Ligand-independent EGFR oligomers do not rely on the active state asymmetric kinase dimer

SUPPORTING INFORMATION

Patrick O. Byrne^{1,2}, Kalina Hristova³ and Daniel J. Leahy^{2*}

From the ¹Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore MD 21205; ²Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin TX 78712; ³Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore MD 21218

Supplementary Figure S2. Uncorrected FRET efficiency for EGFR homo-oligomerization

Supplementary Figure S2. Uncorrected FRET efficiency for EGFR- Δ 107-fp wildtype (A), EGFR- Δ 107-L858R-fp (B) and IgG-Fc/EGFR_{TMICD}-fp (C). The same data were used to generate these graphs and the graphs in Figure 2. Cartoons are the same as those in Figure 2. Each open circle in the graphs shows the FRET efficiency for a single vesicle. The y-axis shows the apparent FRET efficiency, the x-axis shows the number of acceptor molecules per square micron. The dotted line represents the theoretical FRET efficiency that would occur due to random proximity.

Supplementary Figure S3. Uncorrected FRET efficiency for HER2 homo- and hetero-oligomerization

Supplementary Figure S3. Uncorrected FRET efficiency for HER2- Δ 25-fp wildtype (A) and (B) HER2- Δ 25-fp co-expressed with EGFR- Δ 107-fp. The same data were used to generate these graphs and the graphs in Figure 3. Cartoons are the same as those in Figure 3. Each open circle in the graphs shows the FRET efficiency for a single vesicle. The y-axis shows the apparent FRET efficiency, the x-axis shows the number of acceptor molecules per square micron. The dotted line represents the theoretical FRET efficiency that would occur due to random proximity.

Supplementary Figure S4. Uncorrected FRET efficiency for the EGFR variants I706Q and V948R

Supplementary Figure S4. Uncorrected FRET efficiency for the EGFR- Δ 107-fp variants I706Q (A) and V948R (B). The same data were used to generate these graphs and the graphs in Figure 5. Each open circle in the graphs shows the FRET efficiency for a single vesicle. The y-axis shows the apparent FRET efficiency, the x-axis shows the number of acceptor molecules per square micron. The dotted line represents the theoretical FRET efficiency that would occur due to random proximity.

Supplementary Figure S5. Substitution of the mouse IgG-Fc domain for the EGFR extracellular domain results in a constitutively phosphorylated chimeric receptor

Supplementary Figure S5. Western blot analysis of CHO cell lysates after transient transfection and treatment with EGF. The indicated plasmid constructs are indicated above the western blots. Antibodies are indicated to the right of each blot, molecular weight markers (kDa) inidicated to the left. The blots are representative of three independent biological experiments.

Cull	F	Oligomeric	F			
Line	(receptors per cell)	Fraction (%)	Expression method	Label	Methodology	Reference
СНО	50,000 - 200,000	0%	stable	eGFP	Number and Brightness Analysis	21
A431	did not quantify	14%	endogenous	none	FRET (lifetime decay)	19
СНО	did not quantify	20%	stable	eGFP	fluorescence intensity distribution analysis	22
СНО	600,000	30%	stable	eGFP	Number and Brightness Analysis	21
СНО	various, ranging from 41,000 to 660,000	*see below	stable, tetracycline- inducible	none	measurement of EGFR binding to I ¹²⁵ -EGF	18
BaF/3	50,000 - 100,000	55%	stable	YFP	homo-FRET	16
A431	6,000,000 - 8,000,000	68%	endogenous	none	chemical cross- linking	20
mouse fibroblast	100,000	71%	stable	none	chemical cross- linking	20
СНО	20,000 - 200,000	68 ± 8%	transient	eGFP and eRFP	fluorescence cross- correlation spectroscopy	17

Supplementary Table S1. Previously reported fractions of preformed EGFR dimers

*Using saturation binding data, Macdonald and Pike (Reference 18) determined the best fit value for the equilibrium dissociation constant for ligand-independent EGFR dimerization to be about 50,000 receptors per cell (i.e. ~50% dimer at 50,000 receptors per cell)