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Macroecological laws describe variation and diversity in microbial communities

— Supplementary Information —
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Supplementary Table 1: Description and references for the datasets used in this work. In column ‘Type’, c refers to cross-

sectional (across communities) and l to longitudinal (across time).

Biome ID Type EBI ID Magnify ID Pipeline Version NCBI ID Reference # Samples T Range Tot # Reads Ns

glacier c ERP017997 MGYS00001292 3.0 PRJEB16145 [1] 30 [79765, 1104214]

gut1 c SRP056641 MGYS00001056 2.0 PRJNA275349 [1] 66 [13842, 102971]

gut2 c ERP015450 MGYS00001556 3.0 PRJEB13870 [2] 195 [24717, 614229]

lake c ERP012927 MGYS00001669 3.0 PRJEB11530 [3] 198 [57408, 350877]

oral1 c SRP056641 MGYS00001056 2.0 PRJNA275349 [1] 62 [10006, 138172]

river c ERP012927 MGYS00001669 3.0 PRJEB11530 [3] 188 [76042, 352675]

seawater c SRP128662 MGYS00002437 4.1 PRJNA429259 [4] 474 [11260, 492477]

sludge c ERP009143 MGYS00001064 2.0 PRJEB8105 [3] 575 [22255, 912713]

soil c SRP052295 MGYS00000905 2.0 PRJNA272333 - 112 [11352, 58219]

feces F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 131 [21008, 51986]

feces M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 334 [15047, 58463]

L palm F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 134 [12298, 34607]

L palm M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 365 [144, 48475]

R palm F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 134 [3214, 9052]

R palm M3 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 358 [135, 91953]

Tongue F4 l ERP021896 MGYS00002184 4.1 PRJEB19825 [5] 135 [5683, 12651]
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Supplementary Figure 1: Fluctuations of species abundance. These panels report exactly the same data shown in 1. For

each biome, they were considered only the species present in all the communities. The logarithm of their relative abundances

were rescaled (so to have mean zero and unitary variance). The panels report the distribution of these rescaled fluctuations for

each biome. Colored points are distributions calculated over both communities and species (same as shown is figure 1). Gray

lines are the distribution for individual species over communities. The black continuous line is a Gamma distribution and the

black dashed line a Lognormal distribution.
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Supplementary Figure 2: Moment generating function estimated from data. The panels show the moment generating

function estimated from the data using equation 33. The gray lines were obtained for individual species (with average abundance

x̄i > 5 · 10−5), while colored points are averages over species. The black solid line is the prediction for the Gamma distribution.
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Supplementary Figure 3: A Gamma AFD correctly predicts species’ occupancies. The occupancy is defined as the

fraction of samples/communities where a given species is found to be present. The predicted occupancy was obtained using

equation 38, which assumes a Gamma AFD. Using the average and the variance of species’ relative abundances, one can in fact

estimate the parameters of the AFD and the probability that a species is not found in a sample/community, given the level of

sampling. The black line is the 1 : 1 line, indicating a correct prediction. The gray points are individual species (no filter on

average abundance was applied), while the colored points are averages over species.
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Supplementary Figure 4: A Lognormal AFD fails in predicting species’ occupancies. The occupancy is defined as the

fraction of samples/communities where a given species is found to be present. The predicted occupancy was obtained using

equation 39, which assumes a Lognormal AFD. Using the average and the variance of species’ relative abundances, one can

in fact estimate the parameters of the AFD and the probability that a species is not found in a sample/community, given the

level of sampling. The black line is the 1 : 1 line, indicating a correct prediction. The gray points are individual species (no

filter on average abundance was applied), while the colored points are averages over species.
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Supplementary Figure 5: Model selection for AFD. The bars represent the fraction of OTUs for which a Gamma distribution

is statistically preferred (has a larger maximum likelihood) than a Lognormal distribution in describing the AFD.
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Supplementary Figure 6: Fraction of species for which exclusion is significant. The plots show the fraction of species

for which the inflated Gamma model (which allows true zeros in the abundance distribution) is more supported by the data

then the standard Gamma model (which predicts that all the instances when a species is absent are due to sampling errors),

measured as the fraction of species for which `i < 1 (see definition in eq. 42). These values are plotted for different choices of

the hyper-parameters a and b, showing that the fraction of species with `i < 1 decreases with increasing the average probability

of a true absence (a/(a+ b), on the x-axes).
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Supplementary Figure 7: Taylor’s law. The panels show the relationship between mean and variance of abundance. The

black line has slope 2, representing the quadratic relationship between variance and mean abundance.
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Supplementary Figure 8: Correlation between average abundances across biomes. The correlation plot shows the

correlation between species average abundances across biomes. The colored circles represent the correlation value (also reported

in the lower diagonal part). Crossed circles/values are non-significant correlations (the ones with p-value larger than 0.001).

Note that the sample size varies across pairs of biomes as one can consider only species which appeared in both biomes. Seawater

was excluded from this plot as the OTU picking method does not match with the ones of other biomes.
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Supplementary Figure 9: The Mean Abundance Distribution (MAD) is Lognormal. The panels show the distribution

of the logarithm of the average abundance log x̄i. A Lognormal MAD corresponds to normally distributed log x̄i. The black

line is standardized gaussian distribution (mean zero and variance one). The log average abundances were rescaled as zi =

(log x̄i − µ)/σ, where µ and σ were obtained for each biome from equation 49. The panels show that the rescaled log average

abundances zi are distributed according to a standard normal, implying that the average abundances x̄i are lognormally

distributed.
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Supplementary Figure 10: The Mean Abundance Distribution (MAD) is Lognormal. The left panel shows the cumu-

lative distribution of the average abundance across species for different datasets (colored lines). The center and right panels

show that the cumulative distribution collapse if rescaled accordingly to a lognormal distribution with lower cutoff, matching

the cumulative distribution of standardized lognormal (black line). The dashed portion of the curves represent the data below

the cutoff c.

Supplementary Table 2: Estimate of parameters across biomes and datasets. stot is the inferred total number of species, µ and

σ are the two parameters characterizing the Lognormal MAD (mean and standard deviation of log x̄i), while β is the shape

parameter of the Gamma AFD (which is equal to the inverse coefficient of variation squared of abundance fluctuations).

Biome ID stot µ σ β

glacier 20221 -18.5 4.1 1.3

gut1 35469 -16.1 3.5 0.4

gut2 50186 -17.2 3.8 0.3

lake 46912 -19.8 4.4 0.4

oral1 29149 -17.3 4.1 0.4

river 20833 -14.2 2.7 0.3

seawater 3336 -16.2 4.6 0.2

sludge 56671 -17.5 3.7 0.6

soil 29387 -17.1 3.8 0.38

feces F4 1742 -22.1 7.0 3.2

feces M3 5575 -28.0 8.5 1.2

L palm F4 3429 -14.7 4.1 0.7

L palm M3 3179 -14.8 4.0 0.3

R palm F4 2743 -13.7 3.8 0.9

R palm M3 6547 -18.4 5.2 0.3

Tongue F4 1708 -22.6 7.3 1.5

Tongue M3 2368 -23.9 7.4 1.4
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Supplementary Figure 11: Mean Abundance Distribution (MAD) for time data. The panels show the distribution

of the logarithm of the average abundance log x̄i. A Lognormal MAD corresponds to normally distributed log x̄i. The black

line is standardized gaussian distribution (mean zero and variance one). The log average abundances were rescaled as zi =

(log x̄i − µ)/σ, where µ and σ were obtained for each biome from equation 49. The panels show that the rescaled log average

abundances zi are distributed according to a standard normal, implying that the average abundances x̄i are lognormally

distributed.
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Supplementary Figure 12: The Mean Abundance Distribution (MAD) is Lognormal for time data. The left panel

shows the cumulative distribution of the average abundance across species for different datasets (colored lines). The center and

right panels show that the cumulative distribution collapse if rescaled accordingly to a Lognormal distribution with lower cutoff,

matching the cumulative distribution of standardized Lognormal (black line). The dashed portion of the curves represent the

data below the cutoff c.
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Supplementary Figure 13: Number of observed species vs. total number of reads. The number of observed species

in a sample/community, depends on the total number of sequences sampled Ns. The more sequences are sampled, the more

likely it is to find new species. The gray points report the number of species observed in each community, while the colored

symbols are averaged over communities in a range of Ns. The black dashed line represent sobs, the total number of observed

species across all the communities in that biome. The black dot-dashed line reports the value of the inferred value of stot,

which includes also the species that have not been observed in that biome. The solid black line is the prediction, reported

in equation 59, obtained by combining the three macroecological laws. Equation 59 correctly predicts the typical values of

observed number of species, as well as the quantitative relationship between species and number of sequences.
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Supplementary Figure 14: Shannon index vs. total number of reads. The Shannon index is a measure of diversity which

explicitly takes into account the distribution of abundances of species. The Shannon index is defined as the (Shannon) entropy

of the probability that a random individual belongs to a given species. The gray points report the number of species observed

in each community, while the colored symbols are averaged over communities in a range of number of reads Ns. The solid black

line is the prediction, reported in equation 60, obtained by combining the three macroecological laws.
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Supplementary Figure 15: Distribution of occupancy. The colored symbols report the distribution of species’ occupancy

in each biome. The solid black line is the prediction, reported equation 63, obtained by combining the three macroecological

laws. The gray dashed line is the approximation to the prediction reported in equation 65.
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Supplementary Figure 16: Occupancy-abundance relationship. The panels report the occupancies oi vs the log average

abundances log x̄i of each individual species (gray points). The colored points are averages over species, binned by abundance.

The solid black line is the prediction obtained from equation 66.
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Supplementary Figure 17: Cumulative Species Abundance Distribution. The panels report the cumulative Species

Abundance Distribution for individual communities (colored lines). The SAD are expected to be influenced by sampling

effects, and, in particular, by the total number of reads. The two solid black lines are the expected cumulative SAD for the

smallest (on the bottom) and largest (on top) values of total number of reads of each biome.
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Supplementary Figure 18: Fluctuations of species abundance over time. These panels report exactly the same data

shown in 4. For each time-series, they were considered only the species present in all the communities. The logarithm of their

relative abundances were rescaled (so to have mean zero and unitary variance). The panels report the distribution of these

rescaled fluctuations for each biome. Colored points are distributions calculated over both communities and species (same as

shown is figure 4). The black continuous line is a Gamma distribution and the black dashed line a Lognormal distribution.
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Supplementary Figure 19: Moment generating function of species fluctuation distribution estimated from time

data. The panels show the moment generating function estimated from the data using equation 33. The gray lines were

obtained for individual species (with average abundance x̄i > 5 · 10−5), while colored points are averages over species. The

black solid line is the prediction for the Gamma distribution.
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Supplementary Figure 20: A Gamma AFD correctly predicts species’ occupancies for time data. The occupancy

is defined as the fraction of time points where a given species is found to be present. The predicted occupancy was obtained

using equation 38, which assumes a Gamma AFD. Using the average and the variance of species’ relative abundances, one can

in fact estimate the parameters of the AFD and the probability that a species is not found at a given time, given the level of

sampling. The black line is the 1 : 1 line, indicating a correct prediction. The gray points are individual species (no filter on

average abundance was applied), while the colored points are averages over species.
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Supplementary Figure 21: Taylor’s law for time data. The panels show the relationship between mean and variance of

abundance. The black line has slope 2, representing the quadratic relationship between variance and mean abundance.
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Supplementary Figure 22: Number of observed species vs. total number of reads for time data. The number of

observed species at a given time, depends on the total number of sequences sampled Ns. The more sequences are sampled, the

more likely it is to find new species. The gray points report the number of species observed in each community, while the colored

symbols are averaged over times in a range of Ns. The black dashed line represent sobs, the total number of observed species

across all the times in that biome. The black dot-dashed line reports the value of the inferred value of stot, which includes also

the species that have not been observed in that biome. The solid black line is the prediction, reported in equation 59, obtained

by combining the three macroecological laws. Equation 59 correctly predicts the typical values of observed number of species,

as well as the quantitative relationship between species and number of sequences.



24

●

●
●

● ● ● ●

●

Tongue F4 Tongue M3

L_palm M3 R_palm F4 R_palm M3

feces F4 feces M3 L_palm F4

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

1e−03

1e−02

1e−01

1e+00

1e+01

1e−03

1e−02

1e−01

1e+00

1e+01

1e−03

1e−02

1e−01

1e+00

1e+01

Occurrence

P
ro

ba
bi

lit
y 

de
ns

ity

Supplementary Figure 23: Distribution of occupancy of species across times. The colored symbols report the distri-

bution of species’ occupancies (the fraction of times when a species has been observed) in each biome. The solid black line

is the prediction, reported equation 63, obtained by combining the three macroecological laws. The gray dashed line is the

approximation to the prediction reported in equation 65.
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Supplementary Figure 24: Occupancy-abundance relationship for time data. The panels report the occupancies oi vs

the log average abundances log x̄i of each individual species (gray points). The colored points are averages over species, binned

by abundance. The solid black line is the prediction obtained from equation 66.
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Supplementary Figure 25: Stochastic logistic model with colored environmental noise. Black points are numerical

simulation of the model described in section 13 for different values of noise strenght σ (columns) and ratio between environmental

timescale and population dynamics timescale χε (rows). The orange lines are the stationary distributions for white noise

(χε = 0), while blue lines are the stationary distribution for arbitrary values of χε obtained using the unified colored noise

approximation (see equation 86).
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Supplementary Figure 26: Distribution of Pearson correlation coefficients of abundances fluctuations. For each

biome and each pair of species (present in ar least 50% of the samples), we computed the Pearson correlation of their abundances

fluctuations. Each panel shows the distribution of these correlation coefficients (over all the species pairs) for each biome. The

colored points are data, while the black line is the null expectation obtained using the first macroecological law, where we

empirically fixed the free parameters (empirical mean and variance of each species). They gray horizontal line represent the

95% threshold. These figures convey two important messages: 1) there exist significant correlation which are not captured by

the the three macroecological laws alone; 2) correlations are present, but they are weak/sparse: most of pairs of species do not

have large correlations.
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Macroecological laws describe variation and diversity in microbial communities

— Supplementary Materials—

1. DATA

All the datasets analyzed in this work were obtained from EBI Metagenomics [6] (now Magnify) and have been

previously published. Raw data were processed under different version of EBI Metagenomics pipelines [6]. The

consistency of results across studies and pipelines strongly support the generality of the conclusions. Supplementary

Table 1 reports reference to the original works, Magnify pipeline and other information about each dataset. Note

that the pipeline version 4.1 uses SILVA [7] to assign OTU classification, while previous versions of the pipeline use

QIIME [8] and Greengenes [9]. In the following I will use the word “species” to refer to OTUs, defined accordingly

to the methods referred above. Datasets were selected to represent a wide set of biomes. I considered only datasets

with at least 50 samples with more than 104 reads. No dataset was excluded a-posteriori.

2. SAMPLING

A. Notation

Let Ns be the total number of reads in a biological sample s, and nsi the number of reads belonging to species (or

any other taxonomic classification) i. By definition
∑
i n

s
i = Ns (if not all the reads are assigned to a species, one can

introduce an unassigned category, such that ns∅ is the number of unassigned reads).

I assume that the set of reads {ns· } is sample s is produced by a (biased) sampling process. The probability

Ps({n·}|Ns) of observing a given set of reads {n·} conditioned to a total number of reads Ns is multinomially

distributed, i.e.,

Ps({n·}|Ns) =
Ns!∏
i ni!

∏
i

(psi )
ni , (1)

where psi is the actual frequency of species i in sample s.

We are interested in the variability of abundance across samples. This variability can be recapitulated as fluctuations

of the frequencies ps across samples, which are described by some (unknown) probability distribution ρ({p·}). In this

way, one can write equation 1 as

P ({n·}|N) =

∫
[dp] ρ({p·})

N !∏
i ni!

∏
i

(pi)
ni . (2)

I dropped the subscript s of N for simplicity. This equation disentangles two important sources of variability: the

variability across samples/communities (described by ρ({p·})) and the variability/noise due to sampling (described

by the multinomial sampling). Our goal is to study the properties of ρ({p·}), i.e. the fluctuations of the ps, how they

are distributed, and how they are correlated.

By marginalizing equation 2 one obtains, without any additional assumption (e.g., independence), that the proba-

bility of observing n reads of the OTU i equals

Pi(n|N) =

∫
dp ρi(p)

(
N

n

)
pn(1− p)N−n , (3)
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where

ρi(p) =

∫
[dp] ρ({p·})δ(pi − p) , (4)

where δ(·) is the Dirac’s delta function.

From equation 2, it is easy to obtain

〈ni〉N :=
∑
{n}

P ({n}|N)ni =

∫
[dp] ρ({p·})Npi = N〈pi〉 . (5)

Since the sampling effort (total number of reads) Ns varies across samples, one cannot directly evaluate 〈ni〉N from

the data. On the other hand one can remove the effect of N by computing 〈ni〉N/N . One can therefore easily estimate

〈pi〉

〈pi〉 ≈
1

T

T∑
s=1

nsi
Ns

, (6)

where T is the number of samples. Applying the same concept to the second moment, one obtains

〈n2
i 〉N =

∫
[dp] ρ({p·})(Npi(1− pi) +N2p2

i ) = N〈pi〉+N(N − 1)〈p2
i 〉 . (7)

One has therefore that

〈n2
i 〉N − 〈ni〉N
N(N − 1)

= 〈p2
i 〉 , (8)

from which one can estimate

〈p2
i 〉 ≈

1

T

∑
s

nsi (n
s
i − 1)

Ns(Ns − 1)
. (9)

Note that, even if Ns � 1, it is in principle incorrect to evaluate 〈p2
i 〉 as the sample mean of (nsi/Ns)

2. This

approximation is justified only if all the nsi � 1.

B. Poisson approximation and compositional data

Sequencing data are compositional [10] and therefore their fluctuations are always relative: the equivalence
∑
i pi = 1

constraints the fluctuations of species. If the abundance of a species increases, the abundance of all the other species

has to decrease on average. This constraint is explicit in equation 1, or, equivalently in the probability of observing

ni individuals of species i given a relative abundance pi

P (ni|N, pi) =

(
N

ni

)
pni (1− pi)N−n . (10)

At this point, it is useful to consider that one is typically interested in the case where the number of reads is large,

i.e. Ns � 1 (I considered only samples where Ns > 104, see table 1). Moreover, the most abundant species are a

typically small fraction of the samples (i.e., pi � 1). In this regime, I can approximate the Binomial distribution

which appears in equation 10 with a Poisson distribution, obtaining

Pi(n|N) =

∫
dx ρi(x)

(xN)n

n!
e−xN , (11)
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which correspond to equation 3. The variable x has the same interpretation as p: the relative abundance of a given

species.

In principle the constraint
∑
i xi = 1 still holds. The constraint can be relaxed to a milder condition, when it holds

on average and
∑
i x̄i = 1. The joint distribution ρ({x·}) can be written as

ρ({x·}) =
1

Z
ρ̃({x·})δ

(
s∑
i=1

xi − 1

)
, (12)

where s is the number of species and ρ̃({x·}) is a distribution without the constraint
∑
i xi = 1 and Z is a normalization

factor. The moment generating function is defined as G(h·) =
∫

[dx] ρ({x·}) exp(i
∑s
j=1 hjxj). Using the integral

representation of the delta function
∫
dk exp(ikx) = δ(x), one obtains

G({h·}) =
1

Z

∫
[dx] ρ({x·}) exp(i

s∑
j=1

hjxj) =
1

Z

∫
dk

∫
[dx] ρ̃({x·})e−ik+i

∑s
j=1(hj+k)xj =

1

Z

∫
dk e−ikG̃({h· + k}) ,

(13)

where G̃({h·}) =
∫

[dx] ρ̃({x·}) exp(i
∑s
j=1 hjxj). By writing the Taylor series of G̃({h· + k}) around k = 0, I obtain

G({h·}) =
1

Z

∫
dk e−ik

∞∑
N=0

∑
{n1,n2,...,ns}

δ∑
i ni,N

1

N !

∂N ˜G({h·})
∂n1h1∂n2h2 · · · ∂nshs

kN =

=
1

Z
G̃({h·})

∫
dk e−ik

∞∑
N=0

∑
{n1,n2,...,ns}

δ∑
i ni,N

1

N !
〈x̃n1

1 x̃n2
2 . . . x̃nss 〉(ik)N =

=
1

Z
G̃({h·})

∫
dk e−ikG̃S(k) ,

(14)

where a factor 2π coming from the integral representation of the Delta function was absorbed in Z. The function

G̃S(k) is equal to

G̃S(k) =

∫
[dx] ρ̃({x·}) exp

(
ik
∑
i

xi

)
. (15)

Using standard properties of the moment generating function, one has that

G̃S(k) = exp(ik

∞∑
k=1

ck) , (16)

where ck is the kth cumulant of
∑
i xi. For instance c1 is the average of

∑
i xi, c2 is the variance and so on. These

cumulants are calculated using the distribution ρ̃({x·}) (which does not have constraints on the sum of the variables).

If all the variables xi were independent, it is easy to show that the k-th cumulant of
∑s
i=1 xi scales with the total

number of species s as ck ∼ s1−k. This scaling relationship is obtained assuming that all the cumulants of sxi are

finite in the limit s → ∞. In this case the leading term is therefore given by k = 1, and therefore, for large s one

obtains

G̃S(k) ≈ exp(ikc1) = exp(ik

s∑
i=1

x̄i) , (17)

where

x̄i =

∫
[dx] ρ̃({x·}) xi , (18)
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,

By inserting this expression in equation 14, one obtains

G({h·}) ≈
1

Z
G̃({h·})

∫
dk e−ik exp(ik

s∑
i=1

x̄i) =
1

Z
G̃({h·})δ

(
s∑
i=1

x̄i − 1

)
. (19)

Which translates into

ρ({x·}) =
1

Z
ρ̃({x·})δ

(
s∑
i=1

x̄i − 1

)
. (20)

which constrains the sum of the averages abundances and not on the sum of the random variables. In other words, if

the number of species is large and abundances fluctuates independently, the constraints of equation 12 that impose

that the sum of the random variables is equal to the unity can be relaxed to a constrain on the sum of the average

abundances. If the abundances do not fluctuate dependently is not in principle true that ck ∼ s1−k. The first cumulant

(the average) is not affected by correlations, while the second cumulant is. In fact

c2 = 〈

(∑
i

xi

)2

〉 − 〈

(∑
i

xi

)
〉2 =

∑
ij

〈xixj〉 −
∑
i

〈xi〉
∑
j

〈xj〉 =
∑
i

σ2
xi +

∑
i 6=j

(〈xixj〉 − 〈xi〉〈xj〉) . (21)

Since the second cumulants of sxi is finite, then the variance σ2
xi ∼ s−2 and therefore

∑
i σ

2
xi ∼ s−1. The second

term contains a covariance and is therefore determined by correlation. One can always write the covariance as

〈xixj〉 − 〈xi〉〈xj〉 = ρijσxiσxj . The product σxiσxj scales as s−2 and the sum over i 6= j gives a contribution ∼ s2. In

order to have c1 dominating over c2, one need therefore that the typical ρ ∼ s−α with α > 0. In other words, if the

correlations are weak enough (i.e. not every species is correlated with every other species), our approximation still

holds for large enough number of species. For instance, if correlations are byproducts of interactions between species

and a typical species only interacts with a finite number of species (which does not grow indefinitely as the number

of species increases), ρ ∼ s−1 recovering a scaling c2 ∼ s−1. For large number of species, one can expect correlations

not to play a role in determining the constraint for species abundance fluctuations.

C. Moment generating function

In equation 7 the second moment of the number of reads of a given OTUs was computed, obtaining a non trivial

dependence on the total number of reads Ns. Knowing this dependence allowed to remove the effect of sampling and

to estimate the second moment of relative abundance from data obtained under different sampling efforts Ns (eq. 9).

It is straightforward to generalize this calculation to the other moments. A more compact and efficient way to achieve

the same goal is to estimate the moment generating function. One can calculate

〈zni〉N =

∞∑
n=0

zniPi(ni|N) =

∫
dxi ρi(xi) exp (Nxi(z − 1)) = 〈exp (Nxi(z − 1))〉 , (22)

where it was used

N∑
n=0

zn
(xiN)n

n!
e−xiN = eNxi(z−1) . (23)
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By introducing q = N(z − 1), one then obtains

〈
(

1 +
q

N

)ni
〉N = 〈exp (xiq)〉 . (24)

This suggests that one can remove the effect of the variability in the sampling effort and estimate the moment

generating function of ρi(x) as

Gi(q) = 〈exp (xiq)〉 ≈
1

T

T∑
s=1

(
1 +

q

Ns

)nsi
, (25)

where T is the total number of samples.

3. LAW #1: FLUCTUATIONS OF OTUS ABUNDANCE ACROSS SAMPLES ARE GAMMA

DISTRIBUTED

Figure 1 shows that the species that are present in all samples have Gamma distributed fluctuations of abundance,

i.e.

ρi(x) =
1

Γ(βi)

(
βi
x̄i

)βi
xβi−1 exp

(
−βi

x

x̄i

)
. (26)

Fig. 1 reports only the abundances of species always present. It is in fact not obvious (a-priori) how to treat abundances

equal to zero. The instances where species are absent are in fact potentially due to sampling errors, which confound

the shape of the AFD at low abundances. Section 4 shows that this in fact happens in the vast majority of cases.

The average relative abundance x̄i can be simply estimated using equation 6

x̄i ≈
1

T

T∑
s=1

nsi
Ns

. (27)

Since the variance of xi can be estimated as

σ2
xi ≈

1

T

∑
s

nsi (n
s
i − 1)

Ns(Ns − 1)
−

(
1

T

T∑
s=1

nsi
Ns

)2

, (28)

and one can write βi as

βi =

(
x̄i
σxi

)2

. (29)

The parameter βi (which is related to the inverse of the coefficient of variation), can be therefore obtained as

βi ≈

(
1

T

T∑
s=1

nsi
Ns

)2
 1

T

∑
s

nsi (n
s
i − 1)

Ns(Ns − 1)
−

(
1

T

T∑
s=1

nsi
Ns

)2
−1

. (30)

The moment generating function of a Gamma distribution is

Gi(q) = 〈exp (xiq)〉 =

(
1− x̄i

βi
q

)−βi
, (31)

which can be estimated from data using equation 25. The moment generating function is species dependent, as is

depends on x̄i and βi. On the other, it is easy to notice that Gi(q) can be collapsed by rescaling both q and Gi:

Gi

(
βi
q

x̄i

)− 1
βi

= 1− q , (32)
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which is independent of i. One can therefore test whether xi is Gamma distributed, by checking that(
1

T

∑
s

(
1 +

q

Ns

)nsi)−1/βi

≈ (1− q) . (33)

Figure 2 shows that the moment generating function estimated from the data using equation 33 is consistent with

a Gamma AFD.

4. EXCLUDING COMPETITIVE EXCLUSION

A. Prediction of occupancy from abundance average and variance

The fluctuations of abundance of species i across samples are described by a Gamma distribution

ρi(x) =
1

Γ(βi)

(
βi
x̄i

)βi
xβi−1 exp

(
−βi

x

x̄i

)
. (34)

The probability of observing ni reads of OTU i in a sample with N total number of reads is

Pi(ni|N) =
Γ(βi + ni)

ni!Γ(βi)

(
x̄iN

βi + x̄iN

)ni ( βi
βi + x̄iN

)βi
, (35)

and, in particular, the probability of not observing species i is equal to

Pi(0|N) =

(
1 +

x̄iN

βi

)−βi
. (36)

The occurrence of species i is defined as the fraction of samples where species i is present, i.e.

oi =
1

T

T∑
s=1

(
1− δnsi ,0

)
= 1− 1

T

T∑
s=1

δnsi ,0 , (37)

where the Kronecker delta δk,0 is equal to 1 if k = 0 and zero otherwise. Using equation 36 one can calculate 〈oi〉,

the expected occurrence of OTU i, which reads

〈oi〉 = 1− 1

T

T∑
s=1

Pi(0|Ns) = 1− 1

T

T∑
s=1

(
1 +

x̄iNs
βi

)−βi
. (38)

Note that the two parameters x̄i and βi are estimated independently of the occupancy, as they are function of the

average relative abundance across samples and its variance only.

Figure 3 shows that a Gamma AFD, using which one can obtain equation 38, correctly predicts empirical species’

occupancies. One might wonder how sensitive is this result to the choice of a Gamma AFD. For instance, if the AFD

was Lognormal (with parameters mi and si), one would expect

Pi(0|Ns) =

∫
dη exp(−eη)

exp
(
− (η−mi)2

2s2i

)
√

2πs2
i

, (39)

from which one can compute the expected occupancy 〈oi〉 as 1−
∑T
s=1 Pi(0|Ns)/T . Figure 4 shows that a Lognormal

AFD fails in reproducing the occupancies of species, always overestimating occupancies at intermediate values. The

observation of a statistical superiority of the Gamma AFD is confirmed by Fig. 5 that shows that the Gamma AFD

has a larger maximum likelihood for most of the OTUs across all datasets.
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B. Model selection

In this section we compare a purely Gamma AFD with a zero inflated Gamma, which reads

%i(x|ϑ, β, x̄) = ϑiδ(x) + (1− ϑi)
1

Γ(βi)

(
βi
x̄i

)βi
xβi−1 exp

(
−βi

x

x̄i

)
, (40)

where %i(x|ϑ, β, x̄) is the probability that species i has abundance x, ϑi is the probability that a species is truly

absent in a community and δ(·) is the Dirac delta distribution. The assumption behind this model is that if a species

is present (which happens with probability 1 − ϑ) its abundance fluctuations are Gamma distributed. Under this

distribution the probability of observing ni reads for species i in a sample with N total number of reads is

Pi(ni|N) = ϑiδni,0 + (1− ϑi)
Γ(βi + ni)

ni!Γ(βi)

(
x̄iN

βi + x̄iN

)ni ( βi
βi + x̄iN

)βi
, (41)

which reduces to equation 35 when ϑi = 0 Note that Pi(0|Ns) is always larger than ϑi, as sampling errors are also

present here and the probability of false negatives is always nonzero.

Our goal is to test whether the ϑis are significantly different from zero. Since the two models tested here are

nested, I introduce a prior µ(ϑ) over the ϑ and compare the maximum likelihood estimator in the case ϑi = 0 with

the (maximum) likelihood marginalized over ϑ with prior µ(ϑ). Given the number of reads nsi of species i in sample

s (with Ns) total number of reads, one can compute the ratio

`i =
maxx̄,β

∏
s

∫
dx%i(x|0, β, x̄) (xNs)

nsi

nsi !
e−xNs∫

dϑ µ(ϑ)
(

maxx̄,β
∏
s

∫
dx%i(x|ϑ, β, x̄) (xNs)

ns
i

nsi !
e−xNs

) =

=
maxx̄,β

∏
s

Γ(β+nsi )
nsi !Γ(β)

(
x̄Ns

β+x̄Ns

)nsi ( β
β+x̄Ns

)β
∫
dϑ µ(ϑ)

(
maxx̄,β

∏
s

(
ϑδnsi ,0 + (1− ϑ)

Γ(β+nsi )

nsi !Γ(β)

(
x̄Ns

β+x̄Ns

)nsi ( β
β+x̄Ns

)β)) .

(42)

If `i > 1, the model with ϑi = 0 is more strongly supported that the model with ϑ 6= 0. I considered Beta prior

µ(ϑ) =
Γ(a+ b)

Γ(a)Γ(b)
ϑa−1(1− ϑ)b−1 , (43)

which depends on two hyperparameters a and b. In particular the average ϑ is equal to a/(a+ b).

For a given value of ϑ I numerically maximized
∏
s

∫
dx%i(x|ϑ, β, x̄) (xNs)

nsi

nsi !
e−xNs over β and x̄, by using R non-

linear equation solver with Broyden method and multiple initial conditions. By calculating this maximum for ϑ = 0

and comparing it with the averaged value of the maximum over Beta distributed ϑ, I estimated `i for each species.

Figure 6 reports the fraction of species for which `i < 1, i.e., the fraction of species for which the inflated gamma is

more statistically supported than the standard Gamma, suggesting a ϑi significantly different from zero. The value

varies across biomes and over choices of a and b, with typical values of 1% to 10% of species displaying `i < 1.

Interestingly the fraction of species with `i < 1 increases as the average ϑi (equal to a/(a+b)) decreases. Therefore,

the more the prior is concentrated around ϑ = 0, the more likely the inflated Gamma distribution becomes, as it

reduces to the standard Gamma.

5. LAW #2: TAYLOR’S LAW FOR ABUNDANCES FLUCTUATIONS

I showed that the fluctuations of OTU abundances across samples are well described by a Gamma distribution (what

I called “Law #1”). The parameters of a Gamma distribution are fully specified by its mean and variance. Knowing
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the mean and the variance of the relative abundance of a species, is therefore enough to specify the distribution of

abundance and descending properties (e.g., the probability of being observed as shown in section 4 A).

In this section, I explore the relation between mean and variance. Figure 7 shows that mean and variance are not

independent across species. The variance is, in fact, proportional to the square of the mean. A relation of the type

σ2
x = 〈x〉2b , (44)

is called Taylor’s law and has been documented across multiple ecosystems [11]. Figure 7 shows that b = 1, which

implies that the coefficient of variation is constant. This observations can be translated into constraints on the

parameters of the AFD. In fact, since βi depends only on the coefficient of variation, one can neglect the fluctuations

of βi across species.

6. REPRODUCIBILITY OF AVERAGE ABUNDANCE

The fact that fluctuations of species abundance are well described by a Gamma AFD, reduce variation of each

species’ abundance to two parameters: mean and variance. Taylor’s law, by establishing a link between mean and

variance, implies that the average abundance of a species is the most important parameter to characterize its abundance

fluctuations. In this section I show that the average summarize non-trivial biological information, being characteristic

of a species in a set of similar environments. The average abundance could, in fact, be just a fitted value with little

biological significance, not carrying any information about the environment where the species lived in. This could

happen in two extreme way: the average is just a value independent on both species identity and biome (like it would

be in neutral theory, see section 11) or the average depends on the species only (for instance, if the average abundance

was a consequence of some technical choice in the experiment). Figure 8 shows the correlation of species’ average

abundances across biomes. For each pair of biomes I consider the species present in both biomes and I calculate

the correlation between there average relative abundances. Both significant positive and negative correlations are

observed. Particularly high are the correlations between two different gut microbiome experiments and between river

and lake microbiomes (both freshwater). This results indicates that average abundances are highly reproducible across

experimental setups and have significant information about the particular set of environmental conditions.

7. LAW #3: AVERAGE ABUNDANCES ARE LOGNORMALLY DISTRIBUTED

The fluctuations of species abundances across samples are fully specified by the average (relative) abundance. In

this section I show that the average abundances are Lognormally distributed across species.

Since we are always dealing with a finite number of (finite) samples, not all the species are observed. We are

interested in how the average abundances x̄i are distributed across species. If a species is rare enough, (i.e., if x̄i < c,

where c is a cutoff) it becomes extremely unlikely to observe it. If the “true” distribution x̄is is described by some

probability distribution function p(x̄), one expects to observe only the values larger than c

pemp(x̄) =
θ(x̄− c)p(x̄)∫
dzθ(z − c)p(z)

, (45)

where c is the cutoff under which species are never observed because they are too rare. Note that this cutoff is a

probabilistic one (the probability of observing a species above this cutoff tends to one and is lower than one below).
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Figure 9 shows that the distribution of x̄ is consistent with a Lognormal distribution. In order to estimate the

parameters of the Lognormal, we have to take into account the presence of the cutoff, as defined in equation 45. In

other words, if p(x̄) is Lognormal, the observed distribution of abundances will be

pemp(x̄) =

√
2√

πσ2x̄
θ(x̄− c)

exp(− (log(x̄)−µ)2

2σ2 )

erfc
(

log(c)−µ√
2σ

) . (46)

The parameters µ and σ are unknown, and should be inferred from data, while c is known (and depends on the

number of samples and the sampling effort). The first and second moment of the log average abundances are given

by

m1 :=
1

sobs

∑
i

log(x̄i) , (47)

and

m2 :=
1

sobs

∑
i

(log(x̄i))
2
, (48)

where sobs is the total number of OTUs observed across samples (with log average abundance larger than the cutoff

c). It turns out that the maximum likelihood estimate of µ and σ is the solution of the following system of equations
m1 =

√
2
πσe

− (log(c)−µ)2

2σ2

erfc
(

log(c)−µ√
2σ

) + µ

m2 = σ2 +m1µ+ cm1 − µc
(49)

The species below an average log abundance c were not observed. The total number of species stot can be inferred

calculating the probability of observing a species, by assuming that the abundances of non observed species is also

lognormally distributed, i.e., to be more precise, that the true distribution of average abundances is

ptrue(x̄) =
1√

2πσ2x̄
exp

(
− (log(x̄)− µ)2

2σ2

)
. (50)

In this case the expected number of species 〈sobs〉 with log abundance larger than c is given by

〈sobs〉 = stot

∫ ∞
c

dx̄ ptrue(x̄) =
stot
2

erfc

(
log(c)− µ√

2σ

)
, (51)

where ∫ ∞
y

dz
1√
π

exp
(
−z2

)
:=

1

2
erfc(y) =

1

2
(1− erf(y)) . (52)

One can infer the total number of species stot by inverting this equation to obtain

stot =
2〈sobs〉

erfc
(

log(c)−µ√
2σ

) , (53)

and by using the empirical value of sobs. The inferred values of µ, σ and stot (together with the value of β) are

reported in table 2.

Note that the true values of x̄i are constrained by
∑stot
i=1 x̄i = 1, which implies a contraint on the value of parameters.

In fact, we have that

1

stot
=

1

stot

stot∑
i=1

x̄i =

∫ ∞
0

dx̄ ptrue(x̄) x̄ = exp

(
µ+

σ2

2

)
, (54)
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which translated in the constraint

stot exp

(
µ+

σ2

2

)
= 1 . (55)

I did not impose this constraint in the inference of the parameters, as it leads to very unstable result. For instance, one

could use equation 55 to infer stot from µ and σ. A relatively small error in µ and/or σ would be strongly amplified

in the estimate of stot. I checked numerically (by generating samples from a constrained Lognormal distribution) that

estimating independently the three parameters leads to more accurate results in the estimate of µ, σ and stot at the

expenses of imposing the constraint of equation 55 exactly.

8. MACROECOLOGICAL PATTERNS ARE PREDICTED BY LAWS #1, #2 AND #3

Given laws #1, #2, and #3, the probability to observe n reads of a randomly chosen OTUs in a sample with N

total reads is

P (n|N) =

∫
dη

Γ(β + n)

n!Γ(β)

(
eηN

β + eηN

)n(
β

β + eηN

)β exp
(
− (η−µ)2

2σ2

)
√

2πσ2
, (56)

where η = log(x̄) and where we are calculating the distribution over all the stot species (i.e., including the unobserved

species).

All the properties of a species are fully specified by its mean abundance x̄ = eη. The probability of observing n

reads of a species with log average abundance η in a sample with N total number of reads is therefore

P (n|N, η) =
Γ(β + n)

n!Γ(β)

(
eηN

β + eηN

)n(
β

β + eηN

)β
. (57)

A. Number of observed species vs total number of reads

The total number of observed species in a sample with N total number of reads can be easily calculated using

equation 56. The probability of not observing a species is simply P (0|N). The expected number of distinct OTUs

〈s(N)〉 in a sample with N reads is therefore

〈s(N)〉 = stot (1− P (0|N)) = stot

1−
∫
dη

exp
(
− (η−µ)2

2σ2

)
√

2πσ2

(
β

β + eηN

)β . (58)

Figure 13 compares the empirical relation between number of species and total number of reads with the prediction

of equation 59.

B. Shannon index

Given a sample s with Ns total number of reads and with nsi reads of OTU i, the Shannon diversity index is defined

as

Hs = −
∑
i∈s

nsi
Ns

log

(
nsi
Ns

)
. (59)
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The expected Shannon index is therefore given by

〈H(N)〉 = −stot
∑
n>0

n

N
log
( n
N

)
P (n|N) =

= −stot
∫
dη

∑
n>0

n

N
log
( n
N

) Γ(β + n)

n!Γ(β)

(
eηN

β + eηN

)n(
β

β + eηN

)β exp
(
− (η−µ)2

2σ2

)
√

2πσ2
.

(60)

Figure 14 compares the predictions of equation 60 with data.

C. Occupancy distribution

The occupancy of a species is the fraction of samples where that species is present. The occupancy distribution is

the probability distribution of observing a species with a given occupancy. The probability of observing a species with

log average abundance η in a sample with N reads is 1−P (0|N, η), where P (n|N, η) is defined in equation 57. Let us

define χs(η), which is equal to 1 if an OTU with log average abundance η is present in sample s (which happens with

probability 1− P (0|Ns, η)) and zero otherwise. The probability p(o|η) that a species has occupancy o is given by

p(o|η) =
∑

{χ1,χ2,...,χs,...,χT }

[
δ

(
o− 1

T

∑
s

χs

)∏
s

(δχs,1 (1− P (0|Ns, η)) + δχs,0P (0|Ns, η))

]
. (61)

The number of samples oT where a given OTUs is present is therefore given by a Poisson-Binomial distribution, which

describes the distribution of the sum of independent non-identically distributed Bernoulli random variables. Using

the Fourier transform of the Poisson-Binomial distribution [12], one can write

p(o|η) =

T∑
t=0

δ(o− t/T )
1

T + 1

T∑
l=0

e−
2πi
T+1 lt

T∏
s=1

(
P (0|Ns, η) + e

2πi
T+1 l (1− P (0|Ns, η))

)
. (62)

The distribution of occupancy across species pobs(o) can be obtained by averaging 62 over η. Since only the OTUs

with o > 0 can be observed, one has to restrict the summation in eq. 62 only over t > 0 and to normalize the

distribution over the probability of observing a given number of species. The result of this calculation reads

pobs(o) =

∫
dη
∑T
t=1 δ(o− t/T ) 1

T+1

∑T
l=0 e

− 2πi
T+1 lt

∏T
s=1

((
β

β+eηNs

)β
+ e

2πi
T+1 l

(
1−

(
β

β+eηNs

)β)) exp

(
− (η−µ)2

2σ2

)
√

2πσ2∫
dη

exp
(
− (η−µ)2

2σ2

)
√

2πσ2

∏T
s=1

(
1−

(
β

β+eηNs

)β) .

(63)

This equation can be simplified by assuming that the occupancy of each species is equal to its mean value, which

is justified if the number of samples is large. This assumption corresponds to write

p(o|η) = δ(o− 〈t〉/T ) = δ(o− 〈o〉η) = δ

(
o− (1− 1

T

T∑
s=1

P (0|Ns, η))

)
. (64)

By averaging over the ηs one obtains the following approximation of equation 63

pobs(o) =

∫
dη δ

(
o− 1 + 1

T

∑T
s=1

(
β

β+eηNs

)β) exp

(
− (η−µ)2

2σ2

)
√

2πσ2∫
dη

exp
(
− (η−µ)2

2σ2

)
√

2πσ2

∏T
s=1

(
1−

(
β

β+eηNs

)β) (65)
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Figure 15 shows the empirical occupancy distributions of different biomes, and it compares them with the prediction

of equation 63. Figure 15 also shows that the approximation of equation 65 closely match data and the exact expression

of eq. 63.

D. Abundance-occupancy relation

Occupancy (the fraction of samples where a species is found) and average abundance are not independent properties.

Given an average (relative) abundance f = exp(η), the expected occupancy is

〈o〉η = 1− 1

T

T∑
s=1

P (0|Ns, η) = 1− 1

T

T∑
s=1

(
β

β + eηNs

)β
, (66)

where η is equal to the logarithm of the average abundance. Figure 16 shows the empirical occupancy-abundance

relationship and its comparison with data.

E. Species Abundance Distribution

One of the most studied patterns in ecology is the Species Abundance Distribution (SAD), which is defined as the

number of species with a given abundance. The expected number of species with abundance n in a sample with N

total number of reads is given by

〈sn(N)〉 = stotP (n|N) = stot

∫
dη

Γ(β + n)

n!Γ(β)

(
eηN

β + eηN

)n(
β

β + eηN

)β exp
(
− (η−µ)2

2σ2

)
√

2πσ2
. (67)

Consistently to equation 59, the number of observed species 〈s(N)〉 is given by

〈s(N)〉 =

∞∑
n=1

〈sn(N)〉 = stot (1− P (0|N)) . (68)

In order to compare different samples, it is often more convenient to study the fraction of species with a given

abundance. According to our model, the expected fraction of species with abundance n is

〈Φn(N)〉 :=
〈sn(N)〉
〈s(N)〉

=
P (n|N)

1− P (0, N)
=

∫
dη Γ(β+n)

n!Γ(β)

(
eηN

β+eηN

)n (
β

β+eηN

)β exp

(
− (η−µ)2

2σ2

)
√

2πσ2

1−
∫
dη
(

β
β+eηN

)β exp
(
− (η−µ)2

2σ2

)
√

2πσ2

. (69)

The cumulative SAD is defined as

〈Φ>n (N)〉 :=

∞∑
m=n

〈Φm(N)〉 =

∫
dη I eηN

β+eηN
(n, β)

exp

(
− (η−µ)2

2σ2

)
√

2πσ2

1−
∫
dη
(

β
β+eηN

)β exp
(
− (η−µ)2

2σ2

)
√

2πσ2

, (70)

where Ip(n, β) is the regularized incomplete Beta function. Figure 17 compares the empirical cumulative SADs with

the prediction of equation 70.
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9. MACROECOLOGICAL LAWS IN TEMPORAL DATA

A. Law #1: Fluctuations of OTUs abundance across samples are Gamma distributed

Figure 18 shows the distribution of abundance fluctuations across times for the species with high occurrence.

This figure parallels Figure 1, which was obtained using the fluctuations across communities instead of across times.

Figure 19 shows the estimated moment generating function, obtained in the same way as of Figure 2.

1. Excluding competitive exclusion in time data

Using the same method explained in section 4 A, I obtained a prediction for the occupancy of each species, based

on its average and variance of abundance, which is shown in Figure 20. Also for time data, the presence and absence

of species abundances can be predicted from their mean and variance of abundances.

B. Law #2: Taylor’s law for abundances fluctuations

Figure 21 shows that the quadratic relationship between mean and variance of abundance also hold for time data.

These panels parallel Figure 7 obtained across communities.

C. Law #3: average abundances are Lognormally distributed

Figure 11 shows that the the average abundances are Lognormally distributed also for time data. These panels

parallel Figure 9 obtained across communities.

10. PREDICTION OF MACROECOLOGICAL PATTERNS IN TEMPORAL DATA

As reported in section 8 for cross-sectional data, in this section I show that the three macroecological laws are

sufficient to predict other commonly studied macroecological patterns also for temporal data.

Figure 22 shows that equation 59 well predicts the observed number of species as a function of the total number

of reads. Figure 23 compares data and the prediction of equation 63 for the occupancy distribution, while Figure 24

shows that equation 66 captures the relationship between average abundance and occupancy.

11. MODELS THAT DO NOT REPRODUCE THE OBSERVED PATTERNS

In this section I compare the the three macroecological laws discussed in section 3, 7, and 5 with the predictions

of commonly used theory and models. By design, I use three “laws” that were observed across biomes and therefore

they are not specific and cannot reveal too many details about ecological mechanisms that act differently in those

biomes. This is also the strength of this test. For any model or theory aiming at explaining community composition
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and structure at any level of detail, it is a strong requirement to be able to capture the three minimal laws that this

work considers.

A. Neutral theory

Neutral theory (NT) [13–15] has been extremely successful in capturing the empirical properties of Species Abun-

dance Distribution of many communities [16–18]. It has also proved to be successful in capturing some temporal and

spatial properties [19]. In the context of microbial communities, NT has been tested in different ways [20]. While the

existence of significant correlations (as shown in section 14) contradicts NT, the general patterns of abundance and

diversity (and in particular the Relative Species Abundance) do not show a strong disagreement with the prediction of

NT. By disentangling the shape of the SAD as the result of the combination of a Gamma AFD and a Lognormal MAD,

one is instead able to reject NT on the sole basis of patterns of abundance fluctuations. In fact, NT would predict

a peaked MAD (Gaussian for a finite number of samples), while a Lognormal distribution in the data is observed.

Moreover the average abundance is a conserved property, characteristic of some broad environmental conditions (see

section 6).

B. Deterministic models with alternative stable states as source of variation

Lotka-Volterra [21, 22] or consumer-resource models [23] often leads to alternative stable states driven by competitive

exclusion: only a subset of the species can coexist in the same community. Which subset of species is realized in

a community depends on the initial condition and on its basin of attraction. Within a biome (whose definition is

unclear, a-priori) I showed that the presence/absence of species is a consequence of sampling errors. This also applies

in a single host when observed over time. While abundance of species fluctuates, the average value around which it

fluctuates is conserved over time and across communities. This observations suggest that, as a first approximation, it

exists in fact only one basin of attraction (or some globally stable equilibrium) around which species fluctuates. The

sentence “as a first approximation” should be interpreted as to characterize the main contributors of fluctuations from

community to community, from sample to sample, which are very likely not to be due to alternative stable states.

12. STOCHASTIC LOGISTIC MODEL

I assume that the dynamics of population abundance xi is defined by

dxi(t)

dt
=
xi(t)

τi

(
1− xi(t)

Ki

)
+

√
σi
τi
xi(t)ξi(t) , (71)

where ξi(t) is a Gaussian delta correlated white noise (〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′)).

The term proportional to ξi(t) represents environmental fluctuations, which translate into fluctuations of the growth

rate and are therefore proportional to xi. The only essential assumption here is that I assume these fluctuations to

occur at a typical timescale that is much shorter than the population dynamics one and to have a finite variance.

From this assumption it follows that ξi(t) can be well approximated as a Gaussian delta correlated white noise. The
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other term is a logistic growth term, with carrying capacity Ki. The parameter τi is the timescale of population

dynamics and σi is measures the coefficient of variation of growth rate fluctuations.

Interpreted with Itô prescription (note however that the corresponding Stranovich equation has the same form up

to a redefinition of parameters), equation 81 corresponds to the following Fokker-Planck equation which describes the

dynamics of the probability Pi(x, t) of finding species i with abundance x at time t

τi
∂Pi(x, t)

∂t
= − ∂

∂x

(
x

(
1− x

Ki

)
Pi(x, t)

)
+
σi
2

∂2

∂x2

(
x2Pi(x, t)

)
. (72)

The stationary distribution P ∗i (x) = limt→∞ P (x, t) can be found by setting the left hand side of equation 72 equal

to zero. Imposing detailed balance, one obtains

x

(
1− x

Ki

)
P ∗i (x) =

σi
2

∂

∂x

(
x2P ∗i (x)

)
. (73)

By introducing x2P ∗i (x) = Qi(x) one obtains(
1

x
− 1

Ki

)
Qi(x) =

σi
2
Q′i(x) , (74)

which is solved by

Qi(x) = c exp

(
− 2

Kiσi
x

)
x2σ−1

, (75)

where c is an arbitrary constant. By using P ∗i (x) = Qi(x)x−2 and fixing c by imposing
∫
dxP ∗i (x), we obtain

P ∗i (x) =
1

Γ(2σ−1
i − 1)

(
2

Kiσi

)2σ−1
i −1

exp

(
− 2

Kiσi
x

)
x2σ−1

i −2 , (76)

which is a Gamma distribution with mean

〈xi〉 = Ki(1−
σi
2

) , (77)

and squared coefficient of variation

〈x2
i 〉 − 〈xi〉2

〈xi〉2
=

σi
2− σi

. (78)

It is important to observe that the mean abundance is positive and the variance is finite only if σi < 2. If the

environmental fluctuations are too strong the population is, in fact, driven to extinction. This effect is driven by the

multiplicative nature of the noise in equation 81. By introducing the variable qi = log xi in equation 81, one obtains

(under Itô prescription)

dqi(t)

dt
=

1

τi

(
1− σi

2
− eqi

Ki

)
+

√
σi
τi
ξi(t) . (79)

The term −σ2 comes from the change of variable following Itô prescription. By taking the average on both sides one

obtains

d〈qi(t)〉
dt

=
1

τi

(
1− σi

2
− 〈e

qi〉
Ki

)
. (80)

Since the term 〈eqi〉 is always positive, it is evident that d〈qi(t)〉
dt reaches a stationary value only if 1− σi/2 > 0, i.e. if

σi < 2. If σi > 2 the population abundance decreases indefinitely.
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13. STOCHASTIC LOGISTIC MODEL WITH COLORED NOISE

The SLM describes the dynamics in presence of environmental noise. In the previous section I considered the case

where environmental noise is white (i.e., the autocorrelation time goes to zero). In this section I extend the SLM to

include colored environmental noise, with non-zero autocorrelation time τε. In order to simplify the notation, and

without loss of generality, the index i is removed. I consider the following model

dx(t)

dt
=
x(t)

τ

(
1− x(t)

K

)
+

√
σ

τ
x(t)ε(t) , (81)

where ε(t) is a Gaussian noise with mean zero 〈εi(t)〉 = 0 and exponentially decaying autocorrelation

〈ε(t)ε(t′)〉 =
1

2τε
exp

(
−|t− t

′|
τε

)
. (82)

One can equivalently write an equation to describe the dynamics of the variable ε(t) as

dε(t)

dt
= − 1

τε
ε(t) +

1

τε
ξ(t) , (83)

where ξ(t) is Gaussian, delta correlated, white noise 〈ξ(t)ξ(t′)〉 = δ(t − t′). One can introduce χε = τε/τ , which

measures the relative timescale of the environment compared to the population dynamics one. When χε → 0 one

obtains the SLM with white noise. In fact, if τε → 0 the autocorrelation of the environmental noise in eq 82 tend to

a delta function. Less formally, in that limit, one obtains that in equation 83 one can substitute ε(t) = ξ(t) when

τε → 0.

Figure 25 compares the stationary distribution obtained for different values of σ and ξε. Interestingly, even for values

of χε ∼ 1 one obtains a distribution that resembles a Gamma. Only for significantly larger values of χε important

deviations emerge.

One can obtain an accurate approximation of the stationary distribution for arbitrary values of χε using the unified

colored-noise approximation [24]. This approximation is exact only in the limits χε → 0 and χε → ∞, but it turns

out to be accurate also for intermediate values. In order to obtain this approximation, it is convenient to write the

stationary distribution for q = log(x). In the case χε = 0, it can be obtained from 76 and reads

P ∗i (q|χε = 0) =
1

Γ(2σ−1 − 1)

(
2

Kσ

)2σ−1−1

exp

(
− 2

Kσ
eq + (2σ−1 − 1)q

)
. (84)

With a straightforward application of the unified colored-noise approximation [24], one obtains

P ∗i (q|χε) =
1

Z(χε)
P ∗i (q|χε = 0)

(
1 + χε

eq

K

)
exp

(
−χε
σ

(
1− σ

2
− eq

K

)2
)
, (85)

where Z(χε) is a normalization constant. By substituting x = eq one easily obtains

P ∗i (x|χε) =
1

Z(χε)
P ∗i (x|χε = 0)

(
1 + χε

x

K

)
exp

(
−χε
σ

(
1− σ

2
− x

K

)2
)
. (86)

Figure 25 shows that the analytical approximation of equation 86 accurately matches the numerical simulations.

14. CORRELATIONS OF SPECIES ABUNDANCE FLUCTUATIONS

In the previous sections I showed that the three macroecological laws correctly capture many statistical properties

of the empirical data. In this section I show that they do not capture all the statistical properties, and, in particular,

they fail in describing the correlations between species abundance fluctuations.
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In section 8, in order to reproduce the macroecological patterns starting from the three macroecological laws, I

assumed that the abundance fluctuations were independent across species. More generally one can write

Pij(ni, nj |N) =

∫
dx dy

(xN)ni

ni!
e−xN

(yN)ni

ni!
e−yN ρij(x, y) , (87)

where Pij(ni, nj |N) is the probability of observing ni reads of species i and nj reads of species j in a sample with N

total number of reads, and ρij(x, y) is the joint probability distribution of the (relative) abundances. So far I have

assumed ρij(x, y) = ρi(x)ρj(y) which implies in turn Pij(ni, nj |N) = Pi(ni, N)Pj(nj |N). Using the same concepts

introduced in section 2, it is easy to show that∫
dx dy xy ρij(x, y) = 〈xixj〉 ≈

1

T

T∑
s=1

nsi
Ns

nsj
Ns

, (88)

for a large number of samples T . By considering also mean and variance of the two marginal distributions ρi(x) and

ρj(y) one can easily estimate the Pearson correlation coefficient rij . In the limit of large number of samples, if the

abundances were independent, the Pearson correlation coefficient would tend to zero. Since we are working with a

finite number of samples, the fluctuations in the estimated correlation coefficient cannot be neglected. Instead of

studying all the correlations independently, I considered the distribution of coefficients rij , formally defined as

q(r) :=
2

s(s− 1)

∑
i>j

δ(r − rij) , (89)

where s is the number of species considered.

Figure 26 compares the empirical distribution of Pearson correlations q(r), with the one obtained by imposing

independence between species and using the three macroecological laws. The first important observation is that the

two distribution differs: there are in fact significant correlation which cannot be neglected. The second important

observation is that the empirical q(r) is centered about zero: most of the species pairs have low / non-significant

correlations. This latter observation agrees qualitatively with the null expectation, but is far from trivial. In fact, it

implies that correlations are weak (correlation coefficient are small) and sparse (pairs of species with large correlations

are rare).

These two important results are retrospectively important to interpret one of the main results of the paper. It is

possible to make predictions about the macroecological patterns by assuming only the three macroecological laws and

independence between species because correlations are weak, and therefore they do not affect much the macroecological

patters (which are averages over species or samples). In turn, the results of the papers are essential to detect

correlation, providing an empirically-validated null model.
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