PAGE followed by mass spectrometry. Using this approach, only proteins that were displaced 

from the agarose beads to bind specifically to the (heme) competitor (i.e. more likely to be bona fide 
heme binding proteins) were subjected to proteomics analysis, Fig. S1C. Sepharose 4B (Sigma-

Aldrich), which is an agarose bead without heme attached, was used as a non-specific binding control.  
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For mass spectrometry analyses, SDS-PAGE gels were sliced, de-stained, dehydrated, and digested with 

trypsin (Promega) either overnight at 30 °C or for 3 hours at 37 °C. Tryptic peptides were extracted 

using 0.2% trifluoroacetic acid, solubilized in 5% formic acid, and analyzed by LC-MS/MS using a 

nanoLC system (CapLC, Waters) interfaced to a QTof hybrid mass spectrometer (Waters). Mass 

spectrometry data were acquired using Masslynx 4.0 with automatic precursor ion selection for double 

and highly charged ions. Peptide spectra were processed by Proteinlynx software identified though 

comparison to the nonredundant SwissProt database (ftp://us.expasy.org/databases/) using the 

MASCOT program (Matrix Science). Protein and peptide identification was validated using Scaffold 

(Proteome Software Inc.). Proteins were identified using the following settings: 50% peptide and 50% 

protein probabilities with convincing spectra (stringency settings were low due to the expected low 

abundance of proteins in the sample from the binding assay with free heme as a competitor).  

Data Availability. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE (5) partner repository with the dataset identifier PXD019887 and 

10.6019/PXD019887. 

 

Table S1. Axial ligation (light blue), Soret and Q-band absorption maxima and high-frequency 
vibrational modes (grey) found in various heme-binding PAS domain proteins. 

 
Protein 

 
Axial 

ligands 

 
Ferric 

 
Fe(II)-CO 

    
Ref. 

Soret Q bands Soret Q bands v4 v3 v2  

hERG3(PAS) Cys/His 420, 370 517, 550, 652 421 540, 569 1373 1502 1553 

1585 

This work 

Clock PAS-A Unknown 412 535,565 420 540, 570 1373 1502 1583 (6) 

NPAS2-PASA Cys/His 412 538 420 530, 568 1373 1474 

1490 

1504 

 (7,8) 

NPAS2 PAS-B His/? 419 536 420 

426 

536, 571 

530, 561 

1373 1468 

1502 

1550 

1581 

(9) 

mPer2 PAS-A Cys/? 421 536 420 539 565 1372 1470 

1501 

1553 

1585 

(10) 

mPer2 PAS-B Unknown 412 536, 564, 630 -  -   (11) 

EcDOS PAS His/H2O 416 530, 564 423 540, 570 1370 1496 1581 (12-14) 

FixLN His 412 543, 579, 604 425 545, 576 1372 1490  (15) 

 
 
Table S2. Crystallographic data and refinement statistics, values in parentheses are for the outer 
shell. 
 

Data collection hERG3 PAS domain 
Space group P43 21 2 

Cell dimension 

a, b, c (Å) α β γ (°) 

32.78, 32.78, 200.68, 90.0, 90.0, 90.0 

Resolution (Å) 66.9-1.39 (1.43-1.39) 

CC(1/2)  0.999 (0.766)  

I/σI 13.93 (1.05) 

Completeness (%) 100.0 (100.0)  

Multiplicity  12.0 (12.3) 

Refinement  

No. reflections (free) 23378 (1208) 

Rwork/Rfree (%) 18.2 / 23.4 

Wilson B-factor (A2) 11.6 

Overall B-factors 35.0 

R.m.s deviations   

Bond lengths (Å) 0.0197 

Bond angles (°) 2.234 

Ramachandran   

Most favoured (%) 99.0 

Allowed (%) 1.0 
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Table S3. Final cycle refinement geometry restraints and weights in Refmac5 (16). 
 
 

Sigma   
Bonding distances 1.0 

Bond Angles 1.0 

Planar Groups 1.0 (all) 1.0(Main Chain) 

Chiral Centres  1.0  

Non-bonded contacts (Å) 1.0 (overall) 

Sigma for simple VdW 0.2  

Sigma for VdW through torsion 0.2 

Sigma for H-bond 0.2 

Sigma for metal-ion 0.2 

Sigma for DUMMY and other atom 0.3 

Distance for donor-acceptor + (vdW1 +vdW2 ) -0.3 

Distance for acceptor  H   + (vdw1) 0.1 

VDW distance through torsion + (vdW1+vdW2)  -0.3 

Distance for DUMMY-others    +(vdW1+vdW2) -0.7 

Torsion angles weight 1.0 

Thermal Factors  weight 1.0 

Main chain bond (1-2 neighbour) 1.5Å2 

Main chain angle (1-3 neighbour) 2.0Å2 
Side chain bond 3.0Å2 

Side chain angle  4.5Å2 
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Figure S2. (A) Map of pLEICS-93 vector used for the expression of hERG3 PAS domain (residues 1-135) in E. coli
BL21(DE3). The sequences of the N-terminal tags and hERG3 are indicated on the right. (B) SDS–PAGE of the fractions
(lanes 2-7) from a 10/300 Superdex 200 gel filtration column, after elution of hERG3(PAS). Lanes 1 shows molecular-
mass markers (in kDa). The target protein is located around 15 kDa. (C) LC-MS spectrum of a hERG3(PAS) solubilised
hERG3(PAS) crystal used for collection of X-ray data, showing the presence of several components (in (D)). These
components arise from different lengths of the N-terminal Cap domain (see Fig. 1).

Observed MW 
of 
hERG3(PAS) 

Missing residues from 
the hERG3(PAS) crystal

Calculated 
MW of 
fragments

15515.8323 None

14730.3949 GAMPVRR 14729.8633

14536.3310 GAMPVRRGH 14535.6700

14358.1505 GAMPVRRGHVA 14365.4587

14140.1010 GAMPVRRGHVAPQ 14140.2112
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T7 terminator
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